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Abstract—In this work, we present a simplified successive can-
cellation list decoder that uses a Chase-like decoding process to
achieve a six time improvement in speed compared to successive
cancellation list decoding while maintaining the same error-
correction performance advantage over standard successive-
cancellation polar decoders. We discuss the algorithm and detail
the data structures and methods used to obtain this speed-up. We
also propose an adaptive decoding algorithm that significantly
improves the throughput while retaining the error-correction
performance. Simulation results over the additive white Gaussian
noise channel are provided and show that the proposed system
is up to 16 times faster than an LDPC decoder of the same
frame size, code rate, and similar error-correction performance,
making it more suitable for use as a software decoding solution.

I. Introduction

Polar codes provably achieve the symmetric channel capac-

ity as the code length N increases, when they are decoded with

the low-complexity successive-cancellation (SC) decoding al-

gorithm [1]. However, the error-correction performance of SC

decoding of polar codes at moderate lengths is mediocre. List

[2] and stack decoding [3] have been proposed to improve the

error-correction performance without increasing code length.

To further improve the error-correction capability of polar

codes, various concatenation schemes have been proposed [4]–

[6]. The most successful one is a serial concatenation of a polar

code (PC) with a cyclic redundancy check (CRC) code, where

the latter is used as an outer code [4]. For a given length N, the

resulting code is shown to match or exceed the error-correction

performance of turbo [5] as well as low-density parity-check

(LDPC) codes [4].

The throughput of SC decoders is low due to the serial

nature of the algorithm. This issue was resolved by the

simplified successive cancellation (SSC) [7] and the Fast-

SSC [8] decoding algorithms. The latter of which has fast

hardware [8] and software decoders [9]. Since list decoders

are dependent on SC decoders as their major components,

their throughput is also very low and they would benefit from

improvements to the SC decoders. However, the SSC-based

algorithms are not directly applicable to list, and list-CRC,

decoding because they present a single estimate of codewords;

whereas list decoders require multiple candidates with soft-

valued reliabilities.

In this work, we modify the SSC algorithm to present

multiple candidate codewords using a Chase-decoding-like

process and we present SSC-based list decoders that offer

higher throughput (average decoding speed) and lower latency

(worst case decoding time) than their SC-based counterpart.

It was shown in [9] that, for software implementations, polar

decoders were faster than LDPC decoders with equivalent

error-correction performance despite the longer lengths re-

quired for polar codes. In this work we show that software list

polar decoders are faster than equivalent-performance LDPC

decoders at the same code lengths.

We start with a review of polar codes, list and list-CRC de-

coding, and SSC decoding in Section II. We present our SSC-

List decoder in Section III and a higher throughput adaptive

version in Section IV. Finally, we discuss the proposed de-

coder’s throughput, latency, and error-correction performance

in Section V, comparing it with SC-List and LDPC decoders.

II. Background

A. Polar Codes

Polar codes approach the symmetric capacity of a channel

W , as the code length N → ∞, by exploiting channel

polarization. Such constructions for N ∈ {2, 4} are shown in

Fig. 1. In Fig. 1a, the probability of correctly estimating u0

given y0 and y1 is lower than that of correctly estimating x0

given y0, which is in turn lower than that of estimating u1

given y0, y1, and u0. Longer codes are built by recursively

applying the linear polarizing construction. Fig. 1b shows the

case of N = 4. As the code length increases, the probability of

estimating each bit tends to either 0.5 (completely unreliable)

or 1 (perfectly reliable). The proportion of the latter bits, called

reliable bits, approaches the capacity of the channel W as

N → ∞ [1].

