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Abstract—Thanks to the small wavelength at millimeter
wave (mmWave) frequency, it is promising to combine mas-
sive multiple-input and multiple-output (MIMO) with mmWave.
MmWave massive MIMO will differ from the conventional
massive MIMO, due to the differences in propagation and
hardware constraints. This paper proposes a stochastic geom-
etry framework for evaluating the performance in large-scale
mmWave massive MIMO networks. Based on the system model,
analytical expressions are provided for the asymptotic signal-to-
interference-plus-noise ratio (SINR) distributions in both uplink
and downlink, when the number of base station antennas goes
to infinity. Numerical results indicate a fast convergence in the
SINR distribution to its asymptotic equivalence in dense mmWave
networks. A comparison with conventional massive MIMO shows
that mmWave massive MIMO achieves a higher cell throughput
with sufficiently dense deployments.

I. INTRODUCTION

Massive multiple-input and multiple-output (MIMO) is a

promising candidate technology for 5G cellular networks [1]–

[3]. It deploys more antennas than in conventional systems to

serve a large number of users and provides high throughput

[1]–[4]. With large bandwidth channels, the millimeter wave

(mmWave) spectrum constitutes a promising candidate fre-

quency for access channels in 5G cellular networks [5], [6].

The small wavelength also makes it natural to consider massive

MIMO at mmWave frequencies [7], which we call mmWave
massive MIMO in this paper. MmWave cellular networks will

be different from the system at lower frequencies. One key

difference is the sensitivity to blockages: different path loss

laws are found in the line-of-sight (LOS) and non-line-of-

sight (NLOS) mmWave links in measurements [6]. Besides

the differences in propagation, mmWave base stations will

probably have fewer RF chains than conventional systems, due

to power constraints. Consequently, a mmWave base station

will support fewer users, and probably use analog or hybrid

beamforming [8].

Stochastic geometry provides useful tools to analyze the

system-level performance in large-scale networks [9]. In [10],

[11], the asymptotic performance in a conventional massive

MIMO network was examined using stochastic geometry,

where key features of mmWave systems, e.g. the blockages

and directional beamforming, were not incorporated. Stochas-

tic geometric cellular models [9] were also extended to analyze

mmWave network performance [12], [13]. An innovation of

the analysis in [12], [13] was to incorporate building blockage

into the analytical framework by using different path-loss laws

for LOS and NLOS links. Unfortunately, the framework in

[12], [13] cannot be directly applied to study mmWave massive

MIMO networks, as intra-cell interference was not treated by

assuming a single user per cell, and the channel training stage

was not included by assuming perfect channel knowledge.

In this paper, we propose to study the asymptotic signal-

to-noise-and-interference ratio (SINR) and rate performance

in a time-division duplex (TDD) mmWave massive MIMO

system. We extend the mmWave cellular model in [12], [13]

to the mmWave massive MIMO case by characterizing the

distributions of the multiple scheduled users per cell and

incorporating the difference in spatial correlations between

LOS and NLOS links. Based on the system model, we derive

expressions to evaluate the asymptotic SINR distributions in

both uplink and downlink, when the number of base station

antennas goes to infinity. Compared with prior asymptotic

analysis of massive MIMO in [4], we incorporate key features

in mmWave networks, including blockage effects and direc-

tional beamforming, and consider a different large-scale net-

work topology with infinite randomly distributed base stations.

Numerical results show that the SINR performance in massive

MIMO networks is dependent on the base station density,

where a good SINR coverage and high convergence rate to the

asymptotic equivalence are achieved with a dense base station

deployment. Moreover, a comparison with massive MIMO

system at 2 GHz shows that mmWave massive MIMO achieves

a higher cell throughput when densely deployed.

II. SYSTEM MODEL

In this section, we introduce the system model for a

mmWave massive MIMO network. We consider a mmWave

massive MIMO cellular network with perfect synchronization.

Each base station is assumed to have M antennas. In each

time-frequency resource block, a base station can schedule K
users simultaneously in its cell. Let X� be the location of the

�-th base station, Y
(k)
� be the location of the k-th scheduled

user in the cell of �-th base station, and h
(k)
��′ the channel vector

from X� to Y
(k)
�′ .

