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Abstract—This paper presents a rapid prototype approach for 

the development of a real-time capable neural-machine-interface 

(NMI) for control of artificial legs based on mobile processor 

technology (Intel AtomTM Z530 Processor.) By effectively 

exploiting the architectural features of a mobile embedded CPU, 

we implemented a decision-making algorithm, based on 

neuromuscular-mechanical fusion and gait phase-dependent 

support vector machines (SVM) classification to meet the 

demanding performance constraints. To demonstrate the 

feasibility of a real-time mobile computing based NMI, real-time 

experiments were performed on an able bodied subject with 

window increments of 50ms. The experiments showed that the 

mobile computing based NMI provided fast and accurate 

classifications of four major human locomotion tasks (level-

ground walking, stair ascent, stair descent, and standing) and a 

46X speedup over an equivalent MATLAB implementation. The 

testing yielded accuracies of 96.31% with low power 

consumption. An offline analysis showed the accuracy could be 

increased to 98.87% with minor modifications to the application. 

Keywords—neural machine interface; leg control; support 

vector machines; mobile CPU 

I.  INTRODUCTION 

In 2005, there were approximately 1.6 million people in the 
United States with some kind of limb loss [1]. By the year 
2050, the number is expected to increase to 3.6 million people 
[1]. Furthermore, in 2005, lower limb loss accounted for almost 
two-thirds (65.5%) of the 1.6 million [1]. People with lower-
limb amputations typically favor their intact limb and therefore 
provide additional stress upon their intact limb during everyday 
activities [2]. It has been speculated the additional placed stress 
upon their intact limb will lead to degenerative diseases [2]. 
These statistics clearly present the increasing need for 
technology that restores as much functionality to the large and 
increasing population of lower limb amputees. 

The recent development of powered artificial legs, such as 
the Power Knee [3] and the Vanderbilt University design [4], 
provide positive mechanical energy that helps restore the user’s 

locomotion modes [5]. These devices detect the user’s intended 
locomotion mode though the use of echo control or solely 
though intrinsic mechanical feedback. In particular, the Power 
Knee [3] utilizes echo control [4] and requires instrumentation 
of the sound leg in order to detect what locomotion mode the 
user is currently performing. The system described in [4] 
utilizes, solely, intrinsic mechanical feedback [6]. In contrast, 
we have developed a Neural-Machine Interface (NMI) based 
on neuromuscular-mechanical fusion [7] and phase-dependent 
pattern recognition (PR) strategy [8]. Our strategy does not 
require instrumentation of the sound leg and has been shown to 
provide higher accuracy than the classifiers utilizing only 
electromyographic (EMG) data or only mechanical data [9]. 
Our PR strategy can be implemented utilizing either Support 
Vector Machines (SVM) or Linear Discriminant Analysis 
(LDA) Classifiers and once properly trained can provide 
autonomous classifications of the user’s intended locomotion at 
50ms intervals, thereby providing volitional control of a 
powered artificial leg. The selection of a Support Vector 
Machines (SVM) classifier provided improved prediction 
accuracy performance of our PR strategy when compared to a 
Linear Discriminant Analysis (LDA) classifier [7]; therefore 
for this study we will utilize an SVM-based classifier.  

In order to make our PR strategy a feasible reality we 
developed a Cyber Physical System (CPS), designed to test our 
NMI. This CPS is a unique and complex system consisting of 
sensors (EMGs and a six degrees of freedom (DOF) Loadcell), 
which need to integrated with a data acquisition system, a 
biomedical engineering algorithm, a mechanical prosthesis, and 
a computational engine. Our objective here was to integrate the 
various components in our complex system in an optimal 
fashion using a System-of-Systems approach. During each 
stage of integration we performed system verification and 
validation to ensure that the components were behaving as 
expected. The important performance criteria that we aim to 
optimize include mainly 1) real-time performance to provide 
fast control of prosthesis; 2) high accuracy of locomotion 
prediction; 3) low power consumption; and 4) small size 
wearable by leg amputees.   

