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Abstract 
This paper gives necessary and sufJicient conditions 

for a system to satisfy intransitive non-interference. 
Security is  defined in terms of allowable flows of 
ir7formation among action domains as represented by an 
interferes relation ->. We examine properties of 
special sets called basis elements generated from the 
relation -> and introduce the notion of absorbing 
covers which is associated with the standurd unwinding 
theorems for non-interference. Our approach separates 
the equivalence relation arguments from the non- 
interference properties, and as a by product, we develop 
a decision procedure for non-inttarference. An upper 
bound on the number of iterations needed for 
termination of the procedure is providrd. 

1 Introduction 

Non-interference was introduced by Goguen and 
Mesequer [5] to provide a foundation for the 
specification and analysis of security policies. 
Although this approach was quite successful in handling 
multilevel security policies, a number of practical 
security problems were beyond the scope of their 
formulation. In particular. Boebert and Kain 111 
introduced “type enforcement” and “assured pipelines” 
as a means U, handle specific information flows. The 
classic example is the “labeler” problem, w h e ~  the user 
sends a file that he is allowed to access to the printer 
application. The system policy requires that the file 
cannot be printed unless it has gone through the labeler 
first. Earxier to this effort, Rushby explored the notion 
of “channel control” [15, 161. 
Figure 1 shows two examples of such problems. 

I I 

END-TO-END ENCRYPTION 
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TOP SECRET I 
I 

FIGURE 1 
In the “controlled downgrader” example, information 

can flow directly from a lower classification to a higher 
one; however, information can only flow to a lower 
level by first passing through a “trusted” downgrader. 
This  problem as well as the labeler example represents 
an intransitive policy, since secret information cannot 
flow directly to confidential; but can flow from seaet to 
the downgrader and then from the downgradex to 
confidential. Neither assignment of secret -> 
confidential or secret -b confidential appropriately 
describes the required information flow policy. 

In end-toend encryption systems, plaintext messages 
enter the Red side of the controller. Since network 
switches need to be able to read header information to 
perform rcuting functions, the header goes through the 
Bypass and arrives at the Black side of the controller. 
The body of the message is encrypted by the Crypt0 unit 
before arriving at the Black side. The Red side must 
interfere with the Black side, and the challenge is to 
formulate an intransitive policy which allows 
interference to OCCUT only through the mediation of the 
Crypt0 or the Bypass. The construction of the purge 
function is at the heart of the problem. Althaugh 
Chguen and Meseguer extended their work [61 to 
address these concerns, the first really complete 
description of intransitive non-interfemme was done by 
Haigh and Young [7,81. They applied the ndion of type 
enfmment and gave a convincing argument that it was 
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necessary to consider the complete sequence of actions 
when forming purge sequences. 

Rushby [ 141 introduced intransitive non-interference 
as a model for channelumtrol policies and as a 
generalization of non-interfetense and type 
enforcement He derived an unwinding theorem for the 
channelcontrol case and showed that conventional 
multilevel policies a~ a special case of chanoel-control 
policies when the interferes relation is transitive. He 
discussed the weaknesses in earlier formulations and 
developed a thorough specification and formal 
verification of his results. 

We unify the concepts of standard and intransitive 
non-interfemw and present a method which 
determines when a system satisfies non-interference by 
examining the security policy and properties of special 
sets called basis elements genexated from the relation 
->. We introduce the notiun of absorbiug covers which 
is associated with the standard unwinding tbeorems for 
non-interfe", Our approach separates the 
equivalence relation arguments from the non- 
interference properties, and as a by product. we develop 
a decision procedure for non-iaterference. An upper 
bound on the number of iterations needed for 
termination of the procedure is provided. 

2 System Model 

In this section, we describe the underlying framework 
for formulating non-inter€erence. We unify the concepts 
of standard and intransitive non-interference through the 
introduction of a family of purge functions which 
include both types of nan-interfemm. The notion of 
basis elements and beta families is described. The 
section concludes by showing that the existence of a 
beta-family is a sufficient condition for non-interference 
to hold. 

