
Towards Ubiquitous Mobile-Computing-Based

Artificial Leg Control

Robert Hernandez, Senior member, IEEE, Jason Kane, Student member, IEEE, Fan Zhang, Student member, IEEE,

Xiaorong Zhang, Student member, IEEE, He Huang, Senior member, IEEE

Abstract—This paper presents a rapid prototype approach for

the development of a real-time capable neural-machine-interface

(NMI) for control of artificial legs based on mobile processor

technology (Intel AtomTM Z530 Processor.) By effectively

exploiting the architectural features of a mobile embedded CPU,

we implemented a decision-making algorithm, based on

neuromuscular-mechanical fusion and gait phase-dependent

support vector machines (SVM) classification to meet the

demanding performance constraints. To demonstrate the

feasibility of a real-time mobile computing based NMI, real-time

experiments were performed on an able bodied subject with

window increments of 50ms. The experiments showed that the

mobile computing based NMI provided fast and accurate

classifications of four major human locomotion tasks (level-

ground walking, stair ascent, stair descent, and standing) and a

46X speedup over an equivalent MATLAB implementation. The

testing yielded accuracies of 96.31% with low power

consumption. An offline analysis showed the accuracy could be

increased to 98.87% with minor modifications to the application.

Keywords—neural machine interface; leg control; support

vector machines; mobile CPU

I. INTRODUCTION

In 2005, there were approximately 1.6 million people in the
United States with some kind of limb loss [1]. By the year
2050, the number is expected to increase to 3.6 million people
[1]. Furthermore, in 2005, lower limb loss accounted for almost
two-thirds (65.5%) of the 1.6 million [1]. People with lower-
limb amputations typically favor their intact limb and therefore
provide additional stress upon their intact limb during everyday
activities [2]. It has been speculated the additional placed stress
upon their intact limb will lead to degenerative diseases [2].
These statistics clearly present the increasing need for
technology that restores as much functionality to the large and
increasing population of lower limb amputees.

The recent development of powered artificial legs, such as
the Power Knee [3] and the Vanderbilt University design [4],
provide positive mechanical energy that helps restore the user’s

locomotion modes [5]. These devices detect the user’s intended
locomotion mode though the use of echo control or solely
though intrinsic mechanical feedback. In particular, the Power
Knee [3] utilizes echo control [4] and requires instrumentation
of the sound leg in order to detect what locomotion mode the
user is currently performing. The system described in [4]
utilizes, solely, intrinsic mechanical feedback [6]. In contrast,
we have developed a Neural-Machine Interface (NMI) based
on neuromuscular-mechanical fusion [7] and phase-dependent
pattern recognition (PR) strategy [8]. Our strategy does not
require instrumentation of the sound leg and has been shown to
provide higher accuracy than the classifiers utilizing only
electromyographic (EMG) data or only mechanical data [9].
Our PR strategy can be implemented utilizing either Support
Vector Machines (SVM) or Linear Discriminant Analysis
(LDA) Classifiers and once properly trained can provide
autonomous classifications of the user’s intended locomotion at
50ms intervals, thereby providing volitional control of a
powered artificial leg. The selection of a Support Vector
Machines (SVM) classifier provided improved prediction
accuracy performance of our PR strategy when compared to a
Linear Discriminant Analysis (LDA) classifier [7]; therefore
for this study we will utilize an SVM-based classifier.

In order to make our PR strategy a feasible reality we
developed a Cyber Physical System (CPS), designed to test our
NMI. This CPS is a unique and complex system consisting of
sensors (EMGs and a six degrees of freedom (DOF) Loadcell),
which need to integrated with a data acquisition system, a
biomedical engineering algorithm, a mechanical prosthesis, and
a computational engine. Our objective here was to integrate the
various components in our complex system in an optimal
fashion using a System-of-Systems approach. During each
stage of integration we performed system verification and
validation to ensure that the components were behaving as
expected. The important performance criteria that we aim to
optimize include mainly 1) real-time performance to provide
fast control of prosthesis; 2) high accuracy of locomotion
prediction; 3) low power consumption; and 4) small size
wearable by leg amputees.

