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The focus of this research is to provide methods for generating

precise parameter estimates in the face of potentially significant

parameter variations such as system component failures. The

standard multiple model adaptive estimation (MMAE) algorithm

uses a bank of Kalman filters, each based on a different model

of the system. Parameter discretization within the MMAE

refers to selection of the parameter values assumed by the

elemental Kalman filters, and dynamically redeclaring such

discretization yields a moving-bank MMAE. A new online

parameter discretization method is developed based on the

probabilities associated with the generalized chi-squared random

variables formed by residual information from the elemental

Kalman filters within the MMAE. This new algorithm is validated

through computer simulation of an aircraft navigation system

subjected to interference/jamming while attempting a successful

precision landing of the aircraft.
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I. INTRODUCTION

Parameter and state estimation are critical in many
of today’s complex systems. A motivating example is
that of providing an accurate navigation solution to
an aircraft performing a precision landing. Sufficient
accuracy of the state estimate is needed to provide
the desired navigation solution. Adequate parameter
estimation is needed so the system can adapt to a
failure or other significant event, such as the onset of
interference or jamming of the onboard GPS receiver,
and ensure performance is maintained. The focus
of the work presented here is to present methods
developed for generating precise parameter estimates
in the face of potentially significant parameter
variations such as interference or jamming of the
onboard GPS receiver.
A new algorithm is developed which works in

conjunction with multiple-model adaptive estimation
(MMAE). Specifically, a new online discretization
method is described for use with moving-bank
MMAE to enhance parameter estimation. By
dynamically redeclaring which points in parameter
space are used for the basis of the Kalman filters
within the MMAE structure, a moving-bank
MMAE is able to provide a fine enough parameter
discretization to yield precise state and parameter
estimation, without requiring the overwhelming
number of elemental filters to operate in parallel
that a conventional MMAE would. A brief overview
of moving-bank MMAE is presented, followed by
discussion of the new discretization method, and
simulation results.

II. MMAE OVERVIEW

The basic structure of an MMAE is shown in
Fig. 1. The MMAE employs multiple Kalman filters
to model the dynamic nature of the system (and its
sensors) to represent performance in the presence
of specific hypothesized environment conditions.
By running multiple filters in parallel, residual
information at each update is used to identify the
system parameters or failure status and to reconfigure
the system rapidly to major events or failures. A
logical choice for one filter is the no-fail condition,
with the remainder of the filter bank comprised
of filters based on hypothesized candidate failure
types. The number of elemental filters will affect the
granularity of the parameter estimation and ultimately
the accuracy of the state estimation.
Let a denote the p-dimensional vector of unknown

parameters in the system model and assume that, in
general, the range of a is continuous. The MMAE
will generate estimates of the parameter vector and
state vector, denoted â and x̂, respectively. A separate
elemental filter within the MMAE is associated with
discrete point values for the parameters hypothesized
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Fig. 1. MMAE algorithm.

during modeling. To make the number of filters
in the bank finite and thus keep the problem
tractable, the continuous range of a is discretized
into J representative values. More explicitly, let
the model for the jth filter corresponding to aj
(for j = 1,2, : : : ,J) be described by an “equivalent
discrete-time model” for a continuous-time system
with sampled-data measurements as fully detailed in
[10].
The hypothesis conditional probability pj(ti) is

defined as the probability that a assumes the discrete
value aj , conditioned on the observed measurement
history to time ti,

pj(ti) = Pr[a= aj j Z(ti) = Zi]: (1)

Then it can be shown [1, 5, 8, 11] that pj(ti) can be
evaluated recursively for all j via the iteration

pj(ti) =
fz(ti)ja,Z(ti¡1)(zi j aj ,Zi¡1)pj(ti¡1)PJ
k=1fz(ti)ja,Z(ti¡1)(zij ak,Zi¡1)pk(ti¡1)