To build an (N, k) polar code, the k information bits are

transmitted through the k most reliable locations. The remain-

ing N−k locations correspond to the least reliable bits and are

set to 0 and called the frozen bits. Determining the reliability

of the bit locations depends on the type and conditions of the

channel W and is studied for different channels in [1] and

[10]. A polar code is constructed for a given channel and

channel condition, and can be represented using a generator

matrix, GN = FN = F⊗ log2 N
2

, where F2 =
[

1 0
1 1

]
and ⊗ is the

Kronecker power. In [1], a bit-reversal operator was used so
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Fig. 1: Construction of polar codes of lengths 2 and 4

that GN = BNFN ; however, it was shown in [9] that not bit-

reversing the rows of FN provides better memory layout and

vectorization opportunities for software polar decoders. The

frozen bits are indicated by setting their values to 0 in the

source vector u.

SC decoding works sequentially by estimating an informa-

tion (non-frozen) bit ui using the received channel values y
and the previously estimated bits ûi−1

0
according to

ûi =

⎧⎪⎪⎨⎪⎪⎩
0 when Pr[y, ûi−1

0
|ûi = 0] ≥ Pr[y, ûi−1

0
|ûi = 1];

1 otherwise.
(1)

B. List-CRC Decoding

Instead of selecting one value for an estimate (1), a list

decoder works by assuming both 0 and 1 are estimates of

the bit ui and generates two paths that are decoded using SC

decoding. Without a set limit, the number of paths doubles

for every information bit, growing exponentially and thus

becoming a maximum-likelihood (ML) decoder. To constrain

the complexity, a maximum of L distinct paths, the most

likely ones, are kept at the end of every step. Thus, a list

decoder presents the L most likely codeword candidates after

it has estimated all bits. The codeword among the L with the

best path reliability metric, i.e. the largest likelihood value, is

chosen to be the decoder output.

Noticing that when a polar list decoder failed, the correct

codeword was often among the L final candidates, the authors

of [2] proposed concatenating a CRC with the information

bits, increasing the rate of the polar code to accommodate

the additional bits and maintain the overall system rate. The

CRC provides the criterion for selection from among the

candidate, final codewords. The likelihood of the codewords

is only consulted either when two or more candidates satisfy

the CRC constraint or when none do. The resulting list-CRC

decoder offers a significant improvement in error-correction

performance over regular list decoding, to the extent where

polar codes were shown to be able to outperform turbo codes

[5] and LDPC codes [2] of similar lengths and rates.

List-SC decoding, like SC decoding, remains a sequential

process. Moreover, L paths must now be decoded instead of

one, increasing the latency from O(N log N) to O(LN log N)

and decreasing throughput by the same factor [2].

(a) SC (b) SSC

Fig. 2: Decoder trees corresponding to the SC and SSC

decoding algorithms

To improve the decoder throughput, adaptive list decoding

[11] starts with L = 1 and restarts with L = 2 if the CRC is

not satisfied. The list size is subsequently doubled until the

constraint is satisfied or a maximum size, Lmax, is reached,

in which case the candidate with the highest reliability is

selected. However, this method significantly increases latency,

which becomes

L(A-SC-List(Lmax)) =

log2 Lmax−1∑

l=0

L(SC-List(2l));

where A-SC-List(Lmax) is an adaptive list decoder with a

maximum list size of Lmax and SC-List(L) is a list decoder

with list size L.

C. SSC Decoding

The recursive construction of a polar code makes binary

trees a natural representation where each node corresponds

to a constituent code of length Nv with a soft input α and

an estimated codeword output β . It was observed in [7] that a

subtree where all leaf-nodes correspond to frozen bits need not

be traversed; its output is known a priori to be the zero-vector.

Similarly, that work showed that the ML output of a subtree

where all leaf-nodes are information bits, i.e. corresponding

to constituent code of rate 1, can be obtained by performing

threshold detection on the soft-information input vector. Any

tree corresponding to a rate R code is traversed until a rate-0 or

a rate-1 code is reached. As a result of these observations, the

decoder tree is pruned resulting in the simplified SC (SSC)

decoder tree. Decoder trees for the SC and SSC algorithms

decoding the same code are shown in Fig. 2a and Fig. 2b

respectively. For the SC decoder tree, white leaves correspond

to frozen bits and black leaves correspond to information bits.