We assume a standard deterministic state machine 
and use notation similar to Rushby [141 and Young and 
Bevier [17]. McLean [12] represents non-interference 
as an interleave function wlaere purgeable actions are 
replaced by an action AA which causes no state 
transition and produces no output. Computer scientists 
have applied the concept of AA and stu#ering steps to 
modeling computer systems in CSP [4.9,171. We adopt 
McLean's approach to purged action sequences. 

Definition 1: A system consists of 
a set of states, S 
a set of actions. A 
a set of outputs, 0 
a set of domains, D 

next: S x A  4 S 
out: S x A  + 0 
dom: A +  D 

and functions 

We assume that A contains an action AA which causes 
no change in state and 0 contains an output &, wbich 
produces no data; i.e., V s E S , next(s,AA) = s and 
mt(S.AA) = h, . 

Security is defined in terms of allowable flows of 
information among action domains as represented by a 
reflexive relation -> on D and its complement, denoted 
by -b. A security domain U is non-interfering with 
domain v if no action performed by U can influence 
subsequent outputs seen by v. Rushby points aut that if 
U -b v, then the requirement of deleting all actions 
performed by u is too strong if u -> w and w -> v. He 
suggests that only actions of U which are not followed 
by actions of w should be deleted. 

Example 1: Consider the labeler example: 

A = r, w, 1, p 1. D = { {r. w } , { l }  , (p} } . where r and 

U 
S 
E 
R 

A 
B 
E 
L 
E 
R 

W 

'p7 
R 
I 
N 
T 
E 
R 
d 

w are the read and write commands and 1 and p ~IE 

nxpectively the actions needed to transfer a file to the 
labeler and generate the appropriate label, and transfer 
the labeled file to the printer spool for printing. 

The policy is {r. w} -> {r. w}, {r, w) -> {I}, 
111 -> 9 111 -> {PI.  {PI -> {PI. 

In the following example, ipurge(f,u) denotes the 
intransitive purge of the sequence f with respect to the 
domain U: 
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I). ipurge((r.w.r)),{ p}) = (hA.hA.hA) since the labeler is 
not invoked. 

Definition 4: For a E , i E { 1, ... , llall } , U E D, 
the sequence a connects the index i to domain U, if 
there exists a subsequence of a initiating at a(i) which 
forms an interference path and the domain of its last 
stim interferes with U; i.e., 2). ip~e((r.w.l,w).{p}) = (r.w.l.AA) since the labeler 

cxmnects r, the first w, and 1 to the printer. 
connects: Se% x D seQBool 
For i E { 1. ... , llall 1, connects(a,u)(i) = 

The purgeability of an action within a sequence 
requires tbe examination of the sequence from that point 
on. An action is purgeable with respect to a domain U 
only if there is no subsequence of actions beginning at 
that point consisting of allowable flows which connect 
to U. The following notation and definitions are used to 
formalize the concept of an intransitive purge. 

For any set X. the set of finite sequences in X is denoted 
by ; in particular. 

SeqA=thesetoffinitesequencesinA. 

For a E See, , llall denotes the number of elements in 
the sequence; i.e., a :  { 1, ... , llall } + A .  

We want to construct a purge function that describes 
both standard and intransitive non-interFe-. To do 
so, we first examine properties of the connects function 
with respect to the interfew relation -> . We begin by 
noting that connects reduces to -> when applied to a 
singleton action ; that is, the connects predicate when 
applied to a single action a, is true if and only if 
dom(a) -> U. Also, if a sequence cannot connect an 
action to a domain, that element can't interf&re with the 
domain. More specifically, for a E Seq, , 
i E { 1, ... , llall }, and U E D, if a does not connect the 
index i to U, then dom(a(i)) -\> U. The proof of this 
statement is by contradiction. If dom(a(i)) -> U, we use 
the singleton subsequence (a(i)) to violate the 
assumption that connects(a.u)(i) is false. 

We frequently represent a by an n-tuple (al,...,%), 
where n = llall and a, = a(i) for i E { 1 .... , llall 1 . 
For a E A, (4a) denotes the sequence (a.al ..... a,J . 
Boo1 = the set of boolean values: { True, False } . 