(2)

in terms of the previous values of p1(ti¡1), : : : ,pJ (ti¡1)
and the conditional densities for the current
measurement z(ti) given by

fz(ti)ja,Z(ti¡1)(zi j aj ,Zi¡1) = ¯j expf¡ 1
2r
T
j (ti)A

¡1
j (ti)rj(ti)g

(3)
where

¯j =
1

(2¼)m=2jAj(ti)j1=2
: (4)

Additionally, rj(ti) is the residual vector in the
jth filter, Aj(ti) is the residual covariance matrix
computed by the jth filter ([HjP

¡
j H

T
j +Rj], in

terms of that filter’s assumed measurement matrix
Hj , and measurement noise covariance Rj , and
that filter’s computed state error covariance P¡j
before measurement incorporation), and m is the
measurement vector’s dimension. Furthermore, the
Bayesian minimum mean square error estimate of the
state is the probability-weighted average

x̂(t+i ) = Efx(ti) j Z(ti) = Zig=
JX
j=1

x̂j(t
+
i )pj(ti) (5)

where x̂j(t
+
i ) is the state estimate generated by a

Kalman filter based on the assumption that the
parameter vector equals aj . The corresponding
parameter estimate (the conditional mean of a), can
be generated as

â(ti) =
JX
j=1

ajpj(ti): (6)

One expects the residuals of the Kalman filter based
on the best model to have the mean-squared value
most in consonance with its own computed Aj(ti),
whereas “mismatched” filters have larger residuals
than anticipated through Aj(ti). Therefore, the filter
based on the most correct assumed parameter value
receives the most probability weighting.
To handle time-varying parameter values, a

lower bound is imposed on the probabilities pj(ti)
from (2) computed by an MMAE based on static
parameter assumptions [11]. The alternative of
a Markov model for pj(ti) variations in time and
the associated interacting multiple model (IMM)
algorithm [2, 6, 7] was considered but rejected for our
current applications for two reasons. First, the IMM
algorithm requires specification of an entire matrix of
parameter state transition probabilities for its Markov
model, which often is significantly more difficult
for a designer to provide accurately than a single
lower bound to accomplish basically the same impact
on probability flow within the MMAE. Secondly,
the elemental filters within the IMM algorithm are
continually reinitialized, whereas an elemental filter
is only restarted in the proposed MMAE when there
is an indication of divergence (the quadratic form in
the exponent of (3) exceeds a specified value). The
authors believe that this allows better disambiguation
among different parameter value hypotheses because
the effects of those different modeling assumptions
are allowed to accumulate in the filter residuals over
multiple sample periods.

III. MOVING-BANK MMAE

To avoid the potentially large number of elemental
filters needed for an MMAE bank, the concept of a
“moving bank” of fewer filters has been developed
[3, 12, 14]. For instance, if there are two uncertain
parameters and each can assume 10 possible
values, then J = 102 = 100 separate filters must be
implemented in a full-scale fixed-bank MMAE, even
if the parameters are treated as unknown constants.
The moving-bank MMAE is identical to the full-bank
estimator discussed previously, except J corresponds
to the smaller number of elemental filters in the
moving bank rather than the total number of possible
discrete parameter vector values. There is then an
on-line dynamic redeclaration of which points in
the parameter space are to be used for the basis of
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the elemental filters within the MMAE, i.e., which
points are to define the current “moving bank”. In the
example above, one might choose the three discrete
values of each scalar parameter that most closely
surround the estimated value, requiring J = 32 = 9
separate elemental filters, rather than 100. The issue
then becomes which particular J filters are in the bank
at a given time or how should the parameter space be
“discretized” for accurate estimation of the parameter
vector a. A new algorithm is presented next which
addresses this issue.
Throughout this discussion, it is assumed that

the total number (J) of elemental filters within the
MMAE algorithm is prespecified by the designer. The
algorithm must determine which discrete points in
parameter space (a1,a2, : : : ,aJ ) are to be used for the
basis of those J elemental filters. Where those points
reside in parameter space determine the physical
location and size of the region of parameter space
covered by the assumed parameter point values, i.e.,
over time this determines the “motion” and changing
“size” of the bank in the moving-bank MMAE
algorithm. Note that the methodology for moving and
resizing the bank developed herein is entirely different
from that of the variable structure IMM algorithm
[6, 7], in which the number of elemental filters is
allowed to vary with time and in which the parameters
are assumed to obey a Markov process model inherent
in the IMM structure.

