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Tracking targets in clutter, with the inherent data association

problem, naturally leads to a Gaussian mixture representation

of the probability density function (pdf) of the target state

vector, conditioned on the measurements observed. Online

trackers require reduction of the number of components in the

mixture on each processing cycle, and the integral square error

(ISE) based mixture reduction algorithm (MRA) significantly

outperforms known alternative algorithms. Moreover, to handle

target maneuver onset and changing trajectory characteristics,

one can use multiple model adaptive estimation in the form

of either multiple model adaptive estimation (MMAE) or

interacting multiple model (IMM) algorithms. For maneuvering

targets in clutter, one can replace each Kalman filter within a

conventional MMAE or IMM with an ISE-based MRA, or better

yet, replace each Kalman filter within an ISE-based algorithm

with an MMAE or IMM, to yield superior tracking of aggressive

maneuvers in deep clutter. Such an ISE-based algorithm of

MMAEs is seen to have performance attributes significantly

superior to that of a current state-of-the-art tracker.

Manuscript received June 28, 2006; revised September 28, 2006 and
June 27, 2007; released for publication August 23, 2007.

IEEE Log No. T-AES/44/4/930720.

Refereeing of this contribution was handled by W. Koch.

The views expressed in this article are those of the authors and do
not reflect the official policy or position of the United States Air
Force, the Department of Defense, or the U.S. Government.

Authors’ address: Dept. of Electrical Engineering, Air
Force Institute of Technology, 2950 Hobson Way, Bldg.
640, Wright-Patterson AFB, OH 45433-7765, E-mail:
(Peter.Maybeck@afit.edu).

U.S. Government work not protected by U.S. copyright.

0018-9251/08/$25.00 c° 2008 IEEE

I. INTRODUCTION

When tracking a target in clutter, one must deal
with the data association problem [2] of whether
a particular measurement is target originated or
clutter originated. This leads naturally to a Gaussian
mixture (probability-weighted sum of Gaussians)
representation of the probability density function
(pdf) of the target state vector (composed of positions,
velocities, accelerations, etc.), conditioned on the
measurements that have been observed, with each
component of the mixture being associated with a
particular association history hypothesis [1]. Due to
the exponential increase in such hypotheses over time,
this requires reduction of the number of components
in the mixture on each processing cycle. Techniques
such as joint probability data association (JPDA)
[3:310—319] and global nearest neighbor (GNN)
[5:338—342] perform a vast simplification, reducing
the entire Gaussian mixture to a single Gaussian
component. State-of-the-art multiple hypothesis
tracker (MHT) algorithms [4:283—300, 6, 7] and
Salmond’s joining and clustering filters [18—21]
maintain the mean, covariance and probability weight
corresponding to each association history hypothesis,
yet they rely on ad hoc merging and pruning rules
to control the growth of hypotheses. This can cause
severe degradation in performance. A more structured
approach reduces the number of components in
the Gaussian mixture on each processing cycle by
minimizing a distance or cost function that measures
the difference between the Gaussian mixture pdf
surfaces before and after that reduction in number
of components. This concept has been significantly
enhanced by using an integral square error (ISE)
distance metric that, unlike any previously proposed
metrics, requires neither numerical integration
nor approximation for evaluation [27, 28]. The
performance of such an algorithm for tracking a
single target in heavy clutter has been thoroughly
investigated [27, 28] and found to surpass that of
other algorithms by a significant margin.
An extension of the ISE-based MHT algorithm

(for handling clutter) is made for targets exhibiting
substantially different trajectory characteristics (such
as due to the onset of jinking maneuvers) during
the tracking scenario. One potentially useful tracker
architecture would replace each Kalman filter within
a conventional multiple model adaptive estimator
(MMAE) or interacting multiple model (IMM)
algorithm with an ISE-based algorithm that assumes
the adequacy of the same particular dynamics model
and discretized parameter choice (“mode”) [13, 24].
Analyses have indicated the extreme importance of
proper gating for maximum performance benefit, and
resolving that issue well has resulted in a superior
architecture of replacing each Kalman filter within
the ISE-based algorithm (each assuming a particular
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association history hypothesis is true) with an MMAE
or IMM [8, 9]. This yields the ability to track an
aggressively maneuvering target in deep clutter with
exceptionally small rms errors and probability of track
loss.
An alternative state-of-the-art approach to this

problem is JPDA combined with IMM [5, 14]. JPDA
can be likened in concept and performance to using
Gaussian mixture reduction but reducing the original
mixture to only one Gaussian component (versus, for
example, 15 as in this research), giving up significant
performance potential by such a crude approximation.
For instance, in a very heavy clutter environment (two
orders of magnitude denser than used herein), it was
outperformed by a tracker based on an ISE Gaussian
mixture reduction to 15 components by more than
an order-of-magnitude increase in average track life
[27], the most appropriate figure of merit in such an
environment [18—21, 27, 28]. Of available Gaussian
mixture reduction techniques, the ISE algorithm has
been shown to be superior, as discussed further at the
end of Section II. With regard to IMM versus MMAE,
despite claims in the open literature [e.g., 3, 5, 7, 14]
of the superiority of IMM and the superseding of
MMAE by IMM, this research provides a strictly
fair head-to-head comparison of the two algorithms
and demonstrates that, in this physically meaningful
application, the MMAE consistently outperforms the
IMM by a substantial margin. This is shown fully in
Section V.