Intransitive and standard non-interference are described 
by: 

Intrausitive non-intedemce (n,) 

n l :  %Boo1 
Definition 2 For y , U E Seq, . y h a subsequence of 
a. if each element of y is in a and the ordering is 
preserved; i.e., 

n1 (a,u) = connects(a,u) ; that is, 

for i E { 1, ... , llall } , 

nl(a,u)(i) = connects(a,u)(i) subsequence: S q ,  x SqA + Boo1 
subsequence(y,a) = 
3 N : { 1. ... , IMI } 4 { 1, ... , llall } such that Standard non-interference (n2) 

b' i .j E I 1, ... . IMl 1 . 1.ii) = a(N(i)) 3 : %A x D  -) sqBool 

For i c  { 1, ... , Ilall } , 

nZ(a,u)(i) = dom(a(i)) e= U. 

Definition 3: A sequence a E E ~ L , ,  , is an interference 
pa& if the domains of successive elements of a 
interfere; i.e., 

Thesetwoareexamplesof amappingn: S q x D  4 
SeqB, which has the property: 

interference-path: S q  + Boo1 V a E S e ~ ~ . u ~ D , a n d i €  { 1 ,..., llall}. 
interference-path(u) = not(n(a,u)(i)) 3 dom(a(i)) -b U . 

V i < llall , dom(u(i)) -> dom(a(i+l)) . 
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In considering functions of the form n : Se% x D 4 

Seq,, , it is useful to understand the relationship 
between n((a,a).u) and n(a,u). Since the (i+l)st 
element of (a.al ,.... aJ = aj , we note the properties: 

n1 ((a,a),u)(i+l) = nl (a,u)(i) 
(since connects((aa)a)(i+l) = connects(a,u)(i) 1 

and 

not(nl((a.a),u)( 1)) 3 not(n,((a) .U)( 1) 1 
(since (a,a)(l) = a ) . 

n2 also satisfies these properties since dom((aa)(i+l)) = 
dom(a(i)). These observations form the basis for 
defining a family of purge functions which include 
intransitive non-interference(nI) and standard non- 
interference (nd. 

Definition 5: A mapping n : Seq, x D + SeqBM,1 is 
called a pi-mapping if 
V a E Ses, , U ED, the following conditions are 
satisfied: 
a). sequence lengths are invariant: 

Iln(a*u)ll = llall 

n((a,a),u)(i+l) = .rt(a,u)(i) . 
b). reduce index property: 

if a €  A ,  i E [ 1, ... . llall 1 
c). singleton constraint: 

not(n((a.a).u)(l)) * not(n((a),u)(l)) , v a E A . 

Definition 6: The purge function for a pi-mapping n , 
denoted by purgen, is the mapping: 

purge, : Se% x D --i, Seq4 given by 

V i  E { 1, ... , llall 1, 

purge,(a.u)(i) = 
a(i) , if n(a,u)(i) 

AA . otherwise. 

Rushby [14] purges actions based on a function called 
sources that serves the same purpose as the connects 
function. Except for the distinction that we replace 
purgeable actions with A, and he deletes them, the 
formulations are equivalent. He points out that 
intransitive non-interference is a generalization of 
standard non-interference since the intransitive purge 
reduces to the Gougen & Meseguer purge function when 
the policy -> is transitive. To understand this, consider 
the interference path (a when n > 1. Since 

a1 -> a2 , a2 -> a3 , ..., a,.,-l -> a,, , we apply the 
transitivity of -> n-1 times to conclude that a1 -> a,, . 

An output from the system as defined by the out 
function requires both a state and an action (as does the 
next function), so we maintain a coupling of the state 
reached by applying a sequence of actions to an initial 
state and an action by defining the two prqjection 
functions state and action and the updating function 
step. Several authors [7, 14, 171 produce this state by 
defining a function run, and then add an action to 
formulate non-interference. We choose to bundle the 
state and action via the function state-action. These 
functions are given by: 

state: S x A  + S action: S x A  + A 

state(s,a> = s action(s,a) = a 

step: (SxA)x  A --i, S x A  

step(z,a) = (next(state(z),a),action(z)> 

state-action: (S x A) x S e q ,  + S x A 

state-action(z,a) = (~xt*(state(z),a),action(z)) , 

where next* is the usual extension of next to a 

sequence of actions. 