IV. PROBABILITY-BASED DISCRETIZATION METHOD

The fundamental concept employed by the
probability-based discretization method (PBDM), is to
choose the parameter values for the elemental Kalman
filters in an MMAE based on the calculation of the
probability PÂ(Âj · T). Recall that each elemental
filter assumes a value for the parameter vector aj ,
and the true parameter vector is identified as at. If
any mismodeling of the true system is present in
the filter model (aj6= at), then Âj is the generalized
chi-squared random variable defined by the following
quadratic form of the measurement residuals rj and
their associated filter-computed covariance matrix Aj:

Âj = r
T
j A

¡1
j rj : (7)

Note that this is the quadratic form that appears in
(3) and thus is the fundamental basis of the MMAE
adaptation through the pj(ti) computation of (2).
The probability calculation PÂj = PÂ(Âj · T), is the
probability that the generalized chi-squared variable
(generalized because the actual residual rj in (7)
actually has covariance At, defined explicitly later
in (10), versus the jth elemental filter-computed Aj)
will lie below a threshold T. Note that Âj provides
an indication of the correctness of a filter in terms of
how well the filter-assumed parameter values match

the true parameter values. Specifically, a value of
Âj ·m (the measurement dimension) indicates that the
filter model is a good match to truth, whereas Âj Àm
implies a bad match to truth. The PBDM will select
parameter values for the filters such that the desired
“correctness” of the filter models (in terms of how
well the filter-assumed parameter values match the
true parameter values) will be attained. In other words,
the filter-assumed parameter values will be chosen by
the PBDM such that designer-chosen PÂj values will
be attained.
First, Section A develops the computation of

the probability PÂ(Âj · T) as a (hyper-) volume
integral under a probability density surface over an
ellipsoid, or, after a transformation, over a spheroid
for simpler evaluation. Section B then indicates how
a designer would choose desired values of PÂ(Âj · T)
based upon attaining a corresponding desired pattern
of pj values during the operation of the MMAE.
Section C discusses one fruitful means of discretizing
the parameter space: locating one discrete value at
the value â(ti) generated by the MMAE and then
setting the other aj values so as to attain the desired
probability values. This entails an iterative solution for
the aj values, and an efficient search routine for this
purpose is described in Section D. Finally, Section E
suggests an overall algorithm design strategy of using
an off-line search for sets of aj values, to enable a
simple table lookup for on-line use by a moving-bank
MMAE.

A. Probability Calculation and Coordinate
Transformation

The probability that Âj · T is given by the
one-dimensional integral

PÂj = PÂ(Âj · T) =
Z T

0
fÂ(c)dc (8)

where fÂ(c) is the generalized chi-squared density
function. If the filter is a perfect match of the true
system (aj = at), then the density function fÂ(c) is
exactly the well-known chi-squared density function,
and the probability PÂj can be readily calculated.
However, if any mismodeling of the true system
is present in the filter model (aj6= at), then the
generalized chi-squared density function fÂ(c) is
not readily known. Therefore, it is necessary to
evaluate an m-dimensional integral based on the
density function for the residuals fr(½) which can be
expressed in the presence of mismodeling and is given
by

PÂ(Âj · T) =
Z
¢ ¢ ¢
Z

Ar

fr(½)d½ (9)

where Ar represents the appropriate region of
integration in the parameter space.
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Fig. 2. Density function contour map (hyper)ellipsoids for 2-D
residuals.