II. GAUSSIAN MIXTURES AND DATA ASSOCIATION

The tracking system is provided with a set of
detections, each of which indicates the possible
presence of a target. However, the system does not
know which measurement belongs to a target or which
measurements are actually false alarms (the result
of radar clutter); the target/measurement association
history over time is unknown. If the association
history were known, a Kalman filter could produce
the optimum estimation of the target (for linear
dynamics and measurement models).
A Gaussian mixture, consisting of a probability-

weighted sum of Gaussian pdfs, each with mean and
covariance as computed by a Kalman filter based on
an assumed association history, is the natural form of
pdf of the target state in this problem [27, 28]. To see
this, assume that at each time instant k, we receive
a set of measurements Zk, which may or may not
contain a target-originated measurement, along with
zero or more clutter measurements (false alarms).
Denoting the measurement history up to time instant
(k¡ 1) as Zk¡1 = fZ1, : : : ,Zk¡1g, the a priori pdf (i.e.,
prior to introduction of the set of measurements at
time instant k) of the target state x at time instant k
can be written using a total probability expansion
over the Nh(k¡ 1) association history hypotheses

fªu(k¡ 1) j u= 1,2, : : : ,Nh(k¡ 1)g from the previous
processing cycle as

ffx(k) j Zk¡1g

=
Nh(k¡1)X
u=1

ffx(k) j Zk¡1,ªu(k¡ 1)gPfªu(k¡ 1) j Zk¡1g

(1)

where Pfªu(k¡ 1) j Zk¡1g is the probability of the
uth association history hypothesis (for u= 1,2, : : : ,
Nh(k¡ 1)), and ffx(k) j Zk¡1,ªu(k¡ 1)g is the target
state pdf conditioned on the uth association history
hypothesis. If the pdf at the previous time index
(k¡1) conditioned on a specific association history
hypothesis ffx(k¡ 1) j Zk¡1,ªu(k¡1)g is Gaussian
and a linear dynamics model sufficiently describes
the real-world target, then the standard Kalman filter
propagation equation can be used to calculate the
corresponding ffx(k) j Zk¡1,ªu(k¡1)g, which is
also Gaussian. (Note that, with nonlinear models, an
extended Kalman filter could be used instead, and
the density can be approximated as Gaussian. In this
research, it is assumed that linear constant-acceleration
flight dynamics in a Cartesian plane is an adequate
model, and that direct noise-corrupted measurements
of those Cartesian coordinates are available, versus
range and angles, so that nonlinear geometric relations
are not required.)
In order to introduce the set of Nm(k)

measurements at time instant k (i.e., Zk), a
disjoint partitioning of the probability space
fÃ0(k), : : : ,ÃNm(k)g is introduced, in which Ã0(k)
denotes the event proposing that the target was not
detected at time instant k (and therefore that all Nm(k)
measurements in Zk are the result of clutter), and Ãi(k)
for i= 1,2, : : : ,Nm(k) denotes the event proposing that
measurement i originated from the target (and the
other measurements originated from clutter). The pdf
of the target state at time instant k conditioned on the
new measurement history can be evaluated through
the double-expansion over previous association history
hypotheses fªu(k¡ 1) j u= 1,2, : : : ,Nh(k¡ 1)g and new
association events fÃi(k) j i= 0,1, : : : ,Nm(k)g as

ffx(k) j Zkg=
Nh(k¡1)X
u=1

Nm(k)X
i=0

ffx(k) j Zk,Ãi(k),ªu(k¡ 1)g

¢PfÃi(k),ªu(k¡ 1) j Zkg: (2)

Due to the conditioning on the association event
Ãi(k) (which prescribes which measurement in Zk,
if any, was target originated), the Gaussian pdf
ffx(k) j Zk,Ãi(k),ªu(k¡1)g can be calculated from
the Gaussian pdf ffx(k) j Zk¡1,ªu(k¡1)g using the
standard Kalman filter update equations, and again
the posterior density will remain Gaussian. Therefore,
assuming that the prior pdf is a Gaussian mixture, the
posterior pdf ffx(k) j Zkg will also be a Gaussian
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mixture. The double summation of the preceding
equation can be combined for convenience into a
single summation over an equivalent set of indices.
Defining a new set of association history hypotheses
fªu0(k) j u0 = 1,2, : : : ,Nh(k)g, where Nh(k) = [Nh(k¡ 1)]
¢[Nm(k)+1], the double sum result of the preceding
equation can be written as

ffx(k) j Zkg=
Nh(k)X
u0=1

ffx(k) j Zk,ªu0(k)gPfªu0(k) j Zkg

(3)where

ffx(k) j Zk,ªu0(k)g

= ffx(k) j Zk,Ãi(k),ªu(k¡ 1)g

Pfªu0(k) j Zkg= PfÃi(k),ªu(k¡ 1) j Zkg:

(4)

Note the Gaussian mixture form of this result. The
association history event probabilities Pfªu0(k) j Zkg
are commonly referred to as probability weights,
and they are calculated using Bayes’ rule (omitting
unnecessary conditionings) as