Security is defined in terms of the pi-mapping n and 
the purge function. For all action domains, we require 
that the system produces the same output after 
processing a sequence of actions as it does when 
processing the purged actions. 

Definition 7: A system satisjies non-interference with 
respect to the pi-mapping x, if 
V z E  S x A ,  a €  Se% 

out(state-action(z,a)) = 

out(state-action(z,p( a,dom( action( z) b))) . 

In characterizing when a system satisfies non- 
interference, it is useful to consider those state-action 
pairs that share a common output value: 

view: S x A + flSxA) ( Pdenotes the power set ) 
view(z) = { v S x A I out(v) = out(z) } . 
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Our analysis begins with the examination of singletcm 
action seqwnces and observing that a necessary 
umdition for non-interference is that step(z.a) E view(z) 
for purgeable actions a. 

Remark 1: For the pi-mapping n, a necessary condition 
for non-interference is that 

not(n((a),dom(action(z)))( 1)) 3 step(z,a) E view(z) . 
V z E S x A and a E A, 

Proof: If non-interference with respect to n is to hold, 
we require out(state-action(z.(a))) - 
out(state~acti~(z,purgerr((a),dom(action(z))))). By 
definition, purge7c((a),dom(action(z))) = (AA) and we 
note that step(z,hA) = (next(state(z).hA),acGon(z)) = 
(state(z),action(z)) = z . Therefore, out(step(z,a)) = 
out(state-action(z .(a))) - 
out(state-action(z,purgen((a).dom(action(z))))) - 
out(state_action(z,(hA))) = o~t(step(z,hA)) = out(z). 

- 

- 
- 

This important property is the motivation for defining 
basis elements and establishing that non-interference 
redum to finding an appropriate grouping of the basis 
elements. The desired characteristics of the grouping 
are given in the definition of a beta-family. 

Definition 8: For the pi-mapping n and z E S x A , the 
bash element for z with respect to n is given by 
basis&) = [ z } U { step(z,a) I a E A and 
n((a).dom(actian(z)))(l) = False } . 

Definition 9: The action image is the mapping: 
T: flSxA)xA + 9fSxA) 

T(l3.a) = { step(z,a) 1 z E B } . 

Definition 10 For the pi-mapping n, a mapping 
p, : S x A -+ flSxA) is a beta-family with respect to 
nif V y , z ~  S x A  andae  A: 
Roperty 1. basisJz) z; Bn(z) E view(z) 

Property 2. T(B,(z),a) C Bn(step(z.a)) 
property 3. B,(Y) n f @ 

3 &(y) = &(z) ( 8, sets are disjoint 1. 

view(z) view(step(z,a)) 

Pinsky 1131 showed that the existence of a beta-family 
is a sufficient condition for standard non-interference to 
hold. We will use the following results to establish the 
equivalence of non-interference and the existence of 
beta-families. 

Lemma 1: If f3, is a beta-family with respect to the 
pi-mapping n and z E S x A , then z E B,(z) . 

Proof: If follows from the definition of basis, and 
Praperty 1 of a beta-family that z E basis&) E &(z) . 

Lemma 2 Suppose that B, is a beta-family for the 
pi-mapping n, y , z E S x A , and a E A such that 
y E B,(z) and n((a).dom(action(z)))(l) = False, then 
step(y,a) E B,&) . 

Proof: 
If follows from the definition of basis, and Property 1 
that step(2.a) E basis,(z) E B&). Since 
step(z.a) E p,(step(z.a)) (from Lemma 1). we have that 
step(z,a) E B,(4 n B,(step(z.a)) and B,(step(z.a)) = 
&(z) (from the disjoint property for beta-families). 
Property 2 is used to conclude that 
step(y,a) E T(B,(z>,a) = B,(stepka)) = BJz) . 

The next lemma establishes the central property that 
is used in Theorem 1 to prove that the existence of a 
beta-family implies that non-interfemnce holds. 

106 



Lemma 3: 
respect to the pi-mapping n, then 

Suppose that B, is a beta-family with Induction Hypothesis 
step(x,a) E B,(s~~P(Y,P)) R, E &(Qn> where 
P = p~~((a.a).dom(action(y)))(l) V x.y E S x A  and a €  S q :  

x E B,(Y) 3 R,, = state-action(step(x,a),a) 
Qn = state-actian(step(y,p),purge,(a,dom(action(y)))) . 