The density function fr(½) is fully characterized
as a normally distributed random variable with mean
¹j and covariance matrix At) rj :N[¹j ,At]. Hanlon
[4] developed expressions for the residual mean vector
¹j in the presence of mismodeling, and he showed
that the actual covariance matrix for the residuals
in the presence of system mismodeling is the true
covariance matrix At associated with the residuals and
is computed in terms of the true system matrices as

At =HtP
¡
t H

T
t +Rt (10)

where P¡t is the true error covariance matrix
committed by a filter based on at against a
“real-world” based on at (the superscript denotes
the matrix prior to a measurement update), Ht is
the true system output matrix, and Rt is the true
measurement noise covariance matrix. Therefore, a
fully characterized density function fr(½) is available
for use in the integration given by (9).
The density function fr(½) of the m-dimensional

residual can be visualized by means of a
hyperellipsoid contour map, with a two-dimensional
zero-mean example illustrated in Fig. 2. Integration
over the shaded (hyper)elliptical region Ar would
be messy in terms of the limits of integration.
However, this can be simplified if the region is
transformed to the shaded (hyper)spherical region Ar0
associated with the density function fr0 as shown in
Fig. 3. The development presented here shows that
the transformed limit of integration is a radius of
integration equal to the square root of the thresholdp
T.
Apply the following linear transformation to the

residuals
r0j =

C

q
A¡1j rj (11)

where C denotes Cholesky and a Cholesky square root
[10] of A¡1j is used such that

A¡1j =
µ

C

q
A¡1j

¶Tµ
C

q
A¡1j

¶
: (12)

This linear transformation on the Gaussian random
variable maintains its Gaussian nature as r0j :N[¹

0
j ,A

0
t]

Fig. 3. Transformed density function contour map
(hyper)spheroids for 2-D residuals.

with the transformed mean vector and covariance
matrix given by

¹0j =
C

q
A¡1j ¹j (13)

A0t =
µ

C

q
A¡1j

¶
At

µ
C

q
A¡1j

¶T
(14)

and the generalized chi-squared variable given by

Âj = r
0T
j r

0
j : (15)

This leads to the transformation of (9) into the
m-dimensional integral

PÂ(Âj · T) =
Z
¢ ¢ ¢
Z

Ar0

fr0(½
0)d½0 (16)

which is now based on the transformed density
function fr0(½

0). Finally, the radius of integration
shown in Fig. 3 must be identified. The integration
has been simplified from hyperellipsoids to
hyperspheroids, and (15) can be recognized as the
equation for a hypersphere; so the upper limit of
integration is simply some radius of this hypersphere.
Furthermore, the original limit of integration for
PÂ(Âj · T) in (8) is the threshold, T, and from the
relationship of Âj to r

0 given by (15), the radius
of integration is recognized as the square root of
the threshold

p
T. An m-dimensional numerical

integration method was provided by Oxley [13] and
Maybeck [10] and simply extends the often utilized
technique of transforming the coordinate system from
Cartesian to polar coordinates prior to performing the
numerical integration [16].

B. Choice of PÂj Values

Consider an MMAE with five filters and the goal
of accurately estimating a scalar parameter value. One
approach would be to assign the filters parameter
values such that the filter probabilities pj(ti) would
result in the values shown in Table I. Notice that
the center filter in the bank has a relatively high
probability pj , its neighbors have less probability but
still relatively substantial amounts, and the outlying
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TABLE I
Example Probability Values

pj , j = 1 : : :5 0.05 0.2 0.5 0.2 0.05

PÂ(Âj · T) 0.025 0.15 0.5 0.85 0.975

filters have extremely small pj values. Such a pattern
of pj values in the operation of an MMAE would
indicate that the discretization of the parameter space
is neither too coarse nor too fine: the total probability
is not essentially all absorbed by a single elemental
filter, nor is it impossible to distinguish between
“good” and “bad” models on the characteristics
of the residuals from the five filters. These values
are determined in an ad hoc fashion, giving the
designer significant latitude in choosing how broad
or narrow to make the filter bank. However, this
particular choice is motivated by human eyesight,
in that the center three filters would correspond to
points tightly spaced in parameter space and thus
providing a “foveal view” of that space, while the two
outliers would provide a coarser discretization for a
“peripheral view.”
In order to strive for these desired pj values,