With these objectives in mind we investigated commercial 
off-the-shelf (COTS) computing devices and chose one 
ubiquitous mobile computing system, the Intel Atom

TM
 Z530 

as our computational engine for our first real-time capable 
design iteration. It is low power (2.2 watts [10]), low cost, and 
a portable mobile computer that meets our NMI performance 
requirements. Our preliminary study [11] showed that a mobile 
processor based NMI had great promise in control of artificial 
legs [11]. The primary objective of this paper is to determine 
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the viability of mobile technology as a possible architectural 
solution for use in our 50ms window increment NMI. We 
chose to utilize 50ms window increments in this study to 
provide a comparison with our existing MATLAB 
implementations. Additionally we wish to determine if the Intel 
Atom based design will allow for further expansion of our NMI 
algorithm to perform electromyographic (EMG) anomaly 
detection and perform the prosthesis leg control by sending 
control signals based on our PR strategy at 10ms intervals, it is 
desirable to quantitatively evaluate the mobile technology’s 
reserve capability while executing our 50ms window increment 
NMI.  

Existing solutions for prosthesis control have been 
implemented on MATLAB that cannot satisfy real-time 
requirements running on the mobile computing device. We 
have developed an entire software application suite to 
implement our SVM-based PR strategy in C, targeting a mobile 
processor. It turns out that porting the software to the mobile 
computer present several challenges to meet our goals. The first 
challenge is the time constraint of the NMI to deliver correct 
control decision in real time. Straight forward implementation 
is far from satisfactory. We therefore proposed several 
innovative techniques to exploit the inherent architectural 
features, which are described in [11].  

To meet our research objectives, we designed and developed 
a real time software interface to a data acquisition system 
(DAQ) providing the capability to acquire real-time EMG, 
mechanical force and moment data from human subjects, with 
no data loss or lag. This newly developed NMI was combined 
with a Measurement Computing USB-1616HS-BNC DAQ [12] 
to facilitate the collection of the real-time EMG and 6 degrees-
of-freedom (DOF) mechanical data. This final NMI design was 
utilized to execute and test the real-time performance of our 
phase dependent SVM based PR algorithm utilizing 50ms 
window increments on an able bodied human subject.  

This paper makes the following contributions: 

• Design and implementation  of a real-time capable NMI 

utilizing 50ms window increments for artificial leg 

control based on a mobile processor; 

• Design and implementation of an application suite for a 

phase-dependent NMI with SVM classifiers tailored 

specifically to the mobile processor utilizing 50ms 

window increments; 

• A comparison between our new C based NMI embedded 

application and our equivalent MATLAB based NMI 

that shows the embedded C application provides a 46X 

speedup; 

• A real time experiment that evaluates the potential use 

of mobile processors for a 50ms window increment 

embedded implementation for neural control of powered 

lower limb prosthesis; 

• An analysis that shows the future algorithm expansion 

capability of this mobile based NMI implementation.  
This paper builds upon a prior offline study [11] and an 

Analysis of Alternatives (AoA) [13]. The rest of this paper is 
organized as follows. Sections 2, 3, 4, and 5 present our newly 
designed and developed 50ms window increment real-time 
system design, software implementation, experimental protocol 
and performance evaluation. Section 6 presents recommended 

updates to our new real-time algorithm and updated 
performance expectation. We conclude our paper in Section 7. 

II. REAL-TIME CAPABLE SYSTEM ARCHITECTURE 

Based on the offline performance and the results of our AoA 

[13], it was decided to continue using the AxiomTek 

eBOX530-820-FL fanless embedded hardware with the Intel 

Atom
TM

 Processor Z530 [14] (512K cache, 1.6 GHz) as our 

COTS mobile computing system. During the source selection 

of a DAQ to combine with AxiomTek embedded hardware, it 

was clear that the vast majority of COTS DAQ devices with the 

capability to meet our design requirements (16 analog input 

channels and simultaneous sampling or a similar capability) 

only provided drivers for the Windows and Linux operating 

systems. The NMI design needs to meet real-time constraints 

and therefore the use of a Real-Time Operating System 

(RTOS) is preferable. An RTOS performs its functions, 

including external events in a specified amount of time [15]. 