We show that step(x,a> E B,(step(y.p)). If 
purge,((a,a),dom(action(z)))( 1) = True, then p = a and 
apply Property 2 of a beta-family to obtain 
step(x.a) E B,(step(y.a)) = B,(step(y,p)). If 
purge,((a.a),dom(action(z)))( 1) = False, then p = AA 
and by Lemma 2, step(x,a) E p,(y) and since y = 
step(y. AA) = step(y,p), we have step(x,a) E &(y) = 
1 3 , ( ~ ~ ~ ( ~ ~ ~ ) )  . 

state-action(x,a) E 
f3,(state_action(y,purgen(a,dom(action(y))))) . 

Proof: By induction on Ilall using Lemma 2. 

Base Case: llall= 1, a = (a), a E A 

From Property 2 of a beta-family, state-action(x.a) = 
stepha) E T(B,(y),a) C B,(step(y,a)). 
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3 Equivalence Relations and Minimum Cover 
Relations 

This section establishes the equivalence of non- 
inte,rfe"! and the exisben~e of beta-fmilies. We 
prove the co~lverse of "m 1, namely that if non- 
"m fa a pi-mapping IF holds, then them exists 
a beta-family with respect to IF. Our appro& separates 
the equiv- relation aqguments from the non- 
inaerfeffsce propaties. Other authors [2, 3, 8, 141 
CdBlStRIct equivaience relations for each subject and 

canditians. We iobod.llce the notjon d an absabing 
cover which deals with the unwindjng umdition stated 
in property 2 of a beta-family. Our equivalence classes 
8 f e  generated automatically as a natural coszsequence of 
the non-intierGenence pmpedes and minimum m e r  
relations developed in this section. We first present 
some general results on equivdeace relations which 
apply to this problem. 

prove that b s e  equivalence relations satisfy unwinding 

We remind the reader that an equivalence relation - 
on the set X is ab- relation on X which satisfies the 
properties: 
For a,bc E X. 
l . a - a  (reflexive) 
2 . a -b=3  b - a  (symmetric) 
3. a - b  & b - c  + a - c  (transitive). 

Therelation C* d e h  a subset of X x X, where a - b 
is the standard notation for denoting that (a,b) belongs to 
tbe relatia~ and the equivalence class of x, denoted by 
[xl,.istheset { y E  X l x - y } .  Thesetofdistinct 
equivalence classes partitions X into disjoint sets. 

xE B 

We use Uc to build an equivalence relation on X. 
where x and y are related if there is a sequence a of 
elements in X. initiating at x and ending at y where the 
cover sets cOrreSpOnding to successive elements of a 
intersect; i.e. , 

-C(x,y> = 
-c: x x x  +boo1 

3 a E Seqx such that a(1) = x , a(ll4l) = y , 
and V i < llall , U,(a(i)) n Uc(u(i+l)) + 8 .  

Lemma 4: -C is an equivalence relation. 

Proof: 
a). -C is reflexive 

For x E X, the sequence (x.x) satisfies the definition 
for -C(x,x) (also denoted, x -C x ). 

b). 42 is symmetric 
For x, y E X. with -C(x,y) and conresponding 
sequence a = (a l,...,a,), we reverse the 
sequence to form (a, ,..., al) establishing -C(y.x) . 

c). -4 is transitive 
Suppose x, y, z E X, with a = (al ..... a,,) verifj.ing 
-C(x,y) and 8 = (bl ,..., br) verifying -C(y,z) . 
We merge the two sequences to form 
y = (al ..... h,bl ..... b,) and note that a, = y = b, and 
y is the required sequence for verifying that x is 
related to z under the relation -C. 

cover: !q!€tx)) + boo1 
cover(c)= V x E  x. 

that -C is the 66minimaP-quivalence relation that has 
the property that eveq equivalence class contains tbe 
cover set for each of its members. 

