
Absorbing Covers and Intransitive Non-Interference

Sylvan Pinsky
National Security Agency

Abstract
This paper gives necessary and sufJicient conditions

for a system to satisfy intransitive non-interference.
Security is defined in terms of allowable flows of
ir7formation among action domains as represented by an
interferes relation ->. We examine properties of
special sets called basis elements generated from the
relation -> and introduce the notion of absorbing
covers which is associated with the standurd unwinding
theorems for non-interference. Our approach separates
the equivalence relation arguments from the non-
interference properties, and as a by product, we develop
a decision procedure for non-inttarference. An upper
bound on the number of iterations needed for
termination of the procedure is providrd.

1 Introduction

Non-interference was introduced by Goguen and
Mesequer [5] to provide a foundation for the
specification and analysis of security policies.
Although this approach was quite successful in handling
multilevel security policies, a number of practical
security problems were beyond the scope of their
formulation. In particular. Boebert and Kain 111
introduced “type enforcement” and “assured pipelines”
as a means U, handle specific information flows. The
classic example is the “labeler” problem, w h e ~ the user
sends a file that he is allowed to access to the printer
application. The system policy requires that the file
cannot be printed unless it has gone through the labeler
first. Earxier to this effort, Rushby explored the notion
of “channel control” [15, 161.
Figure 1 shows two examples of such problems.

I I

END-TO-END ENCRYPTION

CONTROLLED DOWNGRADING

TOP SECRET I
I

FIGURE 1
In the “controlled downgrader” example, information

can flow directly from a lower classification to a higher
one; however, information can only flow to a lower
level by first passing through a “trusted” downgrader.
This problem as well as the labeler example represents
an intransitive policy, since secret information cannot
flow directly to confidential; but can flow from seaet to
the downgrader and then from the downgradex to
confidential. Neither assignment of secret ->
confidential or secret -b confidential appropriately
describes the required information flow policy.

In end-toend encryption systems, plaintext messages
enter the Red side of the controller. Since network
switches need to be able to read header information to
perform rcuting functions, the header goes through the
Bypass and arrives at the Black side of the controller.
The body of the message is encrypted by the Crypt0 unit
before arriving at the Black side. The Red side must
interfere with the Black side, and the challenge is to
formulate an intransitive policy which allows
interference to OCCUT only through the mediation of the
Crypt0 or the Bypass. The construction of the purge
function is at the heart of the problem. Althaugh
Chguen and Meseguer extended their work [61 to
address these concerns, the first really complete
description of intransitive non-interfemme was done by
Haigh and Young [7,81. They applied the ndion of type
enfmment and gave a convincing argument that it was

102
US. Government Work Not Protected by U.S. Copyright

necessary to consider the complete sequence of actions
when forming purge sequences.

Rushby [141 introduced intransitive non-interference
as a model for channelumtrol policies and as a
generalization of non-interfetense and type
enforcement He derived an unwinding theorem for the
channelcontrol case and showed that conventional
multilevel policies a~ a special case of chanoel-control
policies when the interferes relation is transitive. He
discussed the weaknesses in earlier formulations and
developed a thorough specification and formal
verification of his results.

We unify the concepts of standard and intransitive
non-interfemw and present a method which
determines when a system satisfies non-interference by
examining the security policy and properties of special
sets called basis elements genexated from the relation
->. We introduce the notiun of absorbiug covers which
is associated with the standard unwinding tbeorems for
non-interfe", Our approach separates the
equivalence relation arguments from the non-
interference properties, and as a by product. we develop
a decision procedure for non-iaterference. An upper
bound on the number of iterations needed for
termination of the procedure is provided.

2 System Model

In this section, we describe the underlying framework
for formulating non-inter€erence. We unify the concepts
of standard and intransitive non-interference through the
introduction of a family of purge functions which
include both types of nan-interfemm. The notion of
basis elements and beta families is described. The
section concludes by showing that the existence of a
beta-family is a sufficient condition for non-interference
to hold.

We assume a standard deterministic state machine
and use notation similar to Rushby [141 and Young and
Bevier [17]. McLean [12] represents non-interference
as an interleave function wlaere purgeable actions are
replaced by an action AA which causes no state
transition and produces no output. Computer scientists
have applied the concept of AA and stu#ering steps to
modeling computer systems in CSP [4.9,171. We adopt
McLean's approach to purged action sequences.