Windows and Linux are general purpose operating systems 

(OSs) and do not meet the criteria of an RTOS. Therefore, as a 

compromise, it was decided to utilize a general purpose 

operating system with the understanding that RTOS options 

were available for both Windows and Linux implementations, 

such as Windows Compact Embedded (WinCE) [16] and Real-

Time Linux (RT Linux) [17]. Furthermore, it would be 

expected that if real-time constraints can be met with a general 

purpose OS, then porting the design to an RTOS would provide 

better system response and make the design more deterministic. 

The decision to go with the Windows OS vs. Linux was based 

on the experience and familiarity of the research team with the 

Microsoft Visual Studio product. This familiarity would 

facilitate the rapid design, implementation and debugging of 

the prototype COTS solution. 

For our COTS prototype, Measurement Computing's USB-

1616HS-BNC DAQ was chosen and integrated with the 

AxiomTek eBOX530-820-FL fanless embedded hardware to 

facilitate the integration of the  EMG and loadcell sensors to 

provide the necessary real-time data to make our 

neuromuscular-mechanical fusion SVM NMI a feasible 

reality. The Measurement Computing device met all our 

performance requirement, provided a C-library interface that 

was capable of interfacing with our prior embedded software 

design, and was easily interfaced to the AxiomTek embedded 

hardware via  a universal serial bus (USB) port. A block 

diagram of our system hardware architecture is shown in Fig. 1. 

 

III. REAL-TIME CAPABLE APPLICATION SUITE 

All of the initial software architectural and implementation 

decisions made in our design, such as the use of the C 

programming language, loop unrolling and inline function 

expansion were utilized within the real-time implementation. In 

addition a few other techniques were incorporated to augment 

and provide further performance enhancement. 

A. Software Architecture 

The use of a general purpose OS in this initial prototype 
design iteration raised concerns with the embedded software’s 



capability to meet real time constraints. Therefore, to further 
reduce the impact of the OS on the embedded application, the 
priorities of the application and thread were increased to a real 
time critical status. In a Microsoft Windows OS, this is 
accomplished by setting the priority class to 
REALTIME_PRIORITY_CLASS and the thread priority to 
THREAD_PRIORITY_TIME_CRITICAL [18].  

The real-time software implementation required that all raw 
data, phase data, and classification data be logged to allow for 
performance evaluations. To minimize the impacts of the real-
time data logging on the application, a statically allocated and 
statically defined Random Access Memory (RAM) buffer was 
implemented that stored all the raw EMG, mechanical, 
classification and application performance data. The RAM 
buffer eliminated the need to write to the hard drive during 
time critical operations. Furthermore, it took advantage of the 
RAM’s superior speed for storage. The real-time data logging 
for each classification was performed after all time-critical 
functions were completed (i.e., at the end of each 
classification). Lastly, The RAM buffer’s contents were written 
to the hard drive for post analysis after the experiment was 
completed, by which point no further time critical functions 
were being executed. 

Our prior offline analysis utilized LIBSVM [19] for the 
SVM training and classification. Analysis of the LIBSVM 
source showed that it could be possible to modify the libraries 
for real-time use. Therefore, the open source library LIBSVM 
was used and specifically tailored to our embedded NMI 
application for real-time SVM classification. Our real-time data 
acquisition, feature extraction, normalization, data fusion, 5-
point majority vote and low pass filter routines were all 
developed as part of our research and optimized for execution 
on the mobile CPU. 

Lastly, the re-implementation of our prior software 
optimizations [11] and the newly incorporated additional 
enhancements resulted in an embedded application specifically 
designed to minimize pipeline stalls, minimize OS impacts, 
minimize cost of memory allocation, minimize the impacts of 
real-time data logging and take advantage of the Intel Atom

TM
 

Z530 Processor hardware architecture. These enhancements 
provided the basis for the performance introduced by this 
embedded application suite. 