With these objectives in mind we investigated commercial
off-the-shelf (COTS) computing devices and chose one
ubiquitous mobile computing system, the Intel Atom

TM
 Z530

as our computational engine for our first real-time capable
design iteration. It is low power (2.2 watts [10]), low cost, and
a portable mobile computer that meets our NMI performance
requirements. Our preliminary study [11] showed that a mobile
processor based NMI had great promise in control of artificial
legs [11]. The primary objective of this paper is to determine

This research was supported in part by the Department of the Navy (Naval
Undersea Warfare Center, Newport, Rhode Island), the Office of Naval

Research (ONR) Independent Applied Research (IAR) initiative, NSF/CPS

#0931820, NSF#1149385, NIH #RHD064968A, NSF/CCF #0811333 and
NSF/CCF #1017177.

R. Hernandez is with the Naval Undersea Warfare Center, Newport, RI,

02842, USA (e-mail: robert.hernandez2@navy.mil).
J. Kane, F. Zhang, X. Zhang and H. Huang are with the Department of

Electrical, Computer and Biomedical Engineering, University of Rhode

Island, Kingston, RI 02881, USA (e-mail: jkane@ele.uri.edu;
fzhang@ele.uri.edu; zxiaorong@ele.uri.edu; huang@ele.uri.edu).

U.S. Government work not protected by U.S. copyright

the viability of mobile technology as a possible architectural
solution for use in our 50ms window increment NMI. We
chose to utilize 50ms window increments in this study to
provide a comparison with our existing MATLAB
implementations. Additionally we wish to determine if the Intel
Atom based design will allow for further expansion of our NMI
algorithm to perform electromyographic (EMG) anomaly
detection and perform the prosthesis leg control by sending
control signals based on our PR strategy at 10ms intervals, it is
desirable to quantitatively evaluate the mobile technology’s
reserve capability while executing our 50ms window increment
NMI.

Existing solutions for prosthesis control have been
implemented on MATLAB that cannot satisfy real-time
requirements running on the mobile computing device. We
have developed an entire software application suite to
implement our SVM-based PR strategy in C, targeting a mobile
processor. It turns out that porting the software to the mobile
computer present several challenges to meet our goals. The first
challenge is the time constraint of the NMI to deliver correct
control decision in real time. Straight forward implementation
is far from satisfactory. We therefore proposed several
innovative techniques to exploit the inherent architectural
features, which are described in [11].

To meet our research objectives, we designed and developed
a real time software interface to a data acquisition system
(DAQ) providing the capability to acquire real-time EMG,
mechanical force and moment data from human subjects, with
no data loss or lag. This newly developed NMI was combined
with a Measurement Computing USB-1616HS-BNC DAQ [12]
to facilitate the collection of the real-time EMG and 6 degrees-
of-freedom (DOF) mechanical data. This final NMI design was
utilized to execute and test the real-time performance of our
phase dependent SVM based PR algorithm utilizing 50ms
window increments on an able bodied human subject.

This paper makes the following contributions:

• Design and implementation of a real-time capable NMI

utilizing 50ms window increments for artificial leg

control based on a mobile processor;

• Design and implementation of an application suite for a

phase-dependent NMI with SVM classifiers tailored

specifically to the mobile processor utilizing 50ms

window increments;

• A comparison between our new C based NMI embedded

application and our equivalent MATLAB based NMI

that shows the embedded C application provides a 46X

speedup;

• A real time experiment that evaluates the potential use

of mobile processors for a 50ms window increment

embedded implementation for neural control of powered

lower limb prosthesis;

• An analysis that shows the future algorithm expansion

capability of this mobile based NMI implementation.
This paper builds upon a prior offline study [11] and an

Analysis of Alternatives (AoA) [13]. The rest of this paper is
organized as follows. Sections 2, 3, 4, and 5 present our newly
designed and developed 50ms window increment real-time
system design, software implementation, experimental protocol
and performance evaluation. Section 6 presents recommended

updates to our new real-time algorithm and updated
performance expectation. We conclude our paper in Section 7.

II. REAL-TIME CAPABLE SYSTEM ARCHITECTURE

Based on the offline performance and the results of our AoA

[13], it was decided to continue using the AxiomTek

eBOX530-820-FL fanless embedded hardware with the Intel

Atom
TM

 Processor Z530 [14] (512K cache, 1.6 GHz) as our

COTS mobile computing system. During the source selection

of a DAQ to combine with AxiomTek embedded hardware, it

was clear that the vast majority of COTS DAQ devices with the

capability to meet our design requirements (16 analog input

channels and simultaneous sampling or a similar capability)

only provided drivers for the Windows and Linux operating

systems. The NMI design needs to meet real-time constraints

and therefore the use of a Real-Time Operating System

(RTOS) is preferable. An RTOS performs its functions,

including external events in a specified amount of time [15].