For the SSC decoder tree, white and black leaves are called

rate-0 and rate-1 nodes respectively.

The decoder tree is further pruned in [8], [12] by recogniz-

ing more types of constituent codes, resulting in lower latency

and greater throughput for both hardware [8] and software

decoders [9].

III. SSC-List Decoder

In this section, we present an SSC-based list decoding algo-

rithm and discuss its implementation details. Rate-0 nodes are



ignored and their soft-input is not calculated by their parent,

and rate-R nodes operate as in SC-List decoding. Therefore

we focus on rate-1 nodes. We will show in Section V-D that

the proposed decoder is six times as fast the SC-List decoder.
It should be noted that this decoder was implemented using

log-likelihoods (LL) to represent bit reliabilities.

A. Chase-Like Decoding of Rate-1 Nodes
The function of the rate-1 node decoder is to provide a

list of the L most reliable candidate codewords given its LL

input α, where each LL α[i] consists of α0[i] and α1[i]. For a

constituent code of rate 1 and length Nv, there exists 2Nv can-

didate codewords, rendering an exhaustive search impractical

for all but the smallest of such codes. Therefore, we employ

the candidate generation method of Chase decoding [13].
Maximum-likelihood decoding of a rate-1 constituent code

is performed on a bit-by-bit basis [7], i.e.

β [i] =

⎧⎪⎪⎨⎪⎪⎩
0 when α0[i] ≥ α1[i],
1 otherwise.

To provide a list of candidate codewords, the least reliable

bits—determined using r[i] = |α0[i] − α1[i]|—of the ML de-

cision are flipped individually. Simulation results have shown

that two-bit errors must also be considered. Therefore, the list

of candidates is augmented with codewords that differ from

the ML decision by two of the least reliable bits.
The list of candidates is pruned to include, at most, L can-

didates. This is accomplished by discarding the least reliable

candidates, where the reliability of a path x with an estimated

output β is calculated according to

Rx =
∑

i

αβ [i][i]. (2)

B. Implementation of Rate-1 Decoders
The rate-1 decoder starts by initializing its set of candidates

to an empty set. Then, for each source path p, it will calculate

and store the ML decision and generate a set of candidate

forks. Once the decoder has iterated over all source paths,

it will store the up to L most reliable paths from the ML

decisions and the candidate forks, discarding the rest. The

top-level function corresponds to Algorithm 1. The algorithm

shows how the bit reliabilities r and the path reliability R are

calculated in tandem with the ML decision. The candidate

forks are appended to the candidate set when there are fewer

than L candidates already stored; otherwise, they replace other

candidates with lower reliability.
Algorithm 2, shows how candidates are appended to the

set. Empirically, it was observed that not all bits need to

be considered when enumerating potential single-bit errors,

limiting the search to the c least reliable bits was sufficient,

as in Chase decoding [13]. Therefore, this method performs

a partial sort to find those bits. The candidates are generated

by flipping those bits individually, and their reliabilities are

calculated according to

Ri = Rp − r[i] = Rp − |α p
0

[i] − α p
1

[i]|
= Rp − max(α p

0
[i],α p

1
[i]) +min(α p

0
[i],α p

1
[i]).

Algorithm 1 decodeRate1Code

1: candidates = {}
2: for p ∈ sourcePaths do
3: Rp = 0

4: for i = 0 to Nv − 1 do
5: β p[i] = arg maxx(α p

x [i])
6: r[i] = |α p

0
[i] − α p

1
[i]|

7: Rp = Rp +max(α p
0

[i],α p
1

[i])
8: end for
9: storePath(p, Rp)

10: if candidates.count < L then
11: appendCandidates(candidates)

12: else
13: replaceCandidates(candidates)

14: end if
15: end for
16: mergeBestCandidates(candidates)