Definition 1: A system consists of
a set of states, S
a set of actions. A
a set of outputs, 0
a set of domains, D

next: S x A 4 S
out: S x A + 0
dom: A + D

and functions

We assume that A contains an action AA which causes
no change in state and 0 contains an output &, wbich
produces no data; i.e., V s E S , next(s,AA) = s and
mt(S.AA) = h, .

Security is defined in terms of allowable flows of
information among action domains as represented by a
reflexive relation -> on D and its complement, denoted
by -b. A security domain U is non-interfering with
domain v if no action performed by U can influence
subsequent outputs seen by v. Rushby points aut that if
U -b v, then the requirement of deleting all actions
performed by u is too strong if u -> w and w -> v. He
suggests that only actions of U which are not followed
by actions of w should be deleted.

Example 1: Consider the labeler example:

A = r, w, 1, p 1. D = { {r. w } , { l } , (p} } . where r and

U
S
E
R

A
B
E
L
E
R

W

'p7
R
I
N
T
E
R
d

w are the read and write commands and 1 and p ~IE

nxpectively the actions needed to transfer a file to the
labeler and generate the appropriate label, and transfer
the labeled file to the printer spool for printing.

The policy is {r. w} -> {r. w}, {r, w) -> {I},
111 -> 9 111 -> {PI. {PI -> {PI.

In the following example, ipurge(f,u) denotes the
intransitive purge of the sequence f with respect to the
domain U:

103

I). ipurge((r.w.r)),{ p}) = (hA.hA.hA) since the labeler is
not invoked.

Definition 4: For a E , i E { 1, ... , llall } , U E D,
the sequence a connects the index i to domain U, if
there exists a subsequence of a initiating at a(i) which
forms an interference path and the domain of its last
stim interferes with U; i.e., 2). ip~e((r.w.l,w).{p}) = (r.w.l.AA) since the labeler

cxmnects r, the first w, and 1 to the printer.
connects: Se% x D seQBool
For i E { 1. ... , llall 1, connects(a,u)(i) =

The purgeability of an action within a sequence
requires tbe examination of the sequence from that point
on. An action is purgeable with respect to a domain U
only if there is no subsequence of actions beginning at
that point consisting of allowable flows which connect
to U. The following notation and definitions are used to
formalize the concept of an intransitive purge.

For any set X. the set of finite sequences in X is denoted
by ; in particular.

SeqA=thesetoffinitesequencesinA.

For a E See, , llall denotes the number of elements in
the sequence; i.e., a : { 1, ... , llall } + A .

We want to construct a purge function that describes
both standard and intransitive non-interFe-. To do
so, we first examine properties of the connects function
with respect to the interfew relation -> . We begin by
noting that connects reduces to -> when applied to a
singleton action ; that is, the connects predicate when
applied to a single action a, is true if and only if
dom(a) -> U. Also, if a sequence cannot connect an
action to a domain, that element can't interf&re with the
domain. More specifically, for a E Seq, ,
i E { 1, ... , llall }, and U E D, if a does not connect the
index i to U, then dom(a(i)) -\> U. The proof of this
statement is by contradiction. If dom(a(i)) -> U, we use
the singleton subsequence (a(i)) to violate the
assumption that connects(a.u)(i) is false.

We frequently represent a by an n-tuple (al,...,%),
where n = llall and a, = a(i) for i E { 1 , llall 1 .
For a E A, (4a) denotes the sequence (a.al a,J .
Boo1 = the set of boolean values: { True, False } .

Intransitive and standard non-interference are described
by:

Intrausitive non-intedemce (n,)

n l : %Boo1
Definition 2 For y , U E Seq, . y h a subsequence of
a. if each element of y is in a and the ordering is
preserved; i.e.,

n1 (a,u) = connects(a,u) ; that is,

for i E { 1, ... , llall } ,

nl(a,u)(i) = connects(a,u)(i) subsequence: S q , x SqA + Boo1
subsequence(y,a) =
3 N : { 1. ... , IMI } 4 { 1, ... , llall } such that Standard non-interference (n2)

b' i .j E I 1, IMl 1 . 1.ii) = a(N(i)) 3 : %A x D -) sqBool

For i c { 1, ... , Ilall } ,

nZ(a,u)(i) = dom(a(i)) e= U.