Windows and Linux are general purpose operating systems

(OSs) and do not meet the criteria of an RTOS. Therefore, as a

compromise, it was decided to utilize a general purpose

operating system with the understanding that RTOS options

were available for both Windows and Linux implementations,

such as Windows Compact Embedded (WinCE) [16] and Real-

Time Linux (RT Linux) [17]. Furthermore, it would be

expected that if real-time constraints can be met with a general

purpose OS, then porting the design to an RTOS would provide

better system response and make the design more deterministic.

The decision to go with the Windows OS vs. Linux was based

on the experience and familiarity of the research team with the

Microsoft Visual Studio product. This familiarity would

facilitate the rapid design, implementation and debugging of

the prototype COTS solution.

For our COTS prototype, Measurement Computing's USB-

1616HS-BNC DAQ was chosen and integrated with the

AxiomTek eBOX530-820-FL fanless embedded hardware to

facilitate the integration of the EMG and loadcell sensors to

provide the necessary real-time data to make our

neuromuscular-mechanical fusion SVM NMI a feasible

reality. The Measurement Computing device met all our

performance requirement, provided a C-library interface that

was capable of interfacing with our prior embedded software

design, and was easily interfaced to the AxiomTek embedded

hardware via a universal serial bus (USB) port. A block

diagram of our system hardware architecture is shown in Fig. 1.

III. REAL-TIME CAPABLE APPLICATION SUITE

All of the initial software architectural and implementation

decisions made in our design, such as the use of the C

programming language, loop unrolling and inline function

expansion were utilized within the real-time implementation. In

addition a few other techniques were incorporated to augment

and provide further performance enhancement.

A. Software Architecture

The use of a general purpose OS in this initial prototype
design iteration raised concerns with the embedded software’s

capability to meet real time constraints. Therefore, to further
reduce the impact of the OS on the embedded application, the
priorities of the application and thread were increased to a real
time critical status. In a Microsoft Windows OS, this is
accomplished by setting the priority class to
REALTIME_PRIORITY_CLASS and the thread priority to
THREAD_PRIORITY_TIME_CRITICAL [18].

The real-time software implementation required that all raw
data, phase data, and classification data be logged to allow for
performance evaluations. To minimize the impacts of the real-
time data logging on the application, a statically allocated and
statically defined Random Access Memory (RAM) buffer was
implemented that stored all the raw EMG, mechanical,
classification and application performance data. The RAM
buffer eliminated the need to write to the hard drive during
time critical operations. Furthermore, it took advantage of the
RAM’s superior speed for storage. The real-time data logging
for each classification was performed after all time-critical
functions were completed (i.e., at the end of each
classification). Lastly, The RAM buffer’s contents were written
to the hard drive for post analysis after the experiment was
completed, by which point no further time critical functions
were being executed.

Our prior offline analysis utilized LIBSVM [19] for the
SVM training and classification. Analysis of the LIBSVM
source showed that it could be possible to modify the libraries
for real-time use. Therefore, the open source library LIBSVM
was used and specifically tailored to our embedded NMI
application for real-time SVM classification. Our real-time data
acquisition, feature extraction, normalization, data fusion, 5-
point majority vote and low pass filter routines were all
developed as part of our research and optimized for execution
on the mobile CPU.

Lastly, the re-implementation of our prior software
optimizations [11] and the newly incorporated additional
enhancements resulted in an embedded application specifically
designed to minimize pipeline stalls, minimize OS impacts,
minimize cost of memory allocation, minimize the impacts of
real-time data logging and take advantage of the Intel Atom

TM

Z530 Processor hardware architecture. These enhancements
provided the basis for the performance introduced by this
embedded application suite.