3 BEXsuchthatxE B and B E  C. 

Lemma 5: 

Let&={  - I -isanequivalencerelationonXwith 
the property, b' x E X, Uc(x) E [XI- 1, then 'd x E X, 

Far the remainder of this section, we assume that C is a 
cover for X. 

[xiMc = n [XI- . 
-E Ec Definition 12: For x E X and the cover C. the cover set 

for x, denoted by U,-(x), is the Union of all elements of 
C which contaiu x: i. e., 
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Proof: 
Suppose - E Q and y E [XI, c: . Then them exists 
a = (al ,.... a,.J such that a(1) = x , a(n) = y , and V i < n , 
Uc(a(i)) n Uc(a(i+l)) * @ . 

For i < n, [a(i)L n [a(i+l)l, * @ since 
Uc(a(i)) n Uc(a(i+l)) E [a(i)], n [a(i+l)], . Hence 
[a(i)l, = [a(i+l)l, (equivalence classes are disjoint) 
and y E Ca(n)I- p1: ... = Cu(l)l, = [XI, . Since y is an 
arbitrary element of [XI, and - is an arbitrary element 
of E,, we amcluck that 

[XI,,. E n [XI, 

"EEC 

-EEC 

b) n [XI- E [xLC sinCe-C E ~ ( f i o t u R e m a r k  2). 

We now apply these msults to the non-interference 
problem. There is a natural cover for S x A consisting 
of basis elements and sets obtained by applybg 
arbitrary action sequences to basis elements. For 
B E  f lSxA)andaE  Se%, let 

Definition 13: The non-integerence cover for S x A 
with respect to the pi-mapping n. denoted by ni-cover,. 
is the set 

ni-cover, = { basis,@ I z E S x A } U 
{ SA(basi&),a) I z E S x A, a E S e q ~  1 . 

Properties of beta-families involve basis elements, 
views, and the application of actions to sets generated 
from basis elements. The cover nl_cover, has the 
properties: 

1). V z E S x A, basis&) E ni-cover, 
2). Q B E ni-cover,, a E A  , T(B.a) E ni-mer, 

The first property holds by the definition of 
ni-cover,. To understand why the second property 
holds, first consider z E S x A and note that 
T(basis,(z),a) = { step(x,a) I x E basis,(z) } = 
( state-action(x,(a), I x E basisJz) } = 
SA(bas&(z),(a)) E ni-cover,. Secondly. if a = 
(al ,.... aJ E Seq . .  . we form the sequence y = (al ...., %,a) 
and note that T(SA(basis,(z).a).a) = 

( step(state-action (x.a),a) I x E basis,&) } = 
( state-action (x.y) I x E basis,(z) ) = 
SAWi%(z),y) E ni-covex,. 

The property T(B,a) E ni-cover, is related to 
Property 2 of a beta-family. The following definitions 
will be used in constructing beta-families. 

Definition 14 A cover C, covers all basis sets with 
respect to the pi-mapping n, if Q z E S x A, t h m  exists 
a set B E C such that basis&) E B . 

Definition 15: A cover C, absorbs actions, if V B E C 
and a E A, there exists D E C such that T(B,a) E D .  

Definition 16: A cover C. contains dews, if V B E C, 
there exists z E S x A such that B E view(z) , 

Definition 17: For the cover C, the befa-operatorfor C, 
denoted by p-operatorc , associates each element of 
S x A with its minimum cover equivalence class; i.e., 

p-operatorC : S x A 7) @ x A)\[ @ } 
p-operatorc(z) = [zLC . 

Lemma 6 relates absorbing covers to Property 2 of 
beta-families and Theorem 2 m p l e t e s  the equival- 
af non-interference and the existence of beta-families. 

Lemma 6: If the cover C absorbs actions. then 
V z E S x A, a E A, T([zl-c,a) E [step(z,a)LC. 

Proof: 
Suppose that y, z E S x A and a E A  such that y E [z],~. 
For some positive integer n and i E { 1. ... , n }. let 

T(Ci.a) E Di , and for i < n, vi E Ci n Ci+l. Tbe 
existence ofn, (Cl .Dl  , ..., C, , Dn}. {xl , ..., xn}, and 
{v, , ..., v,.~ } are guaranteed by the definition of -C and 
the assumption that C absorbs actions. The sequence 
( stedx,,a), ... , step(G,a) 1 verifies that 
step(y,a) E [step(z.a)LC since step($.a) E Di for 
i E { 1, ... , n } and for i < n , Di n Di+l f @ because 
step(vi.a) E T(Cj,a) n T(Ci+l,a) E Di n Dj+l . 