The network is assumed to be operated in the following

TDD mode as proposed in [4]: channel training is performed in

the uplink, where the users send their assigned pilots Tk, and
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base stations estimate the channels using the orthogonality of

the pilots; based on the channel estimates derived from uplink

pilots, the base stations apply maximum ratio combining

to receive the uplink data, and match-filter beamforming to

transmit the downlink data. Further, we assume full reuse of

the orthogonal pilots {Tk}1≤k≤K in the network. Due to the

power and hardware constraints [8], mmWave base stations

will have fewer RF chains than the antennas. To address the

limitation on the number of RF chains, we restrict the number

of simultaneously scheduled users in a cell to be smaller

than 4. Though mmWave systems will probably apply analog

or hybrid beamforming, for simplicity, we assume digital

beamforming and combining in this paper.

Now, we introduce the mmWave channel assumptions.

One key feature of mmWave channels is the sensitivity to

blockages: the presence of building blockages in urban areas

makes the large-scale path loss laws much different in the

LOS and NLOS links [6]. To distinguish the LOS and NLOS

links, let pL(R) be the probability that a link of length R is

LOS, and pN(R) the probability that the link is NLOS. The

LOS probability function pL(R) is assumed to have finite first

moment, i.e.,
∫∞
0

pL(r)rdr < ∞, which is satisfied by most

LOS probability functions in literatures, e.g. the ones in [14],

[15]. The path loss L(R) for a link of length R is

L(R) = 1 [ψ < pL(R)]CL(max(δ,R))−αL (1)

+ 1 [pL(R) ≤ ψ < (pL(R) + pN(R))]CN(max(δ,R))−αN ,

where 1[·] is the indicator function, ψ is a uniform random

variable in [0, 1], δ = 1 meter is the reference distance, αL, αN

are the LOS and NLOS path loss exponents, and CL, CN are

the intercepts in the LOS and NLOS path loss. Typical values

of mmWave path loss parameters are available in measurement

papers [6], [16]. In addition, we assume for different links, the

random variable ψ, which decides whether the link is LOS or

not, are independent.

For small-scale fading, we consider narrowband channels,

as the effect of frequency selective fading can be minimized

by techniques like orthogonal frequency-division multiplexing

(OFDM) or frequency domain equalization [17]. Measure-

ments show that small-scale fading has minor effects on LOS

mmWave signals [6]. Consequently, for LOS links, we model

the channel vector h
(k)
��′ by a deterministic vector as

h
(k)
��′ =

√
Mβ

(k)1/2
��′ u

(k)
��′ , (2)

where β
(k)
��′ is the path loss computed from (1), assuming

the link is LOS, i.e., ψ < pL(R); u
(k)
��′ is a unit vector.

Furthermore, we assume asymptotic orthogonality between

any two LOS channels as for (s, t, k) �= (s′, t′, k′),

lim
M→∞

u
(k)∗
st u

(k′)
s′t′ = 0. (3)

One example satisfying (3) is the LOS channels using uniform

linear arrays with non-overlapping angles of arrival [18].

For the NLOS channel, we apply a correlated fading model

to account for the potentially larger number of scatters. We

express the NLOS channel vector as

h
(k)
�n =

(
β
(k)
�n

)1/2

Φ
(k)1/2
�n w

(k)
�n , (4)

where β
(k)
�n is the large-scale path loss, w

(k)
�n is the fading

vector consisting of identically and independently distributed

(IID) random variables with zero mean and unit variance,

and Φ
(k)
�n is the covariance matrix to account for correlations

in small-scale fading. Let λ
(k)
�n [m] be the eigenvalues of

the covariance matrix Φ
(k)
�n . We assume the traces of the

covariance matrices for all channels are normalized to M ,

i.e., Trace
[
Φ

(k)
�n

]
=

∑M
m=1 λ

(k)
�n [m] = M , and the average

squares of the eigenvalues are upper bounded by a constant γ:
1
M

∑M
m=1 λ

(k)2
�n [m] ≤ γ, which is satisfied by many common

channel models, including the case of uniform linear arrays

with half-wavelength spacing and continuous angular spread

[19].

Next, we describe the stochastic geometric network model.

We assume the base stations are distributed as a Poisson point

process (PPP) with density λb. The users, either scheduled

or not, are distributed as an independent PPP on the plane

with sufficiently high density, such that each base station is

associated with at least K users. A user is assumed to be

associated with the base station that provides the minimum

path loss signal. Without loss of generality, a typical scheduled

user Y
(1)
0 is fixed at the origin. We will investigate the SINR

and rate performance at this typical user.

Now we focus on the distribution of scheduled users. In a

resource block, let N (k)
u be the point process formed by the

locations of the scheduled users Y
(k)
� , i.e., all the scheduled

users assigned with the k-th pilot sequence. Note that though

the users are distributed as a PPP on the plane, the scheduled

users do not form a PPP, as their locations are correlated. For

instance, in each cell, the number of scheduled users is fixed to

be K, while for a PPP, the number of points in the same region

is randomly distributed. The correlations in the scheduled

users’ location make the exact analysis intractable. Therefore,

we make the following approximation on the distribution of

N (k)
u .