Definition 3: A sequence a E E ~ L , , , is an interference
pa& if the domains of successive elements of a
interfere; i.e.,

Thesetwoareexamplesof amappingn: S q x D 4
SeqB, which has the property:

interference-path: S q + Boo1 V a E S e ~ ~ . u ~ D , a n d i € { 1 ,..., llall}.
interference-path(u) = not(n(a,u)(i)) 3 dom(a(i)) -b U .

V i < llall , dom(u(i)) -> dom(a(i+l)) .

104

In considering functions of the form n : Se% x D 4

Seq,, , it is useful to understand the relationship
between n((a,a).u) and n(a,u). Since the (i+l)st
element of (a.al ,.... aJ = aj , we note the properties:

n1 ((a,a),u)(i+l) = nl (a,u)(i)
(since connects((aa)a)(i+l) = connects(a,u)(i) 1

and

not(nl((a.a),u)(1)) 3 not(n,((a) .U)(1) 1
(since (a,a)(l) = a) .

n2 also satisfies these properties since dom((aa)(i+l)) =
dom(a(i)). These observations form the basis for
defining a family of purge functions which include
intransitive non-interference(nI) and standard non-
interference (nd.

Definition 5: A mapping n : Seq, x D + SeqBM,1 is
called a pi-mapping if
V a E Ses, , U ED, the following conditions are
satisfied:
a). sequence lengths are invariant:

Iln(a*u)ll = llall

n((a,a),u)(i+l) = .rt(a,u)(i) .
b). reduce index property:

if a € A , i E [1, llall 1
c). singleton constraint:

not(n((a.a).u)(l)) * not(n((a),u)(l)) , v a E A .

Definition 6: The purge function for a pi-mapping n ,
denoted by purgen, is the mapping:

purge, : Se% x D --i, Seq4 given by

V i E { 1, ... , llall 1,

purge,(a.u)(i) =
a(i) , if n(a,u)(i)

AA . otherwise.

Rushby [14] purges actions based on a function called
sources that serves the same purpose as the connects
function. Except for the distinction that we replace
purgeable actions with A, and he deletes them, the
formulations are equivalent. He points out that
intransitive non-interference is a generalization of
standard non-interference since the intransitive purge
reduces to the Gougen & Meseguer purge function when
the policy -> is transitive. To understand this, consider
the interference path (a when n > 1. Since

a1 -> a2 , a2 -> a3 , ..., a,.,-l -> a,, , we apply the
transitivity of -> n-1 times to conclude that a1 -> a,, .

An output from the system as defined by the out
function requires both a state and an action (as does the
next function), so we maintain a coupling of the state
reached by applying a sequence of actions to an initial
state and an action by defining the two prqjection
functions state and action and the updating function
step. Several authors [7, 14, 171 produce this state by
defining a function run, and then add an action to
formulate non-interference. We choose to bundle the
state and action via the function state-action. These
functions are given by:

state: S x A + S action: S x A + A

state(s,a> = s action(s,a) = a

step: (SxA)x A --i, S x A

step(z,a) = (next(state(z),a),action(z)>

state-action: (S x A) x S e q , + S x A

state-action(z,a) = (~xt*(state(z),a),action(z)) ,

where next* is the usual extension of next to a

sequence of actions.

Security is defined in terms of the pi-mapping n and
the purge function. For all action domains, we require
that the system produces the same output after
processing a sequence of actions as it does when
processing the purged actions.

Definition 7: A system satisjies non-interference with
respect to the pi-mapping x, if
V z E S x A , a € Se%

out(state-action(z,a)) =

out(state-action(z,p(a,dom(action(z) b))) .

In characterizing when a system satisfies non-
interference, it is useful to consider those state-action
pairs that share a common output value:

view: S x A + flSxA) (Pdenotes the power set)
view(z) = { v S x A I out(v) = out(z) } .

105

Our analysis begins with the examination of singletcm
action seqwnces and observing that a necessary
umdition for non-interference is that step(z.a) E view(z)
for purgeable actions a.