% E  SXA.  C i . D j E C ~ u c h t h a t ~ = x l , y = x , , % E  Cj, 
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Theorem 2: If TC is a pi-mapping and C is a cover for 
S x A which covefs all basis elements with respect to n. 
umtains views, and absorbs actions. tben B-opexatorc is 
a beta-family with respect to x . 

next 

Proof: 
We first show that V z E S x A, [z],, E view(z). 

Let y E [zLC with xl. ... , x, E A ,  C, ,.... C,, E C such 
that V i E { l  ,.... n } .  x i ~ C i , a n d f a r i < n ,  
Ci n Ci+l * (b . Since C contains views, there exists 
bl ,.... b n E  S x A  s u & t h a t Q i ~  { 1 ,..., n } .  
Ci C view(bi). Now z = x1 E C1 E view&). Then 
out(z) = out(bl) and view(b,) = 
{ w E S x A I out(w) = aut@,) } = 
{ w E S x A I out(w) = aut(z) ) = view(z) . Since for 
i < n, Ci n Ci+l * 8, the same argument shows that 
view&) = view(bi+l). Therefm, view(z) = view(b,) = 
... = view@,) = view(y), and since y is a arbitrary 
element of [zl-,, we conclude that [z],~ E view(z>. lo high AA out lo high AA 

We apply this result to show that the three properties 
of a beta-family with respect to x hold: 

1. Since basis,(z) E B for some B E C , we apply 
Remark 2 and the definition of Uc to obtain 
z E  basisJz) E; B E U,(z) E [zl-, E view(z). 

2. Since C absorbs actions, we apply Lemma 6 to show 
that Property 2 holds; i.e.. 
T(fl-operatorc(z).a) = T([zI+a) E [step(z.a)LC = 
6-operaUac(step(z.a)) . 

3. property 3 holds since qu iv  alewe classes of any 
equivalence relatian ( -C in particular) a~ disjoint. 

Corollary: If n is a pi-mapping and nm-inte.rference 
with respect to 71: holds, then there exists a beta-family 
with respect to x. 

Proof: Let C be any cover for S x A which covers all 
basis elements with respect to x. contains views, and 
absorbs actions. Ni-mer, is one such cover (from 
marks and the discussion above and the observation 
that basis,&) E view(z) and 
SA(basis&),u) E view(state_actim(z.a)) , 
t i  z E S x A. a E Seq, whenever non-inter€erence is 
satisfied). Apply "%eorem 2 to ctmclude that 
f3-operatorC is a beta-family with respect to n. 

4 A Decision Procedure 

All tbe sets described in this paper beunne finite 
when implementing computer systems. In this section. 
we formulate an algorithm far determining if nm- 
interference holds, based on Theorem 2. We start with 
the set of all basis elements and aggregate them to form 
a partition of S x A based on applying actions. This 
process is repeated until either a new set does not have a 
constant view or an absorbing cover is obtained. We 
present an example before formalizing the decision 
prdm. 

Computations: 

1. basis elements for standard non-interference 

Step 2: For B E Po, compute T(B,lo) and union the 
elements of Po which umtain elements of T(BJo). 
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Step 3: Check the view for the set { (So,lo), (S,,lo), 
(S2,10), (S3,10), (S4.10) }. This set does not have a 
constant view since out((So,lo)) = 0, and 0ut((S4.10)) = 
O2 . The algorithm terminates with non-interference 
failing. We codkm this result with the state-action pair 
(%,lo) and action sequence (high,loJo,lo): 

E = ( El, ... , E, } and compute B2 = Z-disjoht(El.E). 
Since C1 4 E, E is a subset of C with fewer elements. 
and we continue the process until 8 is r e d d .  

upd: z x 1TZ) + 1TZ) 
Upd(V$) = Z-intersect(VJ3) U Z-disjoint(VJ3). 