B. Real-Time Software Implementation

To implement the real-time Phase-Dependent PR algorithm,
four applications were required. Where previously the offline
study’s data was read in via a file, the real-time study requires a

new application to be developed to interface with the DAQ and
capture real-time training data. The feature extraction &
normalization application, as well as the SVM training
application remained unchanged. Finally, the Neuromuscular-
Mechanical Fusion PR application had to be modified to
acquire real time data testing from the DAQ. The training data
capture application acquires data for all of the various human
locomotion tasks, segregates the data into each locomotion
class, and allows for multiple trials of each locomotion task.
The real-time PR application is used during the real-time
testing phase. The real-time PR application extracts EMG and
mechanical features from the raw testing data acquired in real-
time from the DAQ. Similarly to the offline method, the
features are then fused and normalized with the provided
normalization parameters and formed into a vector. Finally, the
application determines the current locomotion gait phase, and
forwards the test vector to the respective phase based classifier
for determination of user intent. The software implementation
data flow is shown in Fig. 2.

IV. REAL-TIME EXPERIMENTAL PROTOCOL

A real-time performance evaluation utilizing a 50ms
window increment and an offline performance evaluation
utilizing a 50ms window increment were performed as part of
the real-time study. The evaluations were performed on the
data collected from a male able bodied subject. The collected
data included the EMG signals from the subject’s thigh
muscles and mechanical forces/moments measured by a 6
degree-of-freedom load cell mounted on the prosthetic pylon.
The monitored muscles included the sartorius (SAR), rectus
femoris (RF), vastus medialis (VM), adductor magnus (ADM),
biceps femoris short head (BFS), biceps femoris long head
(BFL), and semitendinosus (SEM).

The EMG and mechanical forces/moments were sampled at
1 kHz by the Measurement Computing USB-1616HS-BNC
DAQ device. The user intent decisions provided by the
embedded hardware were routed via an analog output interface
on the DAQ device. The real-time experiments provided real-
time gait-phase and user intent decisions to the console screen
as a visual cue during the training and testing processes. The
50ms window increment experiments utilized a window
increment of 50ms and a window length of 150ms.

For all experiments performed in this study, the prediction
time will be defined as the total time to execute feature
extraction, normalization, gait phase detection, majority vote (if
performed) and classification for a single analysis window.

Fig. 1. System hardware architecture block diagram

Fig. 2. Real-time software implementation data flow

V. REAL-TIME PERFORMANCE VERIFICATION

For this experiment, four tasks (level-ground walking (W),
stair ascent (SA), stair descent (SD), and standing (ST)) were
studied and captured for offline analysis. To ensure the
subject’s safety, the subject was allowed to use hand rails when
necessary. To train the gait-phase classifier, the subject was
instructed to perform each task for approximately 10 seconds.
Two trials of standing data, three trials of walking data, three
trials of stair descent and three trials of stair ascent data were
accumulated to train the classifier. For the real-time
performance evaluation, the subject was instructed to stand and
then transition to one of the other tasks (ST�W, ST�SD and
ST�SA). Seven trials of each mode transition were conducted,
for a total of 21 trials. To assess the real-time performance of
the NMI, the timing and processor loading of the application’s
execution on the embedded hardware are provided and the raw
recognition accuracy of the NMI will be evaluated via the
following criteria:

Classification Accuracy in the Static States: For all
experiments in this paper, the static state is defined as the state
where the subject has completed a transition and is
continuously performing the same task (W, SA, SD or ST). The
classification accuracy in the static state is the total number of
correct classifications observed over the total number of
classifications during the static state.

The overall raw classification accuracy of the NMI in the
static states for all 21 trials and all tasks (W, SA, SD and ST),
when executed on the Intel Atom

TM
based embedded hardware

was 96.31%. A total of 5937 static state predictions were
produced by the Intel Atom

TM
 based embedded hardware

during the 21 trials. The mean prediction time for all of the
predictions performed during the 21 trials was 0.7683ms with a
standard deviation of 0.0971ms. The worst case prediction
executed in 2.0192ms.

Due to the fact that there is additional loading on the CPU to
execute the data logging for post analysis, the CPU loading
provided by the operating system may be inaccurate; therefore
the mean and maximum values of CPU loading were calculated
using Equation (1), which were 1.54% and 4.04% respectively.
These results show that the majority of the time, the embedded
software design was awaiting new EMG and Loadcell data
from the DAQ, as shown in Fig. 3. During this time the
processor is idle and can be utilized to execute other additional
algorithms to augment our NMI’s capability.