Approximation 1: The path losses β
(k)
�� from the users to

their associated base stations are assumed to be IID. Moreover,

the tagged base station X0 is assumed to observe the other-

cell scheduled users in N (k)
u as a thinned Poisson point process

with intensity function

λu(|X0 − x|) = λb1(L(|X0 − x|) > βx), (5)

where L(|X0 − x|) represents the path loss from x to X0, βx

is an IID random variable with the same distribution as β
(1)
00 ,

and the indicator function 1(L(|X0 − x|) > βx) ensures that

any user outside the tagged cell X0 has smaller path loss to

its own base station than to X0. Besides, the scheduled users

assigned with different pilots are assumed to be independently

distributed, i.e., for k �= k′, N (k)
u and N

(k′)
u are independent.

It can be shown in simulations that the proposed approxima-

tion provides a close characterization of the actual scheduled

2015 IEEE 16th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)

621



users in a network with PPP distributed base stations [20].

MmWave handsets will use antenna arrays to perform direc-

tional beamforming [5]. To simplify the analysis, the antenna

array at the mobile station is modeled as a single directional

antenna with a gain pattern approximated by the sectored

antenna pattern. In the sectored antenna model, the directivity

gain within the main lobe θ is assumed to be a constant Q,

while all angles outside the main lobe θ have the constant side

lobe gain q. Let D
(k)
��′ be the directivity gain of the mobile

station Y
(k)
�′ to base station X�. We assume the directions

of the mobile station antennas are adjusted to maximize the

desired signal power without alignment errors. Moreover, for

the interfering links, we assume the antenna directions are

independently and uniformly distributed. Consequently, the

directivity gain D
(k)
�� = Q in the desired link; for other

interfering links, D
(k)
��′ is a Bernoulli random variable, where

D
(k)
��′ = Q with probability θ

2π , and D
(k)
��′ = q otherwise.

Last, we assume that the base stations estimate the channels

by correlating the received signals with the pilots, and do not

use MMSE estimation. Hence, the channel estimate of h
(k)
�� at

base station X� is

h̄
(k)
�� =

√
Qh

(k)
�� +

∑
�′ �=�

D
(k)1/2
��′ h

(k)
��′ + nT,

where nT is a Gaussian noise vector of the distribution

CN
(
0, 1

KρT
I
)

, and ρT is the signal-to-noise ratio (SNR) in

the channel training.

Based on the proposed system model, we will analyze the

SINR and rate performance in both uplink and downlink in

the subsequent sections.

III. SINR COVERAGE ANALYSIS

In this section, we derive analytical expressions to approx-

imate the distributions of the asymptotic SINR, when the

number of base station antennas goes to infinity.

A. Uplink Analysis

In this section, we analyze the uplink SINR performance

in mmWave massive MIMO networks. First, we compute the

density function of scheduled users in (5) explicitly as follows.

Lemma 1: The density function λu(r) of the other-cell

scheduled users in N (k)
u can be computed as

λu(r) = λu,L(r) + λu,N(r),

where for s ∈ {L,N}, λu,s(r) = Aλbps(r)
(
1− e−Ξ(rαs/Cs)

)
,

A = 1− e−2πλb

∫ ∞
0

(pL(x)+pN(x))xdx, and

Ξ(t) = 2πλb

(∫ (tCN)1/αN

0

rpN(r)dr +

∫ (tCL)1/αL

0

rpL(r)dr

)
.

Proof: See [20].

To decode the uplink symbol s
(1)
0 sent by Y

(1)
0 , the base

station X0 applies maximum ratio combining, based on the

channel h̄
(1)
00 . Then, the uplink SINR for the user Y

(1)
0 is

|h̄(1)∗
00 h

(1)
00 |2∑

� �=0 |h̄(1)∗
00 h

(1)
0� |2 +

∑K
k=2

∑
�>0 |h̄(1)∗

00 h
(k)
0� |2 + |h̄(1)∗

00 nu|2
,

where nU is the noise vector of the distribution CN (0, ρ−1
U I),

and ρU is the SNR in uplink data transmission. When the

number of antennas M goes to infinity, the uplink SINR

converges to its asymptotic equivalence as follows.

Theorem 1: When M → ∞, the uplink SINR converges in

probability to

SINRUL
p.→ Q2β

(1)2
00∑

� �=0 D
(1)2
0� β

(1)2
0�

. (6)

Proof: See [20].