B. Real-Time Software Implementation 

To implement the real-time Phase-Dependent PR algorithm, 
four applications were required.  Where previously the offline 
study’s data was read in via a file, the real-time study requires a 

new application to be developed to interface with the DAQ and 
capture real-time training data. The feature extraction & 
normalization application, as well as the SVM training 
application remained unchanged. Finally, the Neuromuscular-
Mechanical Fusion PR application had to be modified to 
acquire real time data testing from the DAQ. The training data 
capture application acquires data for all of the various human 
locomotion tasks, segregates the data into each locomotion 
class, and allows for multiple trials of each locomotion task. 
The real-time PR application is used during the real-time 
testing phase. The real-time PR application extracts EMG and 
mechanical features from the raw testing data acquired in real-
time from the DAQ. Similarly to the offline method, the 
features are then fused and normalized with the provided 
normalization parameters and formed into a vector. Finally, the 
application determines the current locomotion gait phase, and 
forwards the test vector to the respective phase based classifier 
for determination of user intent. The software implementation 
data flow is shown in Fig. 2. 

IV. REAL-TIME EXPERIMENTAL PROTOCOL 

A real-time performance evaluation utilizing a 50ms 
window increment and an offline performance evaluation 
utilizing a 50ms window increment were performed as part of 
the real-time study. The evaluations were performed on the 
data collected from a male able bodied subject.  The collected 
data included the EMG signals from the subject’s thigh 
muscles and mechanical forces/moments measured by a 6 
degree-of-freedom load cell mounted on the prosthetic pylon. 
The monitored muscles included the sartorius (SAR), rectus 
femoris (RF), vastus medialis (VM), adductor magnus (ADM), 
biceps femoris short head (BFS), biceps femoris long head 
(BFL), and semitendinosus (SEM). 

The EMG and mechanical forces/moments were sampled at 
1 kHz by the Measurement Computing USB-1616HS-BNC 
DAQ device. The user intent decisions provided by the 
embedded hardware were routed via an analog output interface 
on the DAQ device. The real-time experiments provided real-
time gait-phase and user intent decisions to the console screen 
as a visual cue during the training and testing processes. The 
50ms window increment experiments utilized a window 
increment of 50ms and a window length of 150ms.  

For all experiments performed in this study, the prediction 
time will be defined as the total time to execute feature 
extraction, normalization, gait phase detection, majority vote (if 
performed) and classification for a single analysis window. 

 
 

Fig. 1.  System hardware architecture block diagram 

 

 
Fig. 2.  Real-time software implementation data flow 



V. REAL-TIME PERFORMANCE VERIFICATION  

For this experiment, four tasks (level-ground walking (W), 
stair ascent (SA), stair descent (SD), and standing (ST)) were 
studied and captured for offline analysis. To ensure the 
subject’s safety, the subject was allowed to use hand rails when 
necessary. To train the gait-phase classifier, the subject was 
instructed to perform each task for approximately 10 seconds. 
Two trials of standing data, three trials of walking data, three 
trials of stair descent and three trials of stair ascent data were 
accumulated to train the classifier. For the real-time 
performance evaluation, the subject was instructed to stand and 
then transition to one of the other tasks (ST�W, ST�SD and 
ST�SA). Seven trials of each mode transition were conducted, 
for a total of 21 trials. To assess the real-time performance of 
the NMI, the timing and processor loading of the application’s 
execution on the embedded hardware are provided and the raw 
recognition accuracy of the NMI will be evaluated via the 
following criteria:  

Classification Accuracy in the Static States: For all 
experiments in this paper, the static state is defined as the state 
where the subject has completed a transition and is 
continuously performing the same task (W, SA, SD or ST). The 
classification accuracy in the static state is the total number of 
correct classifications observed over the total number of 
classifications during the static state. 

The overall raw classification accuracy of the NMI in the 
static states for all 21 trials and all tasks (W, SA, SD and ST), 
when executed on the Intel Atom

TM 
based embedded hardware 

was 96.31%. A total of 5937 static state predictions were   
produced   by   the   Intel   Atom

TM
 based embedded hardware 

during the 21 trials. The mean prediction time for all of the 
predictions performed during the 21 trials was 0.7683ms with a 
standard deviation of 0.0971ms. The worst case prediction 
executed in 2.0192ms. 