Remark 1: For the pi-mapping n, a necessary condition
for non-interference is that

not(n((a),dom(action(z)))(1)) 3 step(z,a) E view(z) .
V z E S x A and a E A,

Proof: If non-interference with respect to n is to hold,
we require out(state-action(z.(a))) -
out(state~acti~(z,purgerr((a),dom(action(z))))). By
definition, purge7c((a),dom(action(z))) = (AA) and we
note that step(z,hA) = (next(state(z).hA),acGon(z)) =
(state(z),action(z)) = z . Therefore, out(step(z,a)) =
out(state-action(z .(a))) -
out(state-action(z,purgen((a).dom(action(z))))) -
out(state_action(z,(hA))) = o~t(step(z,hA)) = out(z).

-

-
-

This important property is the motivation for defining
basis elements and establishing that non-interference
redum to finding an appropriate grouping of the basis
elements. The desired characteristics of the grouping
are given in the definition of a beta-family.

Definition 8: For the pi-mapping n and z E S x A , the
bash element for z with respect to n is given by
basis&) = [z } U { step(z,a) I a E A and
n((a).dom(actian(z)))(l) = False } .

Definition 9: The action image is the mapping:
T: flSxA)xA + 9fSxA)

T(l3.a) = { step(z,a) 1 z E B } .

Definition 10 For the pi-mapping n, a mapping
p, : S x A -+ flSxA) is a beta-family with respect to
nif V y , z ~ S x A andae A:
Roperty 1. basisJz) z; Bn(z) E view(z)

Property 2. T(B,(z),a) C Bn(step(z.a))
property 3. B,(Y) n f @

3 &(y) = &(z) (8, sets are disjoint 1.

view(z) view(step(z,a))

Pinsky 1131 showed that the existence of a beta-family
is a sufficient condition for standard non-interference to
hold. We will use the following results to establish the
equivalence of non-interference and the existence of
beta-families.

Lemma 1: If f3, is a beta-family with respect to the
pi-mapping n and z E S x A , then z E B,(z) .

Proof: If follows from the definition of basis, and
Praperty 1 of a beta-family that z E basis&) E &(z) .

Lemma 2 Suppose that B, is a beta-family for the
pi-mapping n, y , z E S x A , and a E A such that
y E B,(z) and n((a).dom(action(z)))(l) = False, then
step(y,a) E B,&) .

Proof:
If follows from the definition of basis, and Property 1
that step(2.a) E basis,(z) E B&). Since
step(z.a) E p,(step(z.a)) (from Lemma 1). we have that
step(z,a) E B,(4 n B,(step(z.a)) and B,(step(z.a)) =
&(z) (from the disjoint property for beta-families).
Property 2 is used to conclude that
step(y,a) E T(B,(z>,a) = B,(stepka)) = BJz) .

The next lemma establishes the central property that
is used in Theorem 1 to prove that the existence of a
beta-family implies that non-interfemnce holds.

106

Lemma 3:
respect to the pi-mapping n, then

Suppose that B, is a beta-family with Induction Hypothesis
step(x,a) E B,(s~~P(Y,P)) R, E &(Qn> where
P = p~~((a.a).dom(action(y)))(l) V x.y E S x A and a € S q :

x E B,(Y) 3 R,, = state-action(step(x,a),a)
Qn = state-actian(step(y,p),purge,(a,dom(action(y)))) .

We show that step(x,a> E B,(step(y.p)). If
purge,((a,a),dom(action(z)))(1) = True, then p = a and
apply Property 2 of a beta-family to obtain
step(x.a) E B,(step(y.a)) = B,(step(y,p)). If
purge,((a.a),dom(action(z)))(1) = False, then p = AA
and by Lemma 2, step(x,a) E p,(y) and since y =
step(y. AA) = step(y,p), we have step(x,a) E &(y) =
1 3 , (~ ~ ~ (~ ~ ~)) .

state-action(x,a) E
f3,(state_action(y,purgen(a,dom(action(y))))) .

Proof: By induction on Ilall using Lemma 2.

Base Case: llall= 1, a = (a), a E A

From Property 2 of a beta-family, state-action(x.a) =
stepha) E T(B,(y),a) C B,(step(y,a)).