Pfªu0(k) j Zkg

= PfÃi(k),ªu(k¡ 1) j Zkg

= PfÃi(k),ªu(k¡ 1) j Zk¡1,Zk,Nm(k)g

=

PfZk jÃi(k),ªu(k¡ 1),Zk¡1,Nm(k)g
¢PfÃi(k) jNm(k)gPfªu(k¡ 1) j Zk¡1g

PfZk j Zk¡1,Nm(k)g
(5)

where Pfªu(k¡1) j Zk¡1g is the association history
hypothesis probability from the previous processing
cycle, and the remaining terms are evaluated
according to the standard model.
The difficulty of data association is that every

association history hypothesis from the previous
processing cycle must be paired with every association
event from the current set of measurements, and a
new association history hypothesis must be created
for each pairing. The challenge of tracking in the
presence of clutter is clear from the expression:

Nh(k) = [Nh(k¡ 1)][Nm(k)+1]: (6)

Thus, the number of components in the Gaussian
mixture grows exponentially as new sets of
measurements are received. It is therefore necessary
to employ some method of reducing the number of
components in the mixture while modifying the pdf
surface as little as possible.
The ISE cost function [27, 28] provides a means

of measuring the difference between two pdfs.
Define the original mixture pdf of target state,

containing Nh(k) association history hypotheses,
as ffx(k) j−Nh(k)g, where −Nh(k) represents the
parameters of the Nh(k) hypotheses derived from the
measurements up to the current sample period k. The
goal is thus to reduce these Nh(k) hypotheses to a
simplified representation, containing Nr(k) hypotheses
(the subscript r denoting reduced), resulting in
the simplified pdf ffx(k) j −̄Nr(k)g, where −̄Nr(k)
represents the reduced set of parameters, containing,
as closely as possible, the same information as the
original set −Nh(k). To compare the two mixtures,
the ISE algorithm simply subtracts the candidate
pdf from the original pdf, squaring the result to
rectify negative differences, and integrates to form
the scalar:

JS =
Z
(ffx(k) j−Nh(k)g¡ffx(k) j −̄Nr (k)g)2dx(k):

(7)

For the context of interest, in which the pdfs are
sums of Gaussians, (7) can be evaluated without
approximation or direct numerical integration [27, 28]
as

JS =
Z Nh(k)X

i=1

Nh(k)X
j=1

piNfX;¹i,PigpjNfX;¹j ,PjgdX(k)

¡ 2
Z Nh(k)X

i=1

Nr(k)X
j=1

piNfX;¹i,Pigp̄jNfX;¹̄j , P̄jgdX(k)

+
Z Nr(k)X

i=1

Nr(k)X
j=1

p̄iNfX;¹̄i, P̄igp̄jNfX;¹̄j , P̄jgdX(k)

=
Nh(k)X
i=1

Nh(k)X
j=1

pipjNf¹i;¹j ,Pi+Pjg

¡ 2
Nh(k)X
i=1

Nr(k)X
j=1

pip̄jNf¹i;¹̄j ,Pi+ P̄jg

+
Nr(k)X
i=1

Nr(k)X
j=1

p̄ip̄jNf¹̄i;¹̄j , P̄i+ P̄jg: (8)

where the basic terms within (8) are the multivariate
normal (Gaussian) evaluations as a function of the
first argument, with mean and covariance given by the
two arguments after the semicolon.
To apply this cost function to form a mixture

reduction algorithm, one must generate several
candidate mixtures and select the reduced mixture
with the lowest cost. Williams [27, 28] used an
iterative greedy solver to find a reduced mixture with
a prespecified number of components. Starting with
the original mixture, it evaluates the cost of merging
each pair of remaining components, and the cost of
deleting each remaining component, and selects the
lowest cost action. When merging components, it
assigns parameters to keep the mean and covariance
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of the overall mixture unchanged:

Weight: pc = p1 +p2

Mean: ¹c =
1

p1 +p2
fp1x̂1 +p2x̂2g

(9)

Covariance: Pc =
1

p1 +p2

½
p1P1 +p2P2

+
p1p2
p1 +p2

(x̂1¡ x̂2)(x̂1¡ x̂2)T
¾
:

The process is repeated until the desired number of
components has been reached. The ISE algorithm
has a major performance advantage over previous
reduction methods in that it evaluates the impact of
a merge or a prune on the entire original mixture
at each time step. In testing [8], [9], [27], [28],
the algorithm was shown to outperform all other
algorithms by a substantial margin in heavy clutter
when enough components (Nr > 15) were used to
create an adequate fidelity representation of the
target state pdf (e.g, a factor of two increase in
average track life over the previously best algorithm
[18—21] with Nr = 35). However, the combinatoric
nature of the comparisons based on (8) causes
significant computational expense; see [28] for full
quantification of this expense relative to that of
alternative algorithms. For example, when average
track life was evaluated as a function of mean
computation time required per time step rather
than number of components retained [28], other
algorithms were more competitive with, and in some
instances even exceeded the performance of, the
ISE-based technique. Reference [28] also develops
several enhancements (particularly accelerated matrix
inversions and use of cached values of costs and
other components so that real-time evaluations are
performed only when necessary) for increasing the
computational efficiency of the ISE-based algorithm
without sacrificing accuracy. In the Monte Carlo
simulations accomplished herein, implementation of
these routines reduced computation times from several
hours to a few minutes with imperceptible impact
on performance; the fully accelerated algorithms
were used for all the trials of the performance
analysis described in Section V. This algorithm
can be considered similar to the iterative pairwise
replacement algorithm [22] used by the nonparametric
statistics community; the authors were not aware
of this work until after the development of the ISE
algorithm.