Although 96.31% accuracy is very good, it fell short of the
average 97% accuracy that was achieved by the MATLAB
model in the offline analysis. Furthermore, based on the offline
analysis, this implementation was expected to perform
approximately 1% higher than the MATLAB model due to the
use of a different SVM gamma value. Upon further review of
[20], it became obvious that this 50ms window increment
embedded software design did not incorporate a real-time
majority vote method. Upon examination of the raw data, it
was apparent that a 5-point majority vote method could have a
substantial effect on the overall system accuracy. For example,
in Fig. 4 we see a real-time stair ascent trial with 6
misclassifications. We manually post processed the stair ascent
data, implementing the 5-point majority vote, which led to the
removal of all misclassifications as shown in Fig. 5. The
implementation of a majority vote increased the accuracy from

Fig. 4. Real-time stair ascent trial showing misclassification prior to
majority vote implementation

Fig. 3. Simplified real-time software flowchart and CPU utilization

Fig. 5. Stair ascent trial manually post processed with a 5-point majority
vote showing no misclassifications

97.9% to 100% for this trial. In order to determine the effect of
the 5-point majority vote algorithm to the overall accuracy of
the system, it was decided to perform an offline analysis of the
data acquired from the real time experiment with the addition
of a majority vote implementation to the algorithm.

VI. MODIFIED ALGORITHM PERFORMANCE VERIFICATION

The 50ms window increment offline evaluation utilized the
exact data acquired during the real-time experiment. This
allows for an accurate comparison between the original
software design and this proposed design.

To perform this evaluation, the initial software was
modified to utilize the raw DAQ data logged during the real-
time testing. The algorithm was further modified to provide a
five-point majority vote algorithm as in [20]. For this
experiment, the same four tasks (W, SA, SD, and ST) were
examined. Since the intent of this study is to determine the
mobile CPU’s capability to execute our PR algorithm, initially
it was determined that examining the Classification Accuracy
in the Static States should suffice. However, since slight
modification to the software would enable mode transition
performance evaluations that initiate from a standing position
and all of the raw data was recorded during the real-time trials,
we were also able to examine the performance during the three
mode transitions (ST�W, ST�SD and ST�SA), therefore
the analysis was performed and the results have been included
within this paper. Additionally, included in the offline
evaluation is a speedup assessment of the C based embedded
application to the MATLAB based application. The
performance of the NMI will be evaluated using the following
criteria:

Classification Accuracy in the Static States: As previously
defined in the real-time 50ms experiment.

The Number of Missed Mode Transitions: For this
experiment, the mode transition period starts from the
beginning of gait phase 2 (single limb stance) and terminates at
the beginning of gait phase 4 (swing). A mode transition is
declared to have been missed, if no correct transition decision
is made during this defined period.

Mode Transition Prediction Time: The mode transition
prediction time in this experiment is defined as the amount of
time prior to the critical timing, during which the classifier user
intent decision has stabilized and is no longer changing, such
that safe switching of the prosthesis device is made possible.
For this experiment, the critical timing is defined as the
termination of the mode transition (i.e. - just prior to the start of
the swing gait phase).

A. Speed Up Provided by the C Embedded Application

A self-contained version of the PR embedded application
was built with raw test data resident within the application
itself. Timing analysis software was added to verify the
performance of the embedded software design and
implementation. To provide an accurate comparison between
the MATLAB based NMI and our C based embedded
application, our application was executed on the MATLAB
system for a determination of average prediction time. The
MATLAB system is composed of Core 2 Duo E7500 CPU
clocked at 2.93 GHz with 3GB of RAM and executes the
Windows XP operating system. A total of 1002 classifications

were performed by the PR embedded application on the
MATLAB system and completed in 472.53ms. This results in
an average of 472 microseconds per classification. The average
classification time of the MATLAB model executed on the
same system was 21.9ms. Based on this experiment, the C
based embedded application provides a 46X speedup over the
MATLAB model.

Although this is obviously not an entirely fair comparison
(i.e. - MATLAB vs. C), this does provide critical information
that is useful to systems engineers; it allows them to understand
what speedup can be achieved and/or expected by simply
porting a MATLAB algorithm to an optimized C-based
application. We would like to have provided a comparison of
our PR algorithm to other embedded architectures, but this is
our first SVM-based embedded implementation, therefore no
other comparison is available.