Algorithm 2 appendCandidates

1: //Appends forks of path p to candidates with constraint c
2: partialSort(r, c)

3: for i = 0 to c − 1 do //Single-bit errors

4: Ri = Rp − r[i]
5: bitsToFlip = {bitIndex(i)}
6: candidates.insert(p, Ri, bitsToFlip)

7: end for
8: for i = 0 to c − 2 do //Two-bit errors

9: for j = i + 1 to c − 1 do
10: Ri j = Rp − r[i] − r[ j]
11: bitsToFlip = {bitIndex(i), bitIndex( j)}
12: candidates.insert(p, Ri j, bitsToFlip)

13: end for
14: end for

Since a candidate might be later discarded if it is not among

the L most reliable paths, it is important for speed reasons

to minimize the amount of information stored about each

candidate. Therefore only the information needed to construct

a new path is stored in the candidate set: the source path p,

the path reliability Ri, and the location of bits in which it

differs from the source path bitsToFlip. Candidates with two-

bit errors are generated in a similar manner by iterating over all

unique pairs of bits among the c least reliable ones. To remove

conditionals from the inner loops in this algorithm, the set

of candidates is allowed to contain more than L candidates.

Selecting the correct number of candidates to store as new

paths, is performed at a later point by the rate-1 decoder.

When the set of candidates already contains L or more

candidates, the decoder will only replace an existing candidate

with a new one when the latter is more reliable. Algorithm 3

describes this process. It iterates over candidates with single-

bit and two-bit errors and adds them to the set of candidates if

their reliability is greater than the minimum stored in the set.

Every time a new candidate is added to the set, the least reli-



Algorithm 3 replaceCandidates

1: //Replaces the least reliable candidates with more reliable

forks of path p.

2: partialSort(r, c)

3: for i = 0 to c − 1 do //Single-bit errors

4: Ri = Rp − r[i]
5: if Ri > min(candidates.reliability) then
6: bitsToFlip = {bitIndex(i)}
7: candidates.insert(p, Ri, bitsToFlip)

8: candidates.remove(candidates.leastReliable)

9: end if
10: end for
11: for i = 0 to c − 2 do //Two-bit errors

12: for j = i + 1 to c − 1 do
13: Ri j = Rp − r[i] − r[ j]
14: if Ri j > min(candidates.reliability) then
15: bitsToFlip = {bitIndex(i), bitIndex( j)}
16: candidates.insert(p, Ri j, bitsToFlip)

17: candidates.remove(candidates.leastReliable)

18: end if
19: end for
20: end for

able one is removed. This prevents the set of candidates from

storing a large number of candidates that will be discarded

later. Similar to Algorithm 2, it was observed via simulations

that using a constraint c to limit the candidate search space

did not noticeably affect error-correction performance while

doubling the decoding speed.

The mergeBestCandidates() method retains the most reliable

L paths by copying and modifying the ML decision of their

source path.

In Algorithms 2 and 3, it is observed that the most com-

mon operations performed on the set of candidates, denoted

candidates, are insertion, deletion, and finding the minimum.

Red-Black trees are well suited for implementing such a data

structure since all these operations are performed in O(log2 Nv)

time in the worst case [14]. In addition, mergeBestCandidates()

requires that the most reliable candidates be indicated and red-

black trees store their contents sorted by key.

IV. Adaptive SSC-List-CRC Decoder

List decoders have a high latency and a low throughput that

are constant regardless of the channel condition. Based on the

observation that at high Eb/N0 values the average list size L
required to successfully correct a frame is low, an adaptive

SC-List-CRC decoder was proposed in [11].

In Section III, we introduced an SSC-List decoding algo-

rithm that has a lower latency and greater throughput than

the SC-List decoding algorithm. Despite the improvement, the

throughput of that decoder is still significantly lower than a

Fast-SSC decoder [8]. We thus propose using an adaptive SSC-

List-CRC decoding algorithm similar to that of [11]:

1) Decode a frame using the Fast-SSC algorithm.