III. MULTIPLE MODEL ADAPTATION TO
TRAJECTORY VARIATIONS

The preceding section accounts for tracking a
single target in dense clutter, assuming that a valid
depiction of target trajectories is adequately described
by a single dynamics model. Of considerable concern

Fig. 1. MMAE algorithm.

is tracking a target that can exhibit substantially
different trajectory characteristics over time, as
due to the onset of jinking maneuvers. For such
applications, no single model would generally be
adequate. Multiple model approaches [2—5, 12] are
ideally suited to this scenario and have been used with
significant success in handling such unknown and/or
strongly changing target trajectory attibutes.
Fig. 1 depicts a conventional MMAE algorithm

[10, 12]. Sensor measurements are presented to
a bank of Nf parallel Kalman filters, each based
upon a different assumed (constant) model for target
dynamics (represented by the parameter vector a
assuming one of its possible values, a1—aNf). Nf is
the number of discrete values a might assume, and
thus it is the number of filters in the parallel bank.
Each filter produces its own state estimate x̂m(k j k¡ 1)
before the measurement update at time instant k and
the corresponding estimate x̂m(k j k) after that update,
as well as its own residual at that time, rm(k):

rm(k) = z(k)¡Hx̂m(k j k¡ 1) (10)

where H is the measurement matrix that relates
measurements z(k) to the state variables x(k).
These residuals are used to compute the hypothesis
conditional probabilities pm(k) for m= 1,2, : : : ,Nf ,
according to the iteration:

pm(k) =
ffz(k) j am,Z(k¡ 1)g ¢pm(k¡ 1)PNf
j=1ffz(k) j aj ,Z(k¡ 1)g ¢pj(k¡ 1)

:

(11)

Each of these probabilities can be interpreted as the
conditional probability that the associated Kalman
filter is the most appropriate elemental filter to be
employing at the current time to describe the target
dynamics. The conditional probability density for the
incoming measurement in this iteration is given by

ffz(k) j am,Z(k¡ 1)g=
1

(2¼)s=2jAm(k)j1=2
expf¢g

f¢g= f¡ 1
2r
T
m(k)A

¡1
m (k)rm(k)g

(12)
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where s is the dimension of the measurement, and
Am(k) is the filter-computed covariance for the
measurement residual. If the hypothesized model
within a particular elemental Kalman filter is a good
representation of the real-world target trajectory, then
the scalar quadratic form premultiplied by [¡1=2]
in the exponent should be distributed as chi-squared
with s degrees of freedom, and have an expected
value of s. Thus, in practice, if the hypothesized
model is a good representation, the quadratic form
should assume a value of about s. If the hypothesized
model is incorrect, then this should assume a value
different from s and often more than an order of
magnitude larger than s since the residuals are larger
than “anticipated” by the computed Am(k), resulting
in the corresponding pm(k¡ 1) being premultiplied
by a very small number in the iterative computation
in (11).
As shown in Fig. 1, the MMAE produces an

output state estimate as the probability-weighted
average of the outputs of the individual elemental
Kalman filters, along with a corresponding error
covariance:

x̂(k j k) =
NfX
m=1

x̂m(k j k)pm(k)

P(k j k) =
NfX
m=1

pm(k)

¢ fPm(k j k) +
£
x̂m(k j k)¡ x̂(k j k)

¤
¢ £x̂m(k j k)¡ x̂(k j k)¤Tg:

(13)

Note that, in the iteration to compute pm(k) given
by (11), if pm(k¡1) is ever computed as zero, that
pm will be zero thereafter, even if the associated
model becomes the best model to represent the real
world (a phenomenon called “lockout”). To handle
the possibility of time-varying parameters in the real
world with an MMAE and to preclude lockout, it is
important to effect a lower bound on the probabilities
computed by the pm(k) iteration. For this research,
a lower bound of 10¡3 was used. Moreover, if a
specific elemental filter diverges (as exhibited by
[rTm(k)A

¡1
m (k)rm(k)] taking on a value much greater

than s), that filter can and should be restarted with the
MMAE state estimate (computed without the divergent
filter or filters).
The MMAE algorithm is based on the assumption

that the parameter vector is an unknown constant.
If instead it is modeled as the output of a stochastic
process, one can use the IMM algorithm [3—5, 7, 14].
The pm(k) iteration already shown can be considered a
measurement update algorithm, and a Markov model
for the vector of such pm(k)s is considered to be a
time propagation model. If the Markov probability

state transition matrix were assumed to be an identity
matrix, then the corresponding IMM would be
equivalent to an MMAE without restarts. In many
designs, this matrix is formed as a small perturbation
from an identity matrix, allowing transitions from
one mode (parameter value; assumed model) to
another over a propagation sample period. Thus, for
an MMAE, each elemental filter’s state estimate is
the output of a propagation by that filter’s dynamics
model only (consistent with the static parameter
assumption). In an IMM on the other hand, each
filter’s estimate is the output of a weighted history
of propagations based on all filters in the system
(consistent with the assumption of switching modes or
parameter values). At the end of every mixing cycle,
one calculates the mixed estimates and a posteriori
modal probabilities for recursion into the next cycle.
The mixed estimates can be calculated as

x̂i(k j k) =
NfX
j=1

PfMk,j jMk+1,i,Zkgx̂j(k j k)