B. Recognition Accuracy of NMI

The overall classification accuracy of the NMI in the static
states for all 21 trials and all tasks (W, SA, SD and ST) was
98.87%. No missed mode transitions were observed during the
defined mode transition period. The mean mode transition
prediction time for ST�SA was 871.4ms with a standard
deviation of 197.6ms. The mean mode transition prediction
time for ST�W was 528.6ms with a standard deviation of
107.5ms. The mean mode transition prediction time for
ST�SD was 314.3ms with a standard deviation of 94.5ms.
The mode transition performance implies that user intent
classification during transitions can be accurately determined,
on the average, 314.3ms prior to the critical timing and be used
for safe switching and control of the prosthesis. Representative
trials, depicting the user intent classifications prior and during
the ST�SA, ST�W and ST�SD mode transitions are
provided in Figures 6, 7, and 8, respectively. As can be seen in
Figs. 6 thru 8, there were a few misclassifications during the
ST�W and ST�SD transitions, but it can be seen that the
transitions were correctly predicted prior to the critical timing
and the static state accuracy was 100% during these three trials.

This revision to the algorithm provided an additional 2.5%
accuracy in static states, while still meeting all of its other
performance requirements. This clearly showed that the
majority vote method is a critical component of the algorithm
and must be included in future implementations and/or
expansion of the algorithm.

Fig. 6. Offline performance of a standing to stair ascent trial

VII. CONCLUSIONS

This paper presented the design and implementation of a
mobile CPU based neural machine interface for artificial legs.
We utilized a rapid prototype approach, making use of COTS
sensors and embedded hardware to build a cyber physical
system to host our NMI algorithm. The designed NMI
prototype was tested on an able-bodied subject for
classification of various locomotion modes (level-ground
walking, stair ascent, stair descent and standing) in real-time.
The 50ms window increment real-time testing yielded 96.31%
classification accuracy in static states. An additional 50ms
window increment offline analysis was performed with the
inclusion of a 5-point majority vote algorithm, which yielded
98.87% classification accuracy in static states, while utilizing
less than 4.04% of the Intel Atom

TM
 CPU. Lastly, we provided

an analysis that showed the 50ms embedded application
provided a 46X speedup over an equivalent MATLAB
implementation.

The experiments showed fast response time for predicting
the mode transitions. Lastly, this mobile CPU based design
utilizes less power than other systems designed for similar
applications [11], while still providing nearly 96% reserve to
provide additional expansion capability of our NMI. The
results demonstrated the feasibility of a mobile CPU based
real-time NMI for control of artificial legs.

Our future work includes utilizing the reserve capacity
provided by this efficient implementation to provide real-time
impedance based leg control [21, 22], real-time EMG motion

artifact detection [23, 24], real-time EMG signal trust
assessments [23, 24] and the development of a 20ms window
increment NMI.

REFERENCES

[1] Ziegler-Graham K, MacKenzie EJ, Ephraim PL, Travison TG,

Brookmeyer R. Estimating the prevalence of limb loss in the United
States: 2005 to 2050. Arch Phys Med Rehabil. 2008;10:422–429.

[2] Gailey, Robert, Kerry Allen, Julie Castles, Jennifer Kucharik, and
Mariah Roeder, Review of secondary physical conditions associated
with lower-limb amputation and long-term prosthesis use. Journal of
Rehabilitation Research & Development. 2008.

[3] OSSUR, The POWER KNEE. [Online]. Available:
http://www.ossur.com/prosthetic-solutions/bionic-technology/power-
knee

[4] F. Sup, A. Bohara, and M. Goldfarb, “Design and control of a powered
transfemoral prosthesis,” In. J. Rob. Res., vol. 27, no. 2, pp. 263-273,
Feb. 1, 2008.

[5] Hargrove, Levi J., Ann M. Simon, Robert Lipschutz, Suzanne B.
Finucane, and Todd A. Kuiken. Non-weight-bearing neural control of a
powered transfemoral prosthesis. Journal of Neuroengineering and
Rehabilitation. 2013.

[6] H.A. Varol, F. Sup, and M. Goldfarb, “Multiclass real-time intent
recognition of a powered lower limb prosthesis,” IEEE Trans. Biomed.
Eng., vol. 57, no. 3, pp. 542-51, Mar. 2010.

[7] H. Huang, F. Zhang, L. J. Hargrove, Z. Dou, D. R. Rogers, and K. B.
Englehart, “Continuous locomotion-mode identification for prosthetic
legs based on neuromuscular-mechanical fusion,” IEEE Trans Biomed
Eng, vol 58, pp. 2867-75, 2011.