107

3 Equivalence Relations and Minimum Cover
Relations

This section establishes the equivalence of non-
inte,rfe"! and the exisben~e of beta-fmilies. We
prove the co~lverse of "m 1, namely that if non-
"m fa a pi-mapping IF holds, then them exists
a beta-family with respect to IF. Our appro& separates
the equiv- relation aqguments from the non-
inaerfeffsce propaties. Other authors [2, 3, 8, 141
CdBlStRIct equivaience relations for each subject and

canditians. We iobod.llce the notjon d an absabing
cover which deals with the unwindjng umdition stated
in property 2 of a beta-family. Our equivalence classes
8 f e generated automatically as a natural coszsequence of
the non-intierGenence pmpedes and minimum m e r
relations developed in this section. We first present
some general results on equivdeace relations which
apply to this problem.

prove that b s e equivalence relations satisfy unwinding

We remind the reader that an equivalence relation -
on the set X is ab- relation on X which satisfies the
properties:
For a,bc E X.
l . a - a (reflexive)
2 . a -b=3 b - a (symmetric)
3. a - b & b - c + a - c (transitive).

Therelation C* d e h a subset of X x X, where a - b
is the standard notation for denoting that (a,b) belongs to
tbe relatia~ and the equivalence class of x, denoted by
[xl,.istheset { y E X l x - y } . Thesetofdistinct
equivalence classes partitions X into disjoint sets.

xE B

We use Uc to build an equivalence relation on X.
where x and y are related if there is a sequence a of
elements in X. initiating at x and ending at y where the
cover sets cOrreSpOnding to successive elements of a
intersect; i.e. ,

-C(x,y> =
-c: x x x +boo1

3 a E Seqx such that a(1) = x , a(ll4l) = y ,
and V i < llall , U,(a(i)) n Uc(u(i+l)) + 8 .

Lemma 4: -C is an equivalence relation.

Proof:
a). -C is reflexive

For x E X, the sequence (x.x) satisfies the definition
for -C(x,x) (also denoted, x -C x).

b). 42 is symmetric
For x, y E X. with -C(x,y) and conresponding
sequence a = (a l,...,a,), we reverse the
sequence to form (a, ,..., al) establishing -C(y.x) .

c). -4 is transitive
Suppose x, y, z E X, with a = (al a,,) verifj.ing
-C(x,y) and 8 = (bl ,..., br) verifying -C(y,z) .
We merge the two sequences to form
y = (al h,bl b,) and note that a, = y = b, and
y is the required sequence for verifying that x is
related to z under the relation -C.

cover: !q!€tx)) + boo1
cover(c)= V x E x.

that -C is the 66minimaP-quivalence relation that has
the property that eveq equivalence class contains tbe
cover set for each of its members.

3 BEXsuchthatxE B and B E C.

Lemma 5:

Let&={ - I -isanequivalencerelationonXwith
the property, b' x E X, Uc(x) E [XI- 1, then 'd x E X,

Far the remainder of this section, we assume that C is a
cover for X.

[xiMc = n [XI- .
-E Ec Definition 12: For x E X and the cover C. the cover set

for x, denoted by U,-(x), is the Union of all elements of
C which contaiu x: i. e.,

108

Proof:
Suppose - E Q and y E [XI, c: . Then them exists
a = (al ,.... a,.J such that a(1) = x , a(n) = y , and V i < n ,
Uc(a(i)) n Uc(a(i+l)) * @ .

For i < n, [a(i)L n [a(i+l)l, * @ since
Uc(a(i)) n Uc(a(i+l)) E [a(i)], n [a(i+l)], . Hence
[a(i)l, = [a(i+l)l, (equivalence classes are disjoint)
and y E Ca(n)I- p1: ... = Cu(l)l, = [XI, . Since y is an
arbitrary element of [XI, and - is an arbitrary element
of E,, we amcluck that

[XI,,. E n [XI,

"EEC

-EEC

b) n [XI- E [xLC sinCe-C E ~ (f i o t u R e m a r k 2).

We now apply these msults to the non-interference
problem. There is a natural cover for S x A consisting
of basis elements and sets obtained by applybg
arbitrary action sequences to basis elements. For
B E f lSxA)andaE Se%, let

Definition 13: The non-integerence cover for S x A
with respect to the pi-mapping n. denoted by ni-cover,.
is the set

ni-cover, = { basis,@ I z E S x A } U
{ SA(basi&),a) I z E S x A, a E S e q ~ 1 .