Pi(k j k) =
NfX
j=1

PfMk,j jMk+1,i,Zkg

¢ fPj(k j k) +
£
x̂j(k j k)¡ x̂i(k j k)

¤
¢ £x̂j(k j k)¡ x̂i(k j k)¤Tg:

(14)

where Mk,j represents the hypothesis that mode j is
assumed at time instant k, and the mixing probabilities
are computed as

PfMk,j jMk+1,i,Zkg=
TijPfMk,j j ZkgPNf
n=1TinPfMk,n j Zkg

(15)

where Tij is the i¡ j component of the Markov
probability state transition matrix. The final modal
probabilities after mixing are given by:

PfMk,j j Zkg

=

ffz(k) jMk,j ,Zk¡1g
¢PNf

i=1PfMk,j jMk¡1,igPfMk¡1,i j Zk¡1gPNf
n=1ffz(k) jMk,n,Zk¡1gPfMk,n j Zk¡1g

:

(16)

From a designer’s perspective, the difference
between an MMAE and an IMM is this: an MMAE
requires specification of a lower bound for computed
probabilities in order to handle changing parameter
values. In contrast, an IMM requires specification
of all the entries in the Markov model probability
state transition matrix, which is often accomplished
in a rather ad hoc manner, to handle such changes.
In most applications, it is fundamentally easier to
accomplish the former than the latter, particularly if
iterative tunings are required.
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IV. COMBINED ALGORITHM ARCHITECTURES

One potentially useful algorithm architecture
[13, 24] would replace each Kalman filter within
a conventional MMAE or IMM with an ISE-based
algorithm (able to handle clutter) that assumes the
adequacy of the same particular dynamics model
and discretized parameter choice (i.e., “mode”).
To accomplish the one-for-one replacement of
Kalman filters with ISE-based algorithms, each such
ISE-based algorithm based on mode m must be able to
produce an “equivalent” residual rm(k) and associated
residual covariance Am(k), since the probability
calculations within either the MMAE or IMM depend
on evaluating the scalar [rTm(k)A

¡1
m (k)rm(k)], as seen in

(12). The equivalent residual rm(k) can be written as a
probability-weighted sum, using the residuals rm,u(k)
from each of the individual Kalman filters based on
the assumption that dynamics model (mode) m and
association history hypothesis u are correct:

r̂m(k) =
Nh(k)X
n=1

r̂m,u(k) ¢Pfªu(k) j Zkg

Am(k) =
Nh(k)X
u=1

fAm,u(k) +
£
r̂m,u(k)¡ r̂m(k)

¤
¢ £r̂m,u(k)¡ r̂m(k)¤Tg

¢Pfªu(k) j Zkg:

(17)

Measurement gating is an important issue.
MHT filters typically use measurement gates to
preclude the need to process all the measurements
in the measurement space. A measurement gate is
formed around the predicted target location for each
component in the Gaussian mixture, so each entire
ISE-based algorithm (viewed as an entity) uses a
“union” of the separate gates associated with each
of its mixture components. A designer may or may
not want to form the gate for each component’s
Kalman filter as the true union of all component
filter gates, rather than just that one component
filter’s locally computed gate–a tradeoff analysis
is needed and designers differ in how they treat this
issue. There is also a need to “union” gates among
the component ISE algorithms within an MMAE or
IMM. This is necessitated by the fact that multiple
model algorithm relationships are all conditioned on
the same measurement history being presented to each
elemental filter.
Initial performance analyses [13, 24] indicated the

extreme importance of proper gating for maximum
tracking benefit. Investigating this essential issue
in fact led to the second and superior algorithm
architecture [8, 9, 25], in the form of an ISE-based
algorithm of MMAEs (or IMMs), rather than an
MMAE (or IMM) of ISE-based filters. In such an

architecture, it is clear that gating should be performed
such that each MMAE or IMM is separately gated
so that the same measurements are provided to all of
the Kalman filters within that MMAE or IMM–in a
well-tuned algorithm, that does not require a unioning
of individual gates but is simply the gate associated
with the elemental Kalman filter based on the most
aggressive dynamics model.
Thus, four architectures emerged, 1) an MMAE

of ISE-based algorithms, 2) an IMM of ISE-based
algorithms, 3) an ISE-based algorithm of MMAEs,
and 4) an ISE-based algorithm of IMMs. Of these,
3 and 4 have proven superior to 1 and 2, in part
due to the more effective gating accomplishable
for algorithms 3 and 4. Between these two highest
ranking architectures, 3 has been shown to provide the
best performance of all, as seen in the next section.
One might also consider expanding the Gaussian

mixture at each time step due to the possible mode
changes as well as data association uncertainties, and
then applying the mixture reduction algorithm (MRA).
This would avoid introducing the MMAE or IMM
techniques altogether. However, this significantly
increases the number of mixture components to
be handled by the reduction algorithm, severely
complicates effective gating strategies and other
aspects of tracker operation, and demonstrated inferior
performance to that of the four architectures of the
preceding paragraph in preliminary investigations.
Therefore, only those four algorithm architectures are
pursued in the next section.