[8] H. Huang, T. A. Kuiken, and R. D. Lipshutz, “A strategy for identifying
locomotion mode using surface electromyography,” IEEE Trans Biomed
Eng, vol 56, pp. 67-73, 2009.

[9] F. Zhang, H. Huang, “Source Selection for Real-Time User Intent
Recognition Toward Volitional Control of Artificial Legs,” IEEE
Journal of Biomedical and Health Informatics, vol. 17, 2013

[10] Intel Corporation. (2010, June). “Intel® Atom™ Processor Z5xx Series
Datasheet” [online]. Available: http://www.intel.com/content/www/us/
en/processors/atom/atom-z540-z530-z520-z510-z500-45-nm-
technology-datasheet.html [March 19, 2012].

[11] R. Hernandez, F. Zhang, X. Zhang, H. Huang and Q. Yang, “Promise of
a Low Power Mobile CPU based Embedded System in Artificial Leg
Control,” Conf Proc IEEE Engineering in Medicine and Biology
(EMBC) 2012.

[12] Measurement Computing Corporation. (2008). “USB-1616HS-BNC
User’s Guide” [online]. Available: http://www.microdaq.com/
measurement_computing/documents/usb-1616hs-bnc-user-manual.pdf
[May 21, 2012].

[13] R. Hernandez, and J. Faella, “Towards Policy and Guildelines for the
Selection of Computational Engines,” Conf Proc IEEE Systems
Conference 2013, Orlando, FL, April 2013.

[14] AxiomTek Corporation. (2012). “Fanless Embedded System with Intel®
Atom™ Processor” [online]. Available: http://axiomtek.com/Download
/Spec/ebox530-820-fl.pdf [March 19, 2012].

[15] B. Furht, D. Grostick, et. al., ”Real-time UNIX systems design and
application guide”, Kluwer Academic Publishers Group, Norwell, MA,
USA

[16] Microsoft Corporation. Deveolpment Tools | Windows Embedded CE
Tools for Developers. [online] Available: http://www.microsoft.com/
windowsembedded/en-us/develop/windows-embedded-ce-6-for-
developrs.aspx [March 26, 2013]

[17] M. Barabanov, “A Linux-Based Real-Time Operating System”,
M.Comp.Sci. Thesis, New Mexico Institue of Mining and Technology,
Socorro, New Mexico, June 1, 1997

[18] Microsoft Corporation. (2012, February 7). Scheduling Priorities.
[online] Available: http://msdn.microsoft.com/en-us/library/windows/
desktop/ms685100(v=vs.85).aspx [March 19, 2012]

Fig. 7. Offline performance of a standing to walking trial

Fig. 8. Offline performance of a standing to stair descent trial

[19] C. C. Chang, C. J. Lin, “LIBSVM: a library for support vector
machnies,” ACM Transactions on Intelligent Systems and Technology,
vol. 2 issue 3, pp. 27:1-27:27, 2011.

[20] F. Zhang, H. Huang, “Real-Time Recognition of User Intent for Neural
Control of Artificial Legs,” MEC’11, New Brunswick, Federicton, NB
Canada, August 2011.

[21] F. Zhang, M. Liu and H. Huang, “Preliminary Study of the Effect of
User Intent Recognition Errors on Volitional Control of Powered Lower
Limb Prostheses,” Conf Proc IEEE Engineering in Medicine and
Biology (EMBC) 2012.

[22] M. Liu, P. Datseris, and H. Huang, "A prototype for smart prosthetic
legs: analysis and mechanical design," Conf Proc Proceeding of

International Conference on Control, Robotics and Cybernetics. New
Delhi, India: IEEE, March 21-23, Vol. 1. pp. 139-143, 2011

[23] Y. Liu, F. Zhang, Y. Sun, H. Huang, "Trust Sensor Interface for
Improving Reliability of EMG-based User Intent Recognition", Conf
Proc. IEEE Engineering in Medicine and Biology Society (EMBC) 2011,
Boston, MA, Aug-Sept, 2011.

[24] X. Zhang, Y. Liu, F. Zhang, J. Ren, Y. Sun, Q. Yang, and H. Huang,
"On Design and Implementation of Neural-Machine Interface for
Artificial Legs," Industrial Informatics, IEEE Transactions on , vol.8,
no.2, pp.418,429, May 2012.