Due to the fact that there is additional loading on the CPU to 
execute the data logging for post analysis, the CPU loading 
provided by the operating system may be inaccurate; therefore 
the mean and maximum values of CPU loading were calculated 
using Equation (1), which were 1.54% and 4.04% respectively. 
These results show that the majority of the time, the embedded 
software design was awaiting new EMG and Loadcell data 
from the DAQ, as shown in Fig. 3. During this time the 
processor is idle and can be utilized to execute other additional 
algorithms to augment our NMI’s capability.   

Although 96.31% accuracy is very good, it fell short of the 
average 97% accuracy that was achieved by the MATLAB 
model in the offline analysis. Furthermore, based on the offline 
analysis, this implementation was expected to perform 
approximately 1% higher than the MATLAB model due to the 
use of a different SVM gamma value. Upon further review of 
[20], it became obvious that this 50ms window increment 
embedded software design did not incorporate a real-time 
majority vote method. Upon examination of the raw data, it 
was apparent that a 5-point majority vote method could have a 
substantial effect on the overall system accuracy. For example, 
in Fig. 4 we see a real-time stair ascent trial with 6 
misclassifications. We manually post processed the stair ascent 
data, implementing the 5-point majority vote, which led to the 
removal of all misclassifications as shown in Fig. 5. The 
implementation of a majority vote increased the accuracy from 

Fig. 4.  Real-time stair ascent trial showing misclassification prior to 
majority vote implementation 

 
 

Fig. 3.  Simplified real-time software flowchart and CPU utilization 

Fig. 5.  Stair ascent trial manually post processed with a 5-point majority 
vote showing no misclassifications 



97.9% to 100% for this trial. In order to determine the effect of 
the 5-point majority vote algorithm to the overall accuracy of 
the system, it was decided to perform an offline analysis of the 
data acquired from the real time experiment with the addition 
of a majority vote implementation to the algorithm.  

VI. MODIFIED ALGORITHM PERFORMANCE VERIFICATION  

The 50ms window increment offline evaluation utilized the 
exact data acquired during the real-time experiment. This 
allows for an accurate comparison between the original 
software design and this proposed design. 

To perform this evaluation, the initial software was 
modified to utilize the raw DAQ data logged during the real-
time testing. The algorithm was further modified to provide a 
five-point majority vote algorithm as in [20]. For this 
experiment, the same four tasks (W, SA, SD, and ST) were 
examined. Since the intent of this study is to determine the 
mobile CPU’s capability to execute our PR algorithm, initially 
it was determined that examining the Classification Accuracy 
in the Static States should suffice. However, since slight 
modification to the software would enable mode transition 
performance evaluations that initiate from a standing position 
and all of the raw data was recorded during the real-time trials, 
we were also able to examine the performance during the three 
mode transitions (ST�W, ST�SD and ST�SA), therefore 
the analysis was performed and the results have been included 
within this paper. Additionally, included in the offline 
evaluation is a speedup assessment of the C based embedded 
application to the MATLAB based application. The 
performance of the NMI will be evaluated using the following 
criteria: 

Classification Accuracy in the Static States: As previously 
defined in the real-time 50ms experiment. 

The Number of Missed Mode Transitions: For this 
experiment, the mode transition period starts from the 
beginning of gait phase 2 (single limb stance) and terminates at 
the beginning of gait phase 4 (swing). A mode transition is 
declared to have been missed, if no correct transition decision 
is made during this defined period. 

Mode Transition Prediction Time: The mode transition 
prediction time in this experiment is defined as the amount of 
time prior to the critical timing, during which the classifier user 
intent decision has stabilized and is no longer changing, such 
that safe switching of the prosthesis device is made possible. 
For this experiment, the critical timing is defined as the 
termination of the mode transition (i.e. - just prior to the start of 
the swing gait phase).  