The result in Theorem 1 is different from prior work in

[4] in that (i) we consider a large-scale network with infinite

randomly located base stations, in which case the analysis

based on a network topology with finite base stations in

[4] does not directly apply; (ii) we consider different spatial

correlations in fading for the LOS and NLOS channels, while

IID fading was assumed in [4]. Consequently, mathematical

tools from stochastic geometry, including the factorial moment

and Campbell’s formula, are required to prove Theorem 1 [20].

The same comment also applies to Theorem 2 in the downlink

analysis.

Next, we derive a tight approximation for the asymptotic

SINR distribution in the following corollary.
Corollary 1.1: The distribution of the asymptotic SINR in

(6) can be approximated as

P (SINRUL > T ) ≈ A

N∑
n=1

(
N

n

)
(−1)n+1×

∫ ∞

0

e−Wn(T,t)−Vn(T,t)−Ξ(t)Ξ(dt),

where

Wk(T, t) =

2∑
�=1

2πB�

∫ ∞

0

(
1− e−kηTCLξ�t

2x−2αL
)
λu,L(x)xdx,

Vk(T, t) =
2∑

�=1

2πB�

∫ ∞

0

(
1− e−kηTCNξ�t

2x−2αN
)
λu,N(x)xdx,

A is as defined in Lemma 1, N is the number of truncated

terms used in the approximation, η = N(N !)−
1
N ; for � = 1, 2,

B� =
{

θ
2π , 1− θ

2π

}
, and ξ� =

{
1, q2/Q2

}
.

Note that the expression in Corollary 1.1 can be further

simplified when provided the explicit forms of pL(r) and

pN(r), e.g. the step functions in [12, Section III-D]. Moreover,

the expression becomes more accurate when more truncated

terms (a larger N ) is used; simulations indicate that using

N ≥ 5 terms is sufficient to provides a tight approximation.

B. Downlink SINR Analysis

In this section, we investigate the downlink asymptotic

SINR in mmWave massive MIMO networks. Let f
(k)
� be the

beamforming precoder that base station X� applies for its user

Y
(k)
� . When applying match-filter beamforming, it follows that

f
(k)
� =

h̄
(k)
��

||h̄(k)
�� || . Then the downlink SINR at the typical user
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Y
(1)
0 is

|h(1)∗
00 f

(1)
0 |2∑

� �=0 |h(1)∗
�0 f

(1)
� |2 +∑K

k �=1

∑
�≥0 |h(1)∗

�0 f
(k)
� |2 + ρ−1

D

,

where ρD is the SNR in the downlink transmission. We have

the following convergence result on the downlink SINR.

Theorem 2: With match-filter beamforming, the downlink

SINR will converge in probability to its asymptotic equiv-

alence as limM→∞ SINRDL
p.→ Q2β

(1)2
00 /a

(1)
0∑

� �=0 D
(1)2
�0 β

(1)2
�0 /a

(1)
�

, where

a
(k)
� = 1

KρT
+
∑

�′ D
(k)
��′ β

(k)
��′ .

The exact distribution of the asymptotic SINR in Theorem 2

is generally difficult to derive, as the normalization constants

a
(k)
� introduce correlations among all the terms. In a dense

mmWave network, however, the asymptotic SINR can be

approximated by the following corollary.
Corollary 2.1: In a dense mmWave network, the asymptotic

downlink SINR distribution can be approximated as

P (SINR > T ) ≈ A

N∑
n=1

(
N

n

)
(−1)n+1

∫ ∞

0

e−Zn(T,t)−Ξ(t)Ξ(dt),

where Zk(T, t) =
∑2

�=1 B�

∫∞
t

(
1− e−kηTξ�t

2x−2
)
Ξ(dx),

A, η, B�, and ξ� are the same as defined in Corollary 1.1,

and N is the number of terms used in the approximation.

Last, we define the average achievable rate at a typical user

as Γ = W (1− μ) log2 (1 + min{SINR, Tmax}) , where W is

the bandwidth assigned to a user, μ is the fraction of overhead,

and Tmax is a SINR distortion threshold. In an OFDM massive

MIMO system, the fraction of overhead μ can be computed

based on [4, Section III-A], which accounts for the inefficiency

from cyclic prefix and uplink training. The use of a distortion

threshold Tmax is needed because of the potential for very

high SINRs in massive MIMO networks that may not be

exploited due to other limiting factors like linearity in the

radio frequency front-end. By [9], given the SINR distribution

P(SINR > T ), the average achievable rate can be computed

as E [Γ] = W
ln 2

∫ Tmax

0
P(SINR>t)

1+t dt.