2) Verify the validity of the estimated codeword by calcu-

lating its CRC.

3) Stop the decoding process if the CRC is satisfied,

otherwise move to the next step.

4) Relaunch the decoding process using the SSC-List al-

gorithm and generate a list of L candidate codewords

sorted by their path reliability metric.

5) Pick the most reliable candidate among the list generated

above that satisfies the CRC.

6) If none of the L candidates satisfy the CRC, pick the

codeword with the best path reliability metric.

The difference between this proposed algorithm and that

of [11] is that in order to reduce latency, the list size is

not increased gradually. Instead, it is changed from L = 1,

i.e. using the Fast-SSC decoder, to L = Lmax. Therefore, the

latency (worst case) is

L(A-SSC-List(Lmax))

= L(SSC-List(Lmax)) +L(Fast-SSC)

≈ L(SSC-List(Lmax)).

Since the latency of the single SSC-List decoder using L =
Lmax is much greater than that of the Fast-SSC decoder.

Let L(L) = L(SSC-List(Lmax)) and L(F) = L(Fast-SSC),

and denote as FERF the frame-error rate (FER) at the output

of the Fast-SSC decoder. The expression for the information

throughput (on average) of the proposed adaptive SSC-List

decoder when decoding a code with dimension k is

T = k
(1 − FERF)L(F) + FERFL(L)

;

where it can be observed that for sufficiently low FERF value,

the throughput will determined mostly by the speed of the

Fast-SSC decoder.

V. Simulation Results

A. Methodology

All error-correction performance results were obtained for

the binary-input additive white Gaussian noise (AWGN) chan-

nel with random codewords and binary phase-shift keying

(BPSK) modulation. Polar codes were constructed using the

technique described in [10] and systematic encoding was used

[15]. The throughput and latency values were measured on an

Intel Core-i7 2600 running at 3.4 GHz using the methodology

described in [9]. Finally, as mentioned in Section II-B, in

list-CRC decoders, the rate of the polar code is adjusted

to maintain the same overall system rate. For example,

when comparing a list-CRC decoder with the (2048, 1723)

LDPC decoder and a 32-bit CRC is utilized, the polar code

used is PC(2048, 1755) and the overall system rate remains

1723/2048. All the simulation results presented in this section

had the constraint c = 2.

B. Choosing a Suitable CRC Length

As discussed in Section II-B, a CRC serves as better

criterion for selecting the correct codeword from the final L
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candidates even when its likelihood is not the largest. The

length of the chosen CRC has an impact on the error-rate that

varies with Eb/N0. Fig. 3 shows the error-correction performance

of a (1024, 860) system consisting of polar code concatenated

with a CRC of length 8 or 32 and decoded with a list-CRC

decoder with list size L = 128. It shows that a polar code

concatenated with the shorter CRC will perform better at lower
Eb/N0 values but will eventually achieve higher error-rates than

the polar code concatenated with the longer CRC.

Therefore, the length of the CRC can be chosen to improve

error-correction performance in the targeted Eb/N0 or BER/FER

range.
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Fig. 5: Error-correction performance of (32768, 29492) polar

code, denoted PC, with that of (32768, 29492) list-CRC

decoders with different list sizes.

TABLE I: Latency and information throughput comparison for

list-based decoders using a (2048, 1723) polar+CRC code.

Decoder L Latency (ms) T (kbps)

SC-List-CRC 32 23 74
SSC-List-CRC 3.3 522

SC-List-CRC 128 97 17
SSC-List-CRC 16 107

C. Error-Correction Performance

It is known that concatenating CRC improves the error-

correction performance of polar list decoders. In this section,

we first show that the error-correction performance of the

proposed SSC-List-CRC decoder is the same as that of the

SC-List-CRC decoder in Fig. 4. We then demonstrate that the

benefits for longer codes are still significant.

