
Git Good: an Introduction to GitHub for Collaboration

This document is your guide to using GitHub.

Each exercise described by our instructors is accompanied by steps, descriptions and
illustrations in this packet.

Use this guide as you, but note that the instructions listed here may differ from the
directions given during your workshop.

Key Vocabulary

Icon on Github Term Description

Repository (repo) Filing cabinet / directory (is used to store

your project)

Commit Save point

Issue Feedback and “to-do” list (can also used to

track tasks)

Branch & Fork Different “streams” of work

Pull request Ask to incorporate your changes

Merge Incorporate changes

Create a new GitHub account at https://github.com/

1

https://github.com/


Exercise 1 - Commenting on an issue
GitHub issues are an accessible way to contribute to a project. They are often used by
project teams to keep track of what they’re working on and receive feedback from others.

Issues are like a message thread, which you can connect with other parts of the GitHub
workflow (for example, they can be referenced in commit messages). You can tag other
project members to get their input, and use emojis to show you care!

Reading and making issues
Issues are used to keep track of your work on Github. They can be used to track ideas,
feedback, tasks, or bugs in code, and more.

In many open source projects, issues can be labelled “good-first-issue” to identify feedback
or tasks that can be actioned by folks who are new to that project.

Issues can be viewed by anyone in the project if the repository is private, or anyone in the
world if the repository is public!

Anyone with a github account can comment on a public issue. This visibility is important for
transparency (showing your working) and accountability (taking responsibility for what you
do).

1b) Find the issue #2 in the repository for this workshop
(https://github.com/The-Turing-Summer-Experience/intro-to-github) and follow the
instructions in the issue.

Note that issues can be written in markdown. Take a look at this Markdown Cheat Sheet
(https://www.markdownguide.org/cheat-sheet/). Use the “write” tab in the issue
comments to write using markdown syntax, then the “preview” tab to see how it is
rendered.

Exercise 2 - Edit a file and make a pull request
Go to the intro-to-github repo:
https://github.com/The-Turing-Summer-Experience/intro-to-github

To contribute to a collaborative project, you need to be able to edit the file you want to make
changes to, keep that change in a separate branch and then ask your collaborators to review
your work before bringing it into the main branch of the repository.

On GitHub, this is done through creating a new branch and then a pull request.

2

https://github.com/The-Turing-Summer-Experience/intro-to-github
https://www.markdownguide.org/cheat-sheet/
https://github.com/The-Turing-Summer-Experience/intro-to-github


Make a commit on a branch

1. Navigate to the introductions file in the github-workshop folder -
https://github.com/The-Turing-Summer-Experience/intro-to-github

2. Click on the pencil icon to edit

3. Find the line for the group you have been assigned by the instructor and add your
answers to the questions.

4. Scroll up to the ‘Commit changes’ green button at the top right.

5. Write a good commit message! - type a message that says what you have changed.

6. Create a new branch for the commit.

7. Click on ‘Propose changes’ - this creates a commit and sets up the pull request.

8. Don’t close this page.

Create a Pull request

3

https://github.com/The-Turing-Summer-Experience/intro-to-github


1. Go back to the pull request page.

2. You should see a green check at the top, saying ‘Able to merge’.

3. Add any additional information in the ‘Leave a comment’ section, if you like.

4. Click on ‘Create a pull request’.

5. Assign the co-facilitator for the day as reviewer - this is the person who said hello to

you in the Exercise 1 issue.

4



GitHub Stretch Exercise 1: Creating a new repository
A repository or repo is the online space where you store all of the documents, data and other
files for your project.

● To create the new repository, you need to click on the + sign in the top right corner (in
the black band at the top of your window) and then click New repository. This will take
you to a page that looks like a form.

● You will see the name of your account and you need to fill in a repository name next
to it.

● Also, leave the box ticked for “public” (so your repository is open to all) or “private” (if
you want to keep it close to just you) and then tick the box to create a “README file”.

● Then click the green create repository button at the bottom.

This is what you should see now. It is the landing page for your repository. The diagram
below explains what all the buttons, tabs and other things do!

Annotated diagram of repository after its basic creation, explaining the main features.

On the left side of the webpage we have the following features:
● 1. Username: GitHub user’s name (account). In this example, the username is

“EKaroune”.
● 2. Repository: project directory (also known as repo). In this example, the repository

name is “trial-repo”.
● 3. Code: this tab brings you back to your landing page. It shows you the folders that

you have made in the repo.
● 4. Main: this is your default development branch or active branch of your repository.
● 5. Branch: parallel version(s) of your repository.

5



● 6. README.md file: this file contains basic information about your project (in this case it
only has the project name: “trial-repo”. When we plan to make a website, this will be
rendered as a landing (front) page for your site.