A. Speed Up Provided by the C Embedded Application 

A self-contained version of the PR embedded application 
was built with raw test data resident within the application 
itself. Timing analysis software was added to verify the 
performance of the embedded software design and 
implementation. To provide an accurate comparison between 
the MATLAB based NMI and our C based embedded 
application, our application was executed on the MATLAB 
system for a determination of average prediction time. The 
MATLAB system is composed of Core 2 Duo E7500 CPU 
clocked at 2.93 GHz with 3GB of RAM and executes the 
Windows XP operating system. A total of 1002 classifications 

were performed by the PR embedded application on the 
MATLAB system and completed in 472.53ms. This results in 
an average of 472 microseconds per classification. The average 
classification time of the MATLAB model executed on the 
same system was 21.9ms. Based on this experiment, the C 
based embedded application provides a 46X speedup over the 
MATLAB model. 

Although this is obviously not an entirely fair comparison 
(i.e. - MATLAB vs. C), this does provide critical information 
that is useful to systems engineers; it allows them to understand 
what speedup can be achieved and/or expected by simply 
porting a MATLAB algorithm to an optimized C-based 
application. We would like to have provided a comparison of 
our PR algorithm to other embedded architectures, but this is 
our first SVM-based embedded implementation, therefore no 
other comparison is available.  

B. Recognition Accuracy of NMI 

The overall classification accuracy of the NMI in the static 
states for all 21 trials and all tasks (W, SA, SD and ST) was 
98.87%. No missed mode transitions were observed during the 
defined mode transition period. The mean mode transition 
prediction time for ST�SA was 871.4ms with a standard 
deviation of 197.6ms.  The mean mode transition prediction 
time for ST�W was 528.6ms with a standard deviation of 
107.5ms. The mean mode transition prediction time for 
ST�SD was 314.3ms with a standard deviation of 94.5ms.  
The mode transition performance implies that user intent 
classification during transitions can be accurately determined, 
on the average, 314.3ms prior to the critical timing and be used 
for safe switching and control of the prosthesis. Representative 
trials, depicting the user intent classifications prior and during 
the ST�SA, ST�W and ST�SD mode transitions are 
provided in Figures 6, 7, and 8, respectively. As can be seen in 
Figs. 6 thru 8, there were a few misclassifications during the 
ST�W and ST�SD transitions, but it can be seen that the 
transitions were correctly predicted prior to the critical timing 
and the static state accuracy was 100% during these three trials. 

This revision to the algorithm provided an additional 2.5% 
accuracy in static states, while still meeting all of its other 
performance requirements. This clearly showed that the 
majority vote method is a critical component of the algorithm 
and must be included in future implementations and/or 
expansion of the algorithm. 

Fig. 6.  Offline performance of a standing to stair ascent trial 



VII. CONCLUSIONS 

This paper presented the design and implementation of a 
mobile CPU based neural machine interface for artificial legs. 
We utilized a rapid prototype approach, making use of COTS 
sensors and embedded hardware to build a cyber physical 
system to host our NMI algorithm. The designed NMI 
prototype was tested on an able-bodied subject for 
classification of various locomotion modes (level-ground 
walking, stair ascent, stair descent and standing) in real-time. 
The 50ms window increment real-time testing yielded 96.31% 
classification accuracy in static states. An additional 50ms 
window increment offline analysis was performed with the 
inclusion of a 5-point majority vote algorithm, which yielded 
98.87% classification accuracy in static states, while utilizing 
less than 4.04% of the Intel Atom

TM
 CPU. Lastly, we provided 

an analysis that showed the 50ms embedded application 
provided a 46X speedup over an equivalent MATLAB 
implementation.  

The experiments showed fast response time for predicting 
the mode transitions. Lastly, this mobile CPU based design 
utilizes less power than other systems designed for similar 
applications [11], while still providing nearly 96% reserve to 
provide additional expansion capability of our NMI. The 
results demonstrated the feasibility of a mobile CPU based 
real-time NMI for control of artificial legs.  

Our future work includes utilizing the reserve capacity 
provided by this efficient implementation to provide real-time 
impedance based leg control [21, 22], real-time EMG motion 

artifact detection [23, 24], real-time EMG signal trust 
assessments [23, 24] and the development of a 20ms window 
increment NMI.  
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