Properties of beta-families involve basis elements,
views, and the application of actions to sets generated
from basis elements. The cover nl_cover, has the
properties:

1). V z E S x A, basis&) E ni-cover,
2). Q B E ni-cover,, a E A , T(B.a) E ni-mer,

The first property holds by the definition of
ni-cover,. To understand why the second property
holds, first consider z E S x A and note that
T(basis,(z),a) = { step(x,a) I x E basis,(z) } =
(state-action(x,(a), I x E basisJz) } =
SA(bas&(z),(a)) E ni-cover,. Secondly. if a =
(al ,.... aJ E Seq . . . we form the sequence y = (al, %,a)
and note that T(SA(basis,(z).a).a) =

(step(state-action (x.a),a) I x E basis,&) } =
(state-action (x.y) I x E basis,(z)) =
SAWi%(z),y) E ni-covex,.

The property T(B,a) E ni-cover, is related to
Property 2 of a beta-family. The following definitions
will be used in constructing beta-families.

Definition 14 A cover C, covers all basis sets with
respect to the pi-mapping n, if Q z E S x A, t h m exists
a set B E C such that basis&) E B .

Definition 15: A cover C, absorbs actions, if V B E C
and a E A, there exists D E C such that T(B,a) E D .

Definition 16: A cover C. contains dews, if V B E C,
there exists z E S x A such that B E view(z) ,

Definition 17: For the cover C, the befa-operatorfor C,
denoted by p-operatorc , associates each element of
S x A with its minimum cover equivalence class; i.e.,

p-operatorC : S x A 7) @ x A)\[@ }
p-operatorc(z) = [zLC .

Lemma 6 relates absorbing covers to Property 2 of
beta-families and Theorem 2 m p l e t e s the equival-
af non-interference and the existence of beta-families.

Lemma 6: If the cover C absorbs actions. then
V z E S x A, a E A, T([zl-c,a) E [step(z,a)LC.

Proof:
Suppose that y, z E S x A and a E A such that y E [z],~.
For some positive integer n and i E { 1. ... , n }. let

T(Ci.a) E Di , and for i < n, vi E Ci n Ci+l. Tbe
existence ofn, (Cl .Dl , ..., C, , Dn}. {xl , ..., xn}, and
{v, , ..., v,.~ } are guaranteed by the definition of -C and
the assumption that C absorbs actions. The sequence
(stedx,,a), ... , step(G,a) 1 verifies that
step(y,a) E [step(z.a)LC since step($.a) E Di for
i E { 1, ... , n } and for i < n , Di n Di+l f @ because
step(vi.a) E T(Cj,a) n T(Ci+l,a) E Di n Dj+l .

% E SXA. C i . D j E C ~ u c h t h a t ~ = x l , y = x , , % E Cj,

109

Theorem 2: If TC is a pi-mapping and C is a cover for
S x A which covefs all basis elements with respect to n.
umtains views, and absorbs actions. tben B-opexatorc is
a beta-family with respect to x .

next

Proof:
We first show that V z E S x A, [z],, E view(z).

Let y E [zLC with xl. ... , x, E A , C, ,.... C,, E C such
that V i E { l ,.... n } . x i ~ C i , a n d f a r i < n ,
Ci n Ci+l * (b . Since C contains views, there exists
bl ,.... b n E S x A s u & t h a t Q i ~ { 1 ,..., n } .
Ci C view(bi). Now z = x1 E C1 E view&). Then
out(z) = out(bl) and view(b,) =
{ w E S x A I out(w) = aut@,) } =
{ w E S x A I out(w) = aut(z)) = view(z) . Since for
i < n, Ci n Ci+l * 8, the same argument shows that
view&) = view(bi+l). Therefm, view(z) = view(b,) =
... = view@,) = view(y), and since y is a arbitrary
element of [zl-,, we conclude that [z],~ E view(z>. lo high AA out lo high AA

We apply this result to show that the three properties
of a beta-family with respect to x hold:

1. Since basis,(z) E B for some B E C , we apply
Remark 2 and the definition of Uc to obtain
z E basisJz) E; B E U,(z) E [zl-, E view(z).

2. Since C absorbs actions, we apply Lemma 6 to show
that Property 2 holds; i.e..
T(fl-operatorc(z).a) = T([zI+a) E [step(z.a)LC =
6-operaUac(step(z.a)) .

3. property 3 holds since qu iv alewe classes of any
equivalence relatian (-C in particular) a~ disjoint.

Corollary: If n is a pi-mapping and nm-inte.rference
with respect to 71: holds, then there exists a beta-family
with respect to x.