’ne final partition is captured in the function 
update-action: 

update-action: !RZ)x A + @Z) 
update-action(P,a) = Ullql(a) . 

We repeat the update process for all actions using the 
recursive function: 

update-all-actions: Z x I 1 .... ,llAll 1 4 Z 

update-all-actions(1) = update.-action(€,a,) , 
‘d i < IIAII, update-all-actions(P,i+l) = 

update-action(update-e_all_actions~~).ai+l) . 

Updating all actions in A is given by: 
and 

The following notation and functions are used to 
formalize the decision procedure: 

Let Z = f i S  x A) and A = I al. ... , IlAll 1 . 
Z-intersect: Z x fiZ) + 2 

Z-intersect(V.B)= U D 
DE B 

VnD+@ 

Z-disjoint Z x fiZ) 4 cE(Z) 
Z-disjoint(V.B) = { D E B I V n D = @ } . 

A cover for S x A can be converted into disjoint sets 
by repeatedly applying Z-intersect. For 
C = I C1, ... , C,, } , start with B, = Z-intersect(C,,C). 
Let E = Z-disjoint(C,,C), and if E + @ , then 

update: @Z) -+ flZ) 
update@‘) = update-all_actions@‘,~~A~~) , 

The function fixed-point produces a covw which 
absorbs actions: 

fixed-point: flZ) + @Z) 

P. if updatep) = P 
fixed-pint(P) = { fixed-point(update@)), 

if update@) * P . 

Let Po be the partition of basis elements, then 
fixed-poht(Po) computes a partition of S x A which 
“absorbs actions”. This is accomplished by using the 
function update to union the elements of Po which 
intersect sets of the form I T(U.a) I a E A ) where 
U E Po and a E A. If updau?(Po) = Po, then Po “absorbs 
actions”; otherwise, we let P, = update(Po) and note 
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that IPp111 S IPdl - 1 since at least two elements of PO 
have beeon merged by update. The pmtitia update(P1) 
is ckcked for quality with PI. The function 
fixed-point this process and terminates either 

partitim that uniaas al l  the elements of Po ; namely 
{ S x A } .  

by a Pk $U& that updab(&) SE Pk OP -S the 

The maximum number of calls to Upd is 

A decision procedure for non-inkxfemce has been 
developed. This immediately raises the question of its 
applicability to system designs. How large does llPoll or 
IlAll have to be Wore the canputatim become 
unwieldy or how well does the procedure scale for 
larger systems? We do not know the answers to these 
questicns; however, we are automating the algorithms 
and plan to examine these issues. 

5 Conclusion 

Although intransitive policies require a much more 
complex purge function than standard non-interferenc. 
auruni6ed approach uses amethod to detamine when a 
system satisfies non-interference which has the 
complexity of the standard case. The system designer 
can demonstrate that his system satisfies non- 
inteFferesce either by a). satisfying the conditions of 
Theawn 2. or b). executing the decision procedure. or 
c). proving that the unwinding theorems hold. 

The key to non-interference with respect to a 
pi-mapping n is caplptured by the properties of the set of 
basis elements {basis&) I z E S x A). Establishing 
non-interference reduwes to finding an appropriate 
grouping d the basis elements. Frau Theorem 2. this 
OLXXKS if k x e  exists a cover for S x A which covers all 
basis elements, contains views, and absorbs actions. 
We have pmented m algorithm that if such 
a cover exists. whenever the underlying sets are finite. 

We begin with the cover consisting of d y  basis 
elements and successively apply actions in A to update 
the m e r .  This prowss is mtinued until there is no 
change in the cover ; hence producing a cover which 
absaibg actions. If the resulting mer also UJElW 

views, then naa-interfenxu holds and the algorithm 
has produced a beta-family. C k k s  at inkmediate 
stages of the algorithm could be made to determine if 
the updated covers satisfy the contains view property. 

Whenever the algorithm terminates with a cover 
which contains views and absorbs actions. the 
“minimal” beta-family is obtained. By starting with the 
disjoint collection of all basis elements. we produce the 
set of equivalence classes corresponding to the minimal 
equivalence relation that has the property that every 
equivalence class contains the mer sets of eac;h of its 
“berS. 
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