On the right side of the webpage we have the following features:

● 7. Green Code button: click it to download your repository locally.
● 8. ‘+’ symbol: where you can create new repository, import repos and create new

issues.
● 9. Fork: create a personal copy of another user’s repo. The number shows how many

forks there are of your current repository.
● 10: Add file: create or upload a file to your repository.
● 11: Commits/clock symbol: click to see the history of this file as a list of all the edits

(commits) saved at different time points.
● 12: Edit/Pencil symbol: click this pencil symbol to edit your README.md file.

Edit your README.md file
Unless you have added any other files or included a license file during repo creation, you
should have one file in your repository now - README.md. We’ll need to edit this file to add
information about the repo. This file is a Markdown file; you can see this because it has
“.md” after the name of the file. This is where you start to use the Markdown formatting.
Whatever you write in this file will be shown on the landing (front) page of your project on
GitHub, so use it to tell people all about your project.

Navigating the GitHub editing interface
To edit your README.md file:

● You can click on the pencil symbol in the top right of the central box on your landing
page.

Or

● Click on the README.md file and then click the pencil symbol.

You can now edit the file. We’ll talk about how to save your changes after some pointers on
writing a good README.

Remember! You can use a Markdown cheatsheet to help you edit the file.

● Markdown cheat sheet - https://www.markdownguide.org/cheat-sheet/

6

https://www.markdownguide.org/cheat-sheet/


Annotated diagram of README.md file, if you click on the file name on your landing page.

● 1. Repository and current file: the repo name and the name of the file you are
viewing.

● 2. Main branch: currently active branch (“main” is the default). Use to change to
different branches of your repo (if there are more branches previously created).

● 3. List of files: list of files in the repo - you can click on these to go to the file.
● 4. README.md file content: the content of your README.md file appears here. This

content will expand once we add more information.
● 5. Preview: shows a preview of the README.md file.
● 6. Code: shows the code in the README.md file.
● 7. Blame: view the last modification made to each line of the file. It can be used to

track when and who made changes and go back to older versions of the file to fix
bugs.

● 8. Raw file: view the raw markdown text file.
● 9. Copy: copies the file.
● 10. Edit file: click this pencil to edit your README.md file.
● 11. Download file: download file locally.

7



Annotated diagram of README.md file in edit mode – before editing.

● 1. Preview changes: press to see your text rendered (how it would appear on GitHub
or on a web page).

● 2. Edit file: press this tab to edit the content of your README.md file.
● 3. Add content to README.md: write the Markdown text for your README.md file.

You currently only have the repository title in this file.

Tips for writing your README file
● Keep it simple! When you’re working in any field, whether it’s software engineering or

astrophysics, you’ll learn and use jargon – terms that have a special meaning to your
field but likely won’t make sense to anyone who isn’t part of that field. Too much
jargon can confuse newcomers, so use simple language and define all potentially
unfamiliar terms here.

● Share your project with others - describe what you are doing now and what you want
to do in the future.

● Tell people who you are and how you can be contacted.

NOTE: If you’re having trouble getting started, it’s a good idea to look at other peoples’
README.md files.

If you can’t get your raw markdown content to render in the way you want, it is also a good
idea to find a file that has what you want and then look at the raw file. You can copy and
paste other people’s raw file content into your README.md file and then edit it.

Here is an example of a really well formatted README.md file: STEMM Role Models App

If you click the link above, it will take you to their README file. You can use this as a
template for your README.md file.

● To look at the raw markdown file you need to click on the raw button (top right of the
white box).

8

https://github.com/KirstieJane/STEMMRoleModels/blob/gh-pages/README.md


● This takes you to the markdown raw file that is rendered into a nicely formatted
README.md file on GitHub.

● Now just copy and paste it into your README.md edit tab. You can now edit this for
your project.

● Remember to check what it looks like by clicking on the preview changes tab.
● When you have finished editing, you need to scroll down to the bottom of the page

and press the green commit changes button.

Annotated diagram of README.md file in edit mode – with some markdown added.

● 1. Using MarkDown to add content to README.md: the Markdown (denoted by ‘.md’
in the file extension) text for your README.md file. This example shows the template
file that has different sections (headers and subheaders are created by using one or
more of ‘#’ symbol. See the formatting consistency section of the Community
Handbook for some more information on using Markdown.

Committing - or saving - your changes
Committing your changes is like hitting the “save button” for a file. GitHub will not
automatically save your changes, so it’s important not to skip this step.

Whatever changes you have made in the file will be deposited into your repository.

It is good practice to write a descriptive commit title and a short description of what you have
done in the commit changes box. So something like - commit title: ‘first edit of the readme
file’; description: ‘copied template from … and edited it with the details of this project’. This
information about the commit is called a “commit message”, and the commit title will enable
you to quickly look through the history of changes for a file (which is why making them
descriptive is so important - it’s like leaving a helpful note to your future self).