Proof: Let C be any cover for S x A which covers all
basis elements with respect to x. contains views, and
absorbs actions. Ni-mer, is one such cover (from
marks and the discussion above and the observation
that basis,&) E view(z) and
SA(basis&),u) E view(state_actim(z.a)) ,
t i z E S x A. a E Seq, whenever non-inter€erence is
satisfied). Apply "%eorem 2 to ctmclude that
f3-operatorC is a beta-family with respect to n.

4 A Decision Procedure

All tbe sets described in this paper beunne finite
when implementing computer systems. In this section.
we formulate an algorithm far determining if nm-
interference holds, based on Theorem 2. We start with
the set of all basis elements and aggregate them to form
a partition of S x A based on applying actions. This
process is repeated until either a new set does not have a
constant view or an absorbing cover is obtained. We
present an example before formalizing the decision
prdm.

Computations:

1. basis elements for standard non-interference

Step 2: For B E Po, compute T(B,lo) and union the
elements of Po which umtain elements of T(BJo).

110

Step 3: Check the view for the set { (So,lo), (S,,lo),
(S2,10), (S3,10), (S4.10) }. This set does not have a
constant view since out((So,lo)) = 0, and 0ut((S4.10)) =
O2 . The algorithm terminates with non-interference
failing. We codkm this result with the state-action pair
(%,lo) and action sequence (high,loJo,lo):

E = (El, ... , E, } and compute B2 = Z-disjoht(El.E).
Since C1 4 E, E is a subset of C with fewer elements.
and we continue the process until 8 is r e d d .

upd: z x 1TZ) + 1TZ)
Upd(V$) = Z-intersect(VJ3) U Z-disjoint(VJ3).

’ne final partition is captured in the function
update-action:

update-action: !RZ)x A + @Z)
update-action(P,a) = Ullql(a) .

We repeat the update process for all actions using the
recursive function:

update-all-actions: Z x I 1 ,llAll 1 4 Z

update-all-actions(1) = update.-action(€,a,) ,
‘d i < IIAII, update-all-actions(P,i+l) =

update-action(update-e_all_actions~~).ai+l) .

Updating all actions in A is given by:
and

The following notation and functions are used to
formalize the decision procedure:

Let Z = f i S x A) and A = I al. ... , IlAll 1 .
Z-intersect: Z x fiZ) + 2

Z-intersect(V.B)= U D
DE B

VnD+@

Z-disjoint Z x fiZ) 4 cE(Z)
Z-disjoint(V.B) = { D E B I V n D = @ } .

A cover for S x A can be converted into disjoint sets
by repeatedly applying Z-intersect. For
C = I C1, ... , C,, } , start with B, = Z-intersect(C,,C).
Let E = Z-disjoint(C,,C), and if E + @ , then

update: @Z) -+ flZ)
update@‘) = update-all_actions@‘,~~A~~) ,

The function fixed-point produces a covw which
absorbs actions:

fixed-point: flZ) + @Z)

P. if updatep) = P
fixed-pint(P) = { fixed-point(update@)),

if update@) * P .

Let Po be the partition of basis elements, then
fixed-poht(Po) computes a partition of S x A which
“absorbs actions”. This is accomplished by using the
function update to union the elements of Po which
intersect sets of the form I T(U.a) I a E A) where
U E Po and a E A. If updau?(Po) = Po, then Po “absorbs
actions”; otherwise, we let P, = update(Po) and note

11 1

that IPp111 S IPdl - 1 since at least two elements of PO
have beeon merged by update. The pmtitia update(P1)
is ckcked for quality with PI. The function
fixed-point this process and terminates either

partitim that uniaas al l the elements of Po ; namely
{ S x A } .

by a Pk $U& that updab(&) SE Pk OP -S the

The maximum number of calls to Upd is

A decision procedure for non-inkxfemce has been
developed. This immediately raises the question of its
applicability to system designs. How large does llPoll or
IlAll have to be Wore the canputatim become
unwieldy or how well does the procedure scale for
larger systems? We do not know the answers to these
questicns; however, we are automating the algorithms
and plan to examine these issues.

5 Conclusion

Although intransitive policies require a much more
complex purge function than standard non-interferenc.
auruni6ed approach uses amethod to detamine when a
system satisfies non-interference which has the
complexity of the standard case. The system designer
can demonstrate that his system satisfies non-
inteFferesce either by a). satisfying the conditions of
Theawn 2. or b). executing the decision procedure. or
c). proving that the unwinding theorems hold.