V. PERFORMANCE EVALUATION

The four proposed tracker architectures were tested
via computer simulation against realistic flight data.
Ten minutes of flight data were recorded at 2 Hz
using FlightGear [15], an accurate open-source flight
simulator based on a 6-degree-of-freedom flight
dynamics model. Because multiple model structures
are inherently better at identifying well-separated
maneuver modes, an agile aircraft model was selected:
the General Dynamics F-16 fighter found in many
military inventories. A 175 s subset of the flight
data displaying a representative spectrum of flight
modes was selected for performance evaluation to
reduce computation time. See Fig. 2. The recorded
positions were projected onto a two-dimensional plane
by discarding a single axis (the east axis), creating
an orthographic projection representative of a radar
observing the target from an eastward position. To
simulate measurement noise, the recorded positions
were corrupted with discrete-time white Gaussian
noise of variance R = 100 m2.
All filters were based on the constant-acceleration

flight dynamics model, a special case of a first-order
Gauss-Markov acceleration (FOGMA) in which the
correlation time has become infinite, which is shown
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Fig. 2. Real target flight segment.

here in equivalent discrete-time form [11]:
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where T is the sample period, and w(k) is a
discrete-time zero-mean white noise process such that

Efw(k)w(k)Tg=Q= qI: (19)

The clutter density was set at ¸= :0001 pts/m2,
yielding 400 expected clutter points within the clutter
region per epoch. This clutter density was selected
so that the Monte Carlo simulations would lose track
in approximately 10% of the runs, indicating that the
ISE reduction algorithm is running near the peak of its
performance capability for the given maneuver level
and clutter density. Clutter was generated according
to a Poisson distribution within a square region with
sides 200R1=2 centered on the tracker’s best estimate
of the target location. The probability of detection Pd
was set to unity such that one of the measurements
was always target originated. The gate size was
set such that the probability of a target-originated
measurement being in the association gate was Pg =
0:99. On average, about 6 clutter points fell within the
acceptance gate (but varying from about 2 for very
benign conditions to the teens for very aggressive

maneuvering), yielding an average of just over 100
Gaussian mixture components before reduction (but
varying from about 30 to over 200), in accordance
with (6), to be driven to 15 components by the MRA
described at the end of Section II.
Fifty Monte Carlo simulations were performed

for each tracker configuration, with each simulation
run for 350 epochs or until track loss was declared.
Track loss is simply defined as five consecutive
epochs without the target-originated measurement
falling within an association gate for any of the
mixture hypotheses. The Monte Carlo sample statistics
are calculated using only simulation data from
nondivergent simulations, while also monitoring the
number of simulations that yield track loss.
The multiple model configurations were composed

of two filters, one assuming benign dynamics
(0:5 m/s3 jerk), and another assuming aggressive
dynamics (4 m/s3). In simulations using MMAEs,
the lower bound was set to 0.001, and restarts for
divergent filters were initiated when the Gaussian
pdf of the target predicted position evaluated at
the incoming measurement (see (12)) was less
than 1£ 10¡5. For the IMM test cases, the Markov
probability state transition matrix was constructed as
a diagonally dominant matrix with “leakage” terms on
the off-diagonal:

T(k j k¡ 1) =
·
0:9 0:1

0:1 0:9

¸
: (20)

Fig. 3 shows mean § one standard deviation
flow of elemental filter probability at each epoch
(for those Monte Carlo simulations that have not
lost track), both with and without clutter (using the
ISE-based MHT of MMAEs for the clutter case
and the corresponding MMAE for the clutter-free
case). The magnitude of the aircraft jerk is shown
below each and indicates that the multiple model
structure is correctly identifying the appropriate
maneuver mode for the target’s level of dynamics at
any given time. Moreover, note that the presence of
clutter does not significantly impede the probability
flow of the tracker. The impact due to clutter can
be seen as higher variance in the probability flow.
Note the characteristic rapid flow of probability to the
aggressive filter at maneuver onset (e.g., at epoch 200)
and slow return to the benign filter after maneuver
(e.g., 80—150), caused by the larger value of Am(k) in
(12) for the aggressive dynamics model than for the
benign model.
Fig. 4 exhibits a transition from benign to

aggressive flight maneuvering for a single Monte
Carlo run in which the true dynamics are gradually
becoming more aggressive. The probability flow for
the benign filter is shown for both a cluttered and
a noncluttered case. Note the corruption caused by
the clutter in the benign and transition regions–even
when the maneuver dynamics are distinctly benign,
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Fig. 3. Comparison of MMAE elemental filter flow with and without clutter. Filter 1 based on a benign dynamics model and filter 2
based on an aggressive dynamics model. (a) MMAE probability §¾ flow without clutter. (b) MMAE probability §¾ flow with clutter.

(c) Magnitude of F-16 jerk. (d) Magnitude of F-16 jerk.