As shown in Fig. 5, for a (32768, 29492) polar code, the

use of the proposed algorithm results in a coding gain greater

than 0.3 dB and 0.5 dB at a FER of 10−5 over the Fast-SSC

algorithm for L = 4 and L = 32, respectively. It can be seen

that the curves are diverging as Eb/N0 is increasing, and thus

the coding gain is growing as well.

D. Comparison with the SC-List-CRC Decoder

List decoders have latency and throughput that are constant

across Eb/N0 values. Table I shows these values for the SC-

List-CRC and SSC-List-CRC decoders for two different list

sizes when decoding a (2048, 1723) polar+CRC-32 code. At

L = 32, the SSC-based decoder is approximately 7 times as

fast the SC-based one. At L = 128, it is 6 times as fast.

E. Comparison with LDPC Codes

To the best of our knowledge, the fastest CPU-based LDPC

decoder in literature is [16]. Its information throughput for
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TABLE II: Information throughput in Mbps of the proposed

decoder compared to an LDPC decoder at different Eb/N0

values.

Decoder
T (Mbps)

3.5 dB 4.0 dB 4.5 dB

LDPC 1.04 1.81 2.25
A. SSC-List-CRC (L = 64) 0.42 2.36 36.6
A. SSC-List-CRC (L = 32) 0.91 4.90 54.0

a (1024, 512) LDPC running on two CPU cores was 345

kbps with a fixed number of iterations (10). The information

throughput of a scaled-min-sum decoder we have developed

was 555 kbps when running with the same number of iterations

but on a single CPU core of similar speed. Therefore, we use

our LDPC decoder for throughput comparison in this work,

enabling early termination to further improve its throughput.

A polar list-CRC decoder with a 32-bit CRC and L = 32

is within 0.1 dB of the error-correction performance of the

10GBASE-T (802.3an) LDPC code with identical length and

dimension (2048, 1723), as shown in Fig. 6. When L is in-

creased to 64, the polar list-CRC and the LDPC decoders have

similar performance. In these simulations the LDPC decoder

was using the scaled-min-sum algorithm with a maximum of

30 iterations (Imax = 30) and a scaling factor of 0.5.

Table II shows the throughput values for the proposed

adaptive SSC-List-CRC decoder with L = 64 compared with

that of our offset-min-sum LDPC decoder with Imax = 30

and an adaptive SC-List-CRC decoder at different Eb/N0 values

when decoding (2048, 1723) codes. We first observe that

throughput of the decoders improves as Eb/N0 increases since

they employ early termination methods: syndrome checking

for the LDPC decoder and CRC checking for the adaptive

SSC-List one. The LDPC decoder is faster than the proposed

decoder at Eb/N0 = 3.5 dB. At 4.0 dB and 4.5 dB however, the

adaptive SSC-List decoder becomes 1.3 and 16 times as fast

as the LDPC one, respectively. The latency was 5.5 ms and 7.1

ms for the LDPC and adaptive SSC-List decoders, respectively.

The table also shows the throughput of the adaptive SSC-List

decoder with L = 32, which at 3.5 dB runs at 87% the speed

of the LDPC decoder and is 2.7 and 24 times as fast at 4.0

dB and 4.5 dB, respectively. The latency of this decoder is

3.3 ms and, as mentioned in this section, its error-correction

performance is within 0.1 dB of the LDPC decoder.

VI. Conclusion

In this work, we presented a new polar list decoding

algorithm whose software implementation is at least 6 times as

fast as the original list decoder. We also showed an adaptive

decoder which significantly increased the throughput to the

point where its throughput is up to 16 times that of an LDPC

decoder of the same length, rate, and similar error-correction

performance. We believe that such improvements in speed,

combined with the error-correction performance, make the

adaptive SSC-List decoder a viable option for use as a decoder

in software defined radio and other applications. Future work

will focus on switching the list decoder to log-likelihood ratios

(LLRs) from LLs in order to further reduce latency.
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