as calculated by the MMAE, the designer would
select the PÂj values shown in Table I. Note that
PÂj = PÂ(Âj · T) is a monotonic function of T,
depicting the cumulative probability associated with
Âj taking on values less than or equal to T (not
a conditional probability that Âj takes on values
in a small neighborhood about T, as for pj). This
discretization method provides a more systematic and
more theoretically substantiated means of choosing
the filter-assumed parameter values aj than the ad
hoc methods used to date. Specifically, the designer’s
primary concern is to select desired probability pj
values, leading to the associated PÂj values such as
those in Table I, then apply the PBDM to determine
the appropriate aj values.
The following example illustrates a systematic

method for relating the probabilities pj and PÂj .
Let each probability weight pj be divided equally
to the right and to the left of point j as shown in
Fig. 4. This assumes proportionate distribution
of the probability in the neighborhood of point j
for simplicity. Recombine through summation the
probability between points j and j+1, noting that
the first and last values are unchanged. Integrate
(form a cumulative sum) up to point j to generate the
probability that model j is a good match to truth, i.e.,
its chi-squared statistic Âj , is less than or equal to the
threshold T. Therefore, the first J values represent the
probability PÂj and are given by

PÂj =
pj
2
+
j¡1X
k=1

pk: (17)

Fig. 4. Relationship of pj to PÂj .

Note also that, if the original pj pattern is symmetric
about the center point, then the PÂj value for the center
filter is always 0.5.

C. Discretization Method

The discretization method discussed in this section
is one of many possible which utilizes the tools
presented in the previous two sections. Other concepts
including methods to move, contract, and expand
the MMAE bank based on the numerical evaluation
of PÂj could be explored [16]. In order to integrate
these probabilities numerically, it is necessary to
have the mean vector and covariance matrix for
the residuals based on both a truth model and a
filter model. Since the parameter value for the truth
model is not exactly known (otherwise there would
be no estimation needed), it is necessary to assume
values for the truth model based on the best guess
given by the MMAE. Specifically, assume the true
parameter values are equal to the components of â(ti).
This best guess is available on-line, and by design
the filter in the center of the bank will assume its
value.
Given this assumption, the threshold T can be

determined exactly for any choice of PÂt , where the
subscript t indicates that the filter-assumed parameter
values are assumed to match truth. Recall that if
the filter is a perfect match of the true system, then
the density function fÂ(c) is exactly the ordinary
chi-squared density function and the probability
can be readily calculated. Inversely, the threshold
can be found using the MATHCAD [9] function
“T = qchisq(PÂt ,m)” which is a function of both the
desired probability for the filter assumed as truth and
the dimension of the residuals. Note that T is not a
function of â(ti); so once PÂt and m are set, T will be
known for all values of â(ti).
The remaining filters are assigned parameter

values above and below â(ti) such that their PÂj values
agree with those chosen by the designer for the now
known threshold value T. This raises the issue of how
to select parameter values for the remaining filters
without simply running multiple guesses through the
numerical integrator and hoping for a match with
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Fig. 5. Parameter value search routine.

the designer-chosen PÂj values. An automated search
algorithm is presented next to overcome this problem.