Fig. 4. Effect of clutter on multiple model probability flow. (a) Benign filter probability flow without clutter. (b) Benign filter
probability flow with clutter.

clutter can cause residuals in the aggressively tuned
filter to appear more favorable in the computations
of (11) and (12). In these cases, the filter flow is not
a distinctive transfer of operation to the appropriate
filter, but rather is a time-averaged dominance of the
appropriate filter. This effect is not apparent in the
aggressive modes, for which the flow is distinctive
and appropriate. Consequently, the benefit of the
benign filters in clutter is somewhat reduced compared
with that of the clutter-free case.
Figs. 5—7 display the tracking characteristics of an

ISE-based MHT algorithm of Kalman filters based
on the aggressive dynamics models, an ISE-based
MHT of MMAEs, and an ISE-based MHT of
IMMs, respectively. The MMAEs and IMMs were
composed of elemental filters based on the benign
and aggressive dynamics models as described earlier.
The benign filter was incapable of tracking the
aircraft maneuvering in clutter (over 90% of the
runs lost track between 100 and 180 samples into

the simulatons), so no meaningful statistics could be
collected on an ISE-based MHT of Kalman filters
based on that benign model.
In each figure, the x (azimuth) and y (elevation)

position and velocity are shown as the top four plots.
The Monte Carlo sample mean errors § two standard
deviations (2¾) are shown as solid black lines, and
the filter-computed standard deviations (0§2¾filter)
are overlayed in gray. For a well-tuned filter, the
actual and computed values should agree, as can be
seen for the majority of time in the plots. Dashed
gray lines show the corresponding (0§ 2¾filter) based
only on the aggressive-model Kalman filter–these
are obvious only in the second row of plots in
Fig. 6, but are actually present in all four top plots
in Figs. 5—7. Where the solid gray lines are
substantially narrower than the dashed, the probability
weighting is heavily on the benign elemental filter,
and where the solid gray lines are significantly
wider than the dashed indicates where the mean
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Fig. 5. Performance of ISE-based MHT of Kalman filters based on aggressive dynamics model.

Fig. 6. Performance of ISE-based MHT of MMAEs.

spreading terms in computations like (13) are
dominating.
The third row of plots in each figure depict the

rms overall position and velocity errors versus time.
The bottom left plot shows the mean probability
assigned to each of the two dynamics models, and the
bottom right plot indicates the number of Monte Carlo
runs in which track has not been lost.

In all three figures, the first maneuvers from
epochs 45—100 are tracked appropriately, as can
be seen from the zero-mean error. Furthermore,
in Fig. 6, the probability flow for the MMAE is
apparent in the reduced computed and actual filter
standard deviations, as compared with those of Fig. 5.
The probability flow for the IMM (Fig. 7) is less
definitive, as is expected due to the model mixing that
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Fig. 7. Performance of ISE-based MHT of IMMs.

occurs over time in the IMM–but the benefit during
the benign portions of flight is also significantly less
than that of the MMAE. The second set of more
aggressive actual maneuvers, epochs 200—250, exhibit
considerable offset in the mean error, which did not
exist in the comparable uncluttered case (see [8]),
indicating that the clutter is affecting the algorithm’s
ability to track the target. This can also be seen in
the spikes in the actual and filter-computed standard
deviations around epoch 250. These spikes are caused
by the mean spreading terms in the Gaussian mixture
computations analogous to (13) and indicate that
the hypotheses that compose the mixture are no
longer coincident in parameter space. These inevitable
periods of deferred decision-making are an inherent
part of the MHT process, but they also introduce
significant estimation errors, as can be seen in the
manifested offset. The plots show the mean errors of
50 Monte Carlo simulations, but observation of single
runs indicates that the deferred decision errors can be
up to 500 m in magnitude. It was also observed that
the multiple model structures tended to increase the
magnitude of these errors slightly.
Table I shows the temporally averaged rms errors

for the filter configurations depicted in Figs. 5—7 and
also for the alternative architectures of an MMAE
or IMM of ISE-based algorithms. Again, the ISE
of Kalman filters based on the benign model is not
shown because it is incapable of tracking the target
once maneuvers are initiated. To set a context for
these values, the conventional MMAE based on the
same two elemental filters achieved an rms position

TABLE I
Temporally Averaged rms Position and Velocity Errors for

Different Configurations

ISE ISE ISE MMAE IMM
of of of of of
Aggs MMAEs IMMs ISEs ISEs

rms Position Error (m) 22.9 18.6 20.9 22.7 26.6
rms Velocity Error
(m/s)

17.5 13.1 14.4 16.7 15.4

Benign rms Position
Error (m)

18.1 11.9 15.1 16.1 15.6

Benign rms Velocity
Error (m/s)

15.4 7.8 11.6 13.4 12.4

Note: Average taken over entire simulation and over only partial
region of benign flight.

error of 10.6 m and an rms velocity error of 10.5 m/s
in clutter-free simulations.
In clutter, the multiple model structures should

have about the same performance as the ISE-based
algorithm of only aggressive-model Kalman filters
while the aircraft is in an aggressive maneuver mode
(as seen in Table I itself, as well as in the upper plots
of Figs. 5—7, and also in the bottom right plots that
show essentially the same number of cases, about
10%, in which loss-of-track occurred). However,
multiple model structures ought to have better tracking
fidelity during the benign portions of the flight than
just an aggressive-mode Kalman filter. Consequently,
four values are shown for each architecture in Table I,
for the position and velocity errors for both the entire
flight and for a benign segment in which the aircraft
was in straight-and-level flight. As expected, the
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performance during the benign periods is significantly
better for all the multiple model structures compared
with the single model structure in both position
and velocity estimates. The same improvement is
apparent for the entire duration, but the magnitude of
improvement is smaller because the averages include
periods in which the multiple model and single filters
are operating with identical parameters.
From Table I, it can also be seen by comparing

the fourth and fifth columns to the second and third
columns, that an ISE-based algorithm of MMAEs or
IMMs significantly outperforms the corresponding
MMAE or IMM of ISE-based algorithms. Moreover,
the algorithms incorporating MMAE structures
consistently outperform the analogous architecture but
based on an IMM.
Now focus on the first three columns of Table I.