IV. NUMERICAL RESULTS

In this section, we consider a 28 GHz massive MIMO

network with a system bandwidth of 500 MHz. We assume the

transmitting power is 30 dBm in the downlink, and 20 dBm

in the uplink. In the Monte Carlo simulations, the density of

the user process is assumed to be 60 times the base station

density, and a mmWave base station randomly serves K = 4
users in its cell in a resource block. Based on the New York

city measurement in [16], we assume pL(r) = e−ξr1(r < RO)
and pN(r) =

(
1− e−ξr

)
1(r < RO), where ξ = 70 meters,

and RO = 200 meters. In addition, we assume the LOS path

loss exponent is αL = 2, and the NLOS path loss exponent is

αN = 4. For the channel models, we use the steering vectors

of uniform linear array with half-wavelength spacing as LOS

channel vectors; for NLOS channels, we assume IID Rayleigh

fading for simplicity.
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Fig. 1. Uplink SINR distributions in dense mmWave networks. In the
simulations, we assume ISD = 100 meters. The analytical curve is drawn
based on Corollary 1.1.

First, we show the convergence of uplink SINR in a dense

mmWave network in Fig. 1. In the simulations, we assume

each base station schedule K = 4 users, and mobile stations

use omni-directional antennas. As shown in Fig. 1(a), in

a dense mmWave network with ISD = 100 meters, the

asymptotic SINR distribution provides a close characterization

of the SINR curve with M = 1024 antennas. Besides, the

simulation shows that the analytical expression in Corollary

1.1 provides a tight approximation.

Next, we present the numerical results for the downlink

SINR. In Fig. 2, a comparison between the performance

in dense and sparse mmWave networks shows that due to

the presence of blockages and high noise power, the SINR

performance is much sensitive to the base station density,

and mmWave massive MIMO networks require dense base

station deployments to achieve good coverage. Moreover, the

downlink SINR in dense mmWave networks is shown to

converge much faster than that in the sparse network. In

addition, in Fig. 2 (a), we show that Corollary 2.1 provides

a tight approximation of the asymptotic SINR distribution in

dense mmWave networks.

Last, we compare the average rate of massive MIMO

systems at 2 GHz and 28 GHz in Table I. In the rate

comparison, we assume the 2 GHz base stations have M = 64
antennas, and W = 100 MHz bandwidth, while in mmWave

systems M = 128, and W = 500 MHz. Both the uplink

and downlink are assumed to take up 50% transmission time.

The OFDM technique is assumed to be used in both systems:

the parameters for the 2 GHz system are taken from the

LTE standard [15], and those for mmWave systems are from

[21]. Besides, the training overhead is computed based on

[4]. Further details for the rate comparison can be found in

[20]. The results show that though serving fewer users per

cell, mmWave massive MIMO still outperforms conventional

massive MIMO systems in cell throughput, due to the larger

bandwidth.
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(a) Downlink SINR in dense networks.
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(b) Downlink SINR in sparse networks.

Fig. 2. Downlink mmWave SINR distributions with different base station
densities. We assume ISD = 100 m in (a), and ISD = 400 m in (b). The
analytical curve in (a) is drawn based on Corollary 2.1.

TABLE I
COMPARISON OF ACHIEVABLE RATES

Carrier 2 GHz 28 GHz 28 GHz
Avg. ISD (m) 500 100 400

Training overhead 20% 14% 14%
Bandwidth (MHz) 100 500 500

Rate per user (Mbps) 52.8 1791.0 436.5
Users per cell 14 4 4

Cell throughput (Mbps) 740.0 7164.0 1745.8

V. CONCLUSIONS

In this paper, we analyzed the asymptotic SINR distribution

in mmWave massive MIMO networks by incorporated key fea-

tures of mmWave systems, including the blockage effects and

directional beamforming at mobile stations, into the analytical

framework. We provided the asymptotic equivalences for both

the uplink and downlink SINR in a large-scale network with

Poisson distributed base stations, and derived approximation

expressions to compute their distributions. The accuracy of the

analytical expressions were verified by numerical simulations.

The numerical results showed that mmWave massive MIMO

requires a high base station density to achieve good SINR

coverage. Moreover, the comparison with massive MIMO

systems at lower frequencies showed the promising gain of

mmWave massive MIMO over conventional massive MIMO

in cell throughput. For future work, it would be interesting

to incorporate mmWave hardware constraints, such as hybrid

beamforming and one-bit A/D converter [8].
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