D. Parameter Value Search Routine

This routine has only been developed for
the special case of zero-mean residuals (thus
able to address the case of uncertain parameters
in the dynamics driving noise covariance Qd,
or the measurement noise covariance R) in the
presence of mismodeling and a scalar parameter.
The search routine is based on a measure of the
eigenvalues of the transformed residual covariance
matrix A0t. It is possible to use a measure of the
eigenvalues of A0t to predict PÂj without evaluating
this probability numerically. Specifically, the product
of the eigenvalues of A0t was found to predict PÂj
consistently:

Meig =
mY
i=1

¸i (18)

where
¸i = the eigenvalues of A

0
t:

This makes sense since the product of the eigenvalues
of a matrix is directly related to the volume of the
hyperellipsoid defined by that matrix [15]. The
flowchart of the search routine based on the measure
shown in (18) is illustrated in Fig. 5.
The basic process used by the search routine is

repeated for each elemental filter. First, assume a
parameter value for the elemental filter, i.e., choose a
“guess” value. Calculate the measure Meig associated
with this guess value and determine if the search
criterion defined below is met. If so, the search is

complete and repeat for the other elemental filters.
If not, make another guess for the parameter value
based on a designer-chosen guess step size and check
against the criteria. Continue this process via a loop
until the criterion is met or a set number of guesses
have been tried.
The search criteria include: â= scalar true

parameter value (current best guess), Md
eig = desired

eigenvalue measure, and the logic for aj < â is given
by

IF (Meig ·Md
eig) THEN (search is successful, found = 1)

and the logic for aj > â is given by

IF (Meig ¸Md
eig) THEN (search is successful, found = 1):

The value of â is given by the MMAE. The desired
eigenvalue measure Md

eig must be empirically
determined for each filter. Note that one filter
(typically the center filter) takes on the value of â
and is assumed to match truth, so there is no need
to search for this parameter value, and thus there is
no need to find Md

eig for this filter. A manual search
must be done once for each of the J ¡ 1 values of
Md
eig, as explained below. The phrase manual search

refers to arbitrarily selecting a value (a guess) for
the parameter aj , then performing the numerical
integration to determine if the resulting PÂ(Âj · T) is
equal to the designer-chosen probability value. Once a
parameter value is found that produces the appropriate
probability value PÂj , the eigenvalues of A

0
t associated

with this parameter value are used to calculate Md
eig via

(18). This process is repeated to determine each of the
J ¡ 1 values of Md

eig. However, after M
d
eig is determined

once for any single value of â, this search routine will
replace the manual method for all other values of â.

E. Algorithm Implementation

The search routine is performed off-line for several
discrete values of â which range over the span of
the admissible parameter space. The filter-assumed
parameter values determined for each discrete value of
a are stored in a look-up table and referenced by the
value of â from the MMAE. By design, a reference
value of a will be used as the parameter value for the
filter residing in the center of the bank. This look-up
table will be available in real-time and the table entry
closest to the current value of â will be used at each
sample time. This implementation simply keeps the
bank centered on the best estimate for the parameters,
â (as closely as possible in view of the discrete values
of a stored in the look-up table), then relies on the
new discretization method to determine the remaining
parameter values. Various other implementations of
the PBDM are presented with results in [16].
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Fig. 6. Parameter estimation performance.

TABLE II
Simulated Cases (Interference/Jamming Levels)

Time (s) 3700 3750 3800 3850

RGPS (ft
2) 9 4500 9000 18000

V. RESULTS

The concepts presented here are applied to a
motivating example of state and parameter estimation
for fault tolerant aircraft precision landing. A single
failure mode representing interference/jamming of
the GPS receiver is simulated for proof of concept
and validation of the algorithm. The PBDM is used to
discretize a moving-bank MMAE which provides state
estimates and parameter estimates.
A 13-state model is used as detailed in [16] that

involves an integrated GPS-INS with barometric
altimeter and radar altimeter aiding. The inertial
navigation system (INS) filter model is comprised
of 11 states (the first nine being the standard Pinson
error model states): 3 platform misalignment errors,
3 velocity errors, 3 position errors, and 2 states for
barometric altimeter stabilization. The GPS filter
model is comprised of 2 states: user clock bias and
user clock drift. The following measurements are
available: four satellite vehicle (SV) pseudo-ranges,
altitude from the barometric altimeter, and height

above ground level from the radar altimeter. The
10-run Monte Carlo simulations span 200 s of flight
time (3700 to 3900 s) out of a 2 h flight profile. The
nominal GPS measurement noise is R0 = 9 ft