The ISE-based MHT of MMAEs shows a 19%
reduction in rms position error compared with
an ISE-based MHT of aggressive-mode Kalman
filters when averaging is performed over the entire
simulation, and a 34% reduction when averaging over
only the partial region of benign flight. In comparison,
the ISE-based MHT of IMMs shows only 9% and
17% reductions, respectively. With respect to rms
velocity errors, the ISE-based MHT of MMAEs
exhibits a 25% reduction over the entire simulation
and a 49% reduction over the region of benign flight,
whereas the ISE-based MHT of IMMs yields only
18% and 25% reductions, respectively. A purposely
fair head-to-head comparison between MMAE and
IMM algorithms was conducted, using very reasonable
choices for the MMAE lower bound on computed
probabilities (0.001) and for the IMM Markov model
probability state transition matrix (see (20)). Some
tuning on these parameters was performed, but these
final choices are representative of best achievable
performance for each algorithm for this simulation
environment. One might have anticipated better
performance from the IMM than from the MMAE,
especially since there are numerous practical examples
of good performance from an IMM, but as seen
above, instead the MMAE consistently outperformed
the IMM by a considerable margin.
The underlying reason for this discrepancy in

performance can be seen from Figs. 6 and 7. The
MMAE maintains completely separated benign-mode
and aggressive-mode elemental Kalman filters, and
the relative adequacy of the two model assumptions
is quite distinguishable, as evidenced by the strong
probability flows in the lower left plot of Fig. 6
when the actual target changes its strength of
maneuvering. In contrast, the intermixing within
the IMM causes the residuals from its elemental
filters to be less distinguishable from each other,
and the probability hovers around 50% for each one
in the lower left plot of Fig. 7: they are virtually
indistinguishable from one another. Therefore, when

the target actually exhibits benign trajectory motion,
there is considerable payoff for the MMAE heavily
weighting the benign-mode Kalman filter (as seen
in the lower left plot of Fig. 6). The performance
benefit can be seen in the corresponding necking
down of the upper four plots of error mean § one
standard deviation in Fig. 6 during that time; this is
most readily seen in the velocity plots, the second
row of plots. In contradistinction, the IMM does
not exhibit either substantial probability flow or the
associated beneficial necking down of the mean §1¾
plots in Fig. 7. Since the probabilities are hovering at
about 50% for each elemental filter, each is receiving
very similar initial conditions at each mixing cycle,
and so the distinguishability of the two hypothesized
modes is confined to differences they cause over only
a single propagation cycle (before intermixing occurs
again at the next update cycle). The MMAE, on the
other hand, allows the difference between benign
and aggressive models to be seen more persistently
in the outputs and residuals of the elemental filters,
thereby providing better model distinguishability
and consequent performance improvement in this
application.
Of the four proposed algorithm architectures, the

ISE-based MHT of MMAEs has been shown to be
the most capable. Furthermore, it outperforms an
ISE-based algorithm with only Kalman filters based
on the aggressive dynamics model by a wide margin.

VI. CONCLUSION

Four architectures for a tracker that combines
an ISE-based reduced Gaussian mixture MHT (to
handle clutter) and either an MMAE or IMM (to
handle time-varying trajectory attributes, as due to
maneuver onset) have been evaluated. Of these, the
ISE-based MHT of MMAEs has been shown to be
superior in a simulation of an F-16 in dense clutter
exhibiting benign flight, high-G time-correlated turns,
and sudden jinking maneuvers.
The four tracking algorithms were capable of

maintaining track on the target even when an MHT
of single Kalman filters based on the benign model
was shown to be unable to track during maneuvers.
Thus, the fact that the elemental filter probabilities
regularly flowed to the benign elemental filter
indicates that the multiple model filters were offering
tracking capabilities that would be impossible with
an MHT based only on benign-model Kalman filters.
Furthermore, tracking performance was also superior
to that of an MHT based only on aggressive-model
Kalman filters, the best single-mode-filter MHT that
was capable of tracking the target. The performance
improvement was quantified by temporally averaging
the rms errors over the entire simulation period and
over only the benign portions of the flight, since the
benefit of a multiple model structure is most apparent
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during the benign portions of flight. Analysis of the
simulations shows that, during the periods of deferred
decision-making, those times when the majority
of the mixture probability does not agree with the
actual target state, the multiple model structures
had a tendency to exacerbate the error slightly, but
the benefit of the multiple model structures vastly
outweighs this performance penalty.
Extension to multiple targets [16, 23, 26] and

possibly using other distance metrics for the MRA
[17] are receiving attention currently. Moreover, this
research assumed the probability of detection Pd to be
unity, and performance under more realistic nonunity
values warrants investigation as well.
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