You can see a list of your commits (or your “commit history”) by clicking the clock symbol on
your landing page or within the page for each file.

9

https://the-turing-way.netlify.app/community-handbook/consistency/consistency-formatting#ch-consistency-formatting-hr-markdown
https://the-turing-way.netlify.app/community-handbook/consistency/consistency-formatting#ch-consistency-formatting-hr-markdown


Add a license to your repository
It is important that all of your work has a license from the very beginning or no one can reuse
it. Licenses tell other researchers how they are able to reuse, modify and remix your work.
No license implies that others are not allowed to use your work, even with attribution. So it is
better to include a license that lets people know what they can and can’t do and how to give
you credit for your work.

To add a license to your repository, the first thing to do is create a LICENSE.md file:

● To do this, click on the Add file button, and click create file. This will give you a blank
file.

● Then, you need to name the file, so call it LICENSE.md. This makes it into a markdown
file.

● You can find all the creative commons licenses in the link above so copy the text of
the license you want and then paste it into this file.

● Don’t forget to press the green commit new file button at the bottom and write a
commit message to describe what you have done.

● You can also add a link to the license to the bottom of your README.md file. Here is a
link to a repository that you can copy to add in a CC BY 4.0 license. It has a text file for
your LICENSE.md file and also a shield (or badge) that you can put at the bottom of
your README.md file.

You can find more information about licenses in the Licensing chapter of The Turing Way.

Types of Open Licenses

Licenses affect whether and how you can use, modify, and share work. Materials that you

share can be in the public domain, use open licenses, or have copyright associated with

them. This section has more information about open licenses you can use for your work.

As someone working with open materials, you have many different options for the types of
licences you can use for your project.

One popular type of creative licence is the Creative Commons (CC) licence, which offers
many options that affect how materials can be used by others. This license is most often
used for photos, but also can be used with other types of materials.

For example, depending on your field, much of your work may be documents with only some
data or code. The standard licenses offered on GitHub are most appropriate for software and
won’t really be the right kind for documents.

The following graphic, created by the Creative Commons team can help you to understand
the different types of Creative Common Licenses that you can use:

10

https://github.com/santisoler/cc-licenses
https://the-turing-way.netlify.app/reproducible-research/licensing#rr-licensing


Source: Creative Commons (CC BY-SA)

Software, on the other hand, requires another type of license. Similar to Creative Commons
licensed photos or other assets, software requires licenses in order to be used by others.

Each type of software license has its own terms and conditions, which can significantly
impact how software can be used, modified, and distributed. While there are many different
types, but here are a few examples:

Public Domain
Software

Permissive Copyleft Proprietary

Anyone is free to
use and modify the
software
Software is not
owned by anyone.
Users can use,
modify, and
distribute the
software without any
restrictions.

Establishes some
requirements for
distribution or
modification of the
software. Requires
preserving license
notices, copyrights,
or trademarks.

A general method
for making a
program (or other
work) free, and
requiring all
modified and
extended versions
of the program to be
free as well.

Software is owned
by an individual or
company. Users
purchase the right to
use the software.
Source code is not
available to users.

11



No license MIT License
Apache License
BSD License

GNU General Public
License (GNU GPL)

Proprietary License
(No Public License)

Examples: Some
older software,
government
publications

Examples: jQuery,
Rails

Examples: Linux,
WordPress

Examples: Microsoft
Windows, Adobe
Photoshop.

GitHub Stretch Exercise 2: Convert to Github Pages website

Using all the information you added to your repository, now we can turn the information from
the previous exercise into something which looks like a user-friendly (and not GitHub scary!)
website!

Go into your site settings and scroll down to the “GitHub Pages section”. Change the
“Source” into your “main” branch and click “save”.

Next click “Choose a theme” and pick from one of the preselected options provided by
GitHub.

One of these themes might be fine for your purposes but there are hundreds of other free
themes we can choose from (more about that below). You can always change your theme
later, but this will create the necessary file we need to modify to put in our own selection of
theme.

12



Click “Select Theme” to return to your setting page. You will now see that the URL of your
pages site is listed under the GitHub Pages section. You can see a few examples here:
https://github.com/collections/github-pages-examples

Woohoo! You now have a website!🎉

Licence
Find this resource on Zenodo at DOI: https://doi.org/10.5281/zenodo.12802974

These materials (unless otherwise specified) are available under the Creative Commons
Attribution 4.0 Licence. Please see the human-readable summary of the CC BY 4.0 and the
full legal text for further information.

13

https://github.com/collections/github-pages-examples
https://doi.org/10.5281/zenodo.12802974
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/legalcode