2, and
one of the six case studies is presented here with the
noise profile shown in Table II. A five-elemental-filter
MMAE is implemented with a look-up table of 40
discrete parameter values for on-line use.
The designer-chosen probability values used

by the PBDM are PÂj = [0:01,0:24,0:5,0:76,0:99].
Note that with PÂ3 = 0:5 and m= 6 for this problem,
the threshold is given by MATHCAD [9] as
T = qchisq(0:5,6) = 5:348. The data is presented
through parameter and state estimate plots. The
parameter estimate plot shows the time history for
the parameter being estimated in this problem for a
single representative run (see Fig. 6). The first trace
(¢ ¢ ¢ ) represents the true parameter value as dictated by
the case study being simulated. The second trace (–)
shows the parameter estimate provided by the MMAE.
The third trace (- - -) indicates the minimum and
maximum filter-assumed parameter values within the
MMAE bank at each sample time. This pair of traces
illustrates the breadth of the bank, how well the bank
encompasses the true parameter value, and where the
parameter estimate lies within the MMAE bank, i.e.,
close to an endpoint or somewhere in the middle. The
state plots of aircraft latitude, longitude, and altitude
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Fig. 7. MMAE state estimation errors (ft).

are plotted for the blended estimates provided by the
MMAE (see Fig. 7). Each plot contains five traces.
The innermost trace (–) on each data plot is the mean
error time history for the applicable state. A trace pair
(represented by ¢ ¡ ¢¡) is plotted and identified as the
state estimate error mean§sigma (¹x§¾x). The last
pair of traces (–) represent the filter-computed §¾filter
values for the same states and are symmetrically
displaced about zero because the filter “believes” that
it is producing zero-mean errors [10].
The PBDM selects filter-assumed parameter values

which give the MMAE the ability to react to abrupt
changes in the true parameter, as seen in the plot
of the parameter estimate in Fig. 6 at t= 3750 s.
Similar performance is seen from t= 3800 s to 3810 s
and at t= 3850 s. Some erratic bank movement is
seen for t= 3820 s to 3842 s. Performance suffers
when the bank size is too large, allowing severe
overestimation of the parameter value (t= 3820 s
to 3833 s). Specifically, the true parameter value
is RGPS = 1000 while the minimum and maximum
filter-assumed parameter values are R1 = 170 and
R5 = 1970, respectively. The parameter error plot in
Fig. 6 shows a somewhat large bias from t= 3850 s to
3900 s. This is a result of restricting the bank motion
at an upper bound equal to the true parameter value
(R5 = RGPS = 2000). A better blended estimate and
parameter error would result if the the upper bound

on the filter bank were allowed to exceed the true
parameter value. Overall, the parameter is tracked
rather well and the state estimation errors are shown
in Fig. 7 to be quite good. All three states show the
quick response of the MMAE to the abrupt change in
the true parameter at t= 3750 s. The state plots also
indicate the adequate tuning which exists in all three
channels. In particular, the filter computed standard
deviation §¾filter encompasses the majority of the error
state true mean § one standard deviation values.

VI. CONCLUSIONS

Prior to this research, limited methods were
available to determine moving-bank decisions or
parameter discretization adequately within the
structure of MMAE. Most of these methods rely on
logic which utilize ad hoc thresholds determined
through empirical analysis. The PBDM provides
a new and more analytically based method for
discretizing the parameter space associated with a
moving-bank MMAE implementation. One application
of this algorithm was demonstrated for an aircraft
GPS-aided INS navigation system subjected to
interference/jamming while attempting a successful
precision landing of the aircraft. The results validate
the ability of this algorithm to provide accurate
parameter estimates in the presence of potentially
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significant parameter variations such as system
component failures.
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