The key to non-interference with respect to a
pi-mapping n is caplptured by the properties of the set of
basis elements {basis&) I z E S x A). Establishing
non-interference reduwes to finding an appropriate
grouping d the basis elements. Frau Theorem 2. this
OLXXKS if k x e exists a cover for S x A which covers all
basis elements, contains views, and absorbs actions.
We have pmented m algorithm that if such
a cover exists. whenever the underlying sets are finite.

We begin with the cover consisting of d y basis
elements and successively apply actions in A to update
the m e r . This prowss is mtinued until there is no
change in the cover ; hence producing a cover which
absaibg actions. If the resulting mer also UJElW

views, then naa-interfenxu holds and the algorithm
has produced a beta-family. C k k s at inkmediate
stages of the algorithm could be made to determine if
the updated covers satisfy the contains view property.

Whenever the algorithm terminates with a cover
which contains views and absorbs actions. the
“minimal” beta-family is obtained. By starting with the
disjoint collection of all basis elements. we produce the
set of equivalence classes corresponding to the minimal
equivalence relation that has the property that every
equivalence class contains the mer sets of eac;h of its
“berS.

6 Acknowledgments

We are indebted to Will Harkws far conveying the
“mathematical essence” of non-interfexence by
gemdizing the Haigh-Young View-Identical problem
to arbitrary finite sets [lo]. We benefited from
conversations with Tim Redmcmd, Jon Millen, and Josh
Guttman. We especially thank Bill Young, Tom Ha@,
and John Rushby for explaining the subtleties of
intransitive purges. We also thank auonymous referees
for theii suggestions.

References

[l] E. Boebert and R. Kain, A practical altemative to
hierarchical integrity policies. In Procedhgs of the
Computer Security Initiative Conference, 1985.

[2] T. Fine, T. Haigh, D. O’Brien. and D. Toups,
Naninterference and Unwinding for LOCK. In
Proceediags of the Computer Security Foundations
Workshop II, 1989.

131 T. Fine, Constructively Using Noninterference to
Analyze Systems. In Prucedings of the IEEE
Symposium on security and Privacy, 1990.

112

[4] R. Focatdi and R. Gonieri, A Taxonomy of Trace-
Based Security Propeaks for CCS. In Proceedings of
the Computer Security Foundations Workshop W,
19w. 5. 1981.

[151 J. Rushby, The design and verification of sexme
systems. In 8th ACM Symposium on Operating System
Principles, ACM Operating System Review. Val 15, No.

[5] J. Goguen and J. Meseguer, Security policies and [161 J. Rushby, Verification of secure systems.
security models. In Proasdings of the IEEE Technical Report 166, Computing Laboratory,
Symposium an Security and Privacy, 1982. University of Unchaste upon Tone. UK. 198 1.

[6] J. Goguen and J. Meseguer. Inference Control and [171 W. Young and W. Bevier, A State-Based Approach
unwinding. In Praxedhgs ofthe IEEE Symposium on to N 0 n i n t c x - f ~ . In Proceedings of the Computer
Securiv and Privacy, 1984. ,Security Foundations Workshop W, 1994.

[71 J. Ha@ and W. Young, Extendbg the non-
inte.rfe- model of MLS for SAT. In proceedings of
tbe IEEE Symposium cm Security and Privacy, 1986.

181 J. Haigh and W. Young, Extending the
noninterfexence version of MLS for SAT. In IEEE
Transactions on Software Engineering. SE-13(2). 1987.

[9] C. A. R. Hoar, Communicating Wuential
Processes. Apprentice-Hall International. London.
1985.

[lo] W. Harloless, The General LOCK Model and
Unwinding Theorem. R21 Infannal Technical Report,
Departmeat of Defense, October 1990.

[113 J. Haugsand, Private communication, University of
Solo. Norway, 1994.

1121 J. McLean, A General Theory of Composition for
Trace Sets Closed Under Selective Interleaving
Functions. In proceedings of the IEEE Symposium on
Security and Privacy, 1994.

[131 S . Pinsky. An Algebraic Approach to Non-
Interference. In Proceedings of the Computer Security
Foundations Workshop V, 1992.

[141 J. Rushby. Noninterference, Transitivity, and
channel-ccmtrol security Policies. SRI International,
CSL Technical Report, 1992.

113

