Absorbing Covers and Intransitive Non-Interference

Sylvan Pinsky
National Security Agency

Abstract

This paper gives necessary and sufficient conditions
for a system to satisfy intransitive non-interference.
Security is defined in terms of allowable flows of
information among action domains as represented by an
interferes relation ~>. We examine properties of
special sets called basis elements generated from the
relation ~> and introduce the notion of absorbing
covers which is associated with the standard unwinding
theorems for non-interference. Our approach separates
the equivalence relation arguments from the non-
interference properties, and as a by product, we develop
a decision procedure for non-interference. An upper
bound on the number of iterations needed for
termination of the procedure is provided.

1 Introduction

Non-interference was introduced by Goguen and
Mesequer [5] to provide a foundation for the
specification and analysis of security policies.
Although this approach was quite successful in handling
multilevel security policies, a number of practical
security problems were beyond the scope of their
formulation. In particular, Boebert and Kain [1]
introduced “type enforcement” and “assured pipelines”
as a means to handle specific information flows. The
classic example is the “labeler” problem, where the user
sends a file that he is allowed to access to the printer
application. The system policy requires that the file
cannot be printed unless it has gone through the labeler
first. Earlier to this effort, Rushby explored the notion
of “channel control™ [15, 16].

Figure 1 shows two examples of such problems.

‘ ' BYPASS
RED BLACK]
»| CRYPTO ,____._‘,

END-TO-END ENCRYPTION

U.S. Government Work Not Protected by U.S. Copyright

102

CONTROLLED DOWNGRADING

TOP SECRET

f

SECRET

DOWN

ONFIDENTIA RADER
NCLASSIFIED
FIGURE 1

In the “controlled downgrader” example, information
can flow directly from a lower classification to a higher
one; however, information can only fiow to a lower
level by first passing through a “trusted” downgrader.
This problem as well as the labeler example represents
an intransitive policy, since secret information cannot
flow directly to confidential; but can flow from secret to
the downgrader and then from the downgrader to
confidential. Neither assignment of secret ~>
confidential or secret ~\> confidential appropriately
describes the required information flow policy.

In end-to-end encryption systems, plaintext messages
enter the Red side of the controller. Since network
switches need to be able to read header information to
perform routing functions, the header goes through the
Bypass and arrives at the Black side of the controller.
The body of the message is encrypted by the Crypto unit
before arriving at the Black side. The Red side must
interfere with the Black side, and the challenge is to
formulate an intransitive policy which allows
interference to occur only through the mediation of the
Crypto or the Bypass. The construction of the purge
function is at the heart of the problem. Although
Goguen and Meseguer extended their work [6] to
address these concerns, the first really complete
description of intransitive non-interference was done by
Haigh and Young [7, 8]. They applied the notion of type
enforcement and gave a convincing argument that it was

necessary to consider the complete sequence of actions
when forming purge sequences.

Rushby [14] introduced intransitive non-interference
as a model for channel-control policies and as a
generalization of non-interference and type
enforcement. He derived an unwinding theorem for the
channel-control case and showed that conventional
multilevel policies are a special case of channel-control
policies when the interferes relation is transitive. He
discussed the weaknesses in earlier formulations and
developed a thorough specification and formal
verification of his results.

We unify the concepts of standard and intransitive
non-interference and present a method which
determines when a system satisfies non-interference by
examining the security policy and properties of special
sets called basis elements generated from the relation
~>. We introduce the notion of absorbing covers which
is associated with the standard unwinding theorems for
non-interference. Our approach separates the
equivalence relation arguments from the non-
interference properties, and as a by product, we develop
a decision procedure for non-interference. An upper
bound on the number of iterations needed for
termination of the procedure is provided.

2 System Model

In this section, we describe the underlying framework
for formulating non-interference. We unify the concepts
of standard and intransitive non-interference through the
introduction of a family of purge functions which
include both types of non-interference. The notion of
basis elements and beta families is described. The
section concludes by showing that the existence of a
beta-family is a sufficient condition for non-interference
to hold.

We assume a standard deterministic state machine
and use notation similar to Rushby [14] and Young and
Bevier [17]. McLean [12] represents non-interference
as an interleave function where purgeable actions are
replaced by an action A, which causes no state
transition and produces no output. Computer scientists
have applied the concept of A, and stuttering steps to
modeling computer systems in CSP [4, 9, 17]. We adopt
McLean'’s approach to purged action sequences.

103

Definition 1: A system coasists of

aset of states, S
aset of actions, A
aset of outputs, O
a set of domains, D
and functions
next: SxA = S
ou: SxA - O
dom: A-D

We assume that A contains an action A, which causes
no change in state and O contains an output A, which
produces no data; ie., Vs€ S, next(s,Ay) =s and
out(s.Ay) =Ag .

Security is defined in terms of allowable flows of
information among action domains as represented by a
reflexive relation ~> on D and its complement, denoted
by ~\>. A security domain u is non-interfering with
domain v if no action performed by u can influence
subsequent outputs seen by v. Rushby points out that if
u ~\> v, then the requirement of deleting ail actions
performed by u is too strong if u~>w and w ~>v. He
suggests that only actions of u which are not followed
by actions of w should be deleted.

Example 1: Consider the labeler example:
A={rwlp} D={{r.w},{l},{p}}.whererand

L
A
4] F B
S r,w 1 1 E P
E € L L
R E E
R

mE-SZ=RN

w are the read and write commands and 1 and p are
respectively the actions needed to transfer a file to the
labeler and generate the appropriate label, and transfer
the labeled file to the printer spool for printing.

The policy is {r.w}~> {r,w}, {r,w}~> {1},
{1}~ {1}, {1} ~> {p}. {p}~> {p}

In the following example, ipurge(f,u) denotes the
intransitive purge of the sequence f with respect to the
domain u:

1). ipurge((r,w,0),{p}) = (Aa,A5.A4) since the labeler is
not invoked.

2). ipurge((r.w,Lw),{p}) = (r.wlA,) since the labeler
connects 1, the first w, and 1 to the printer.

3). ipurge((wrlp.wlw)iph) = (wrlp,wlA,) since
the last write action was not followed by a labeler
request and cannot be sent to the printer.

The purgeability of an action within a sequence
requires the examination of the sequence from that point
on. An action is purgeable with respect to a domain u
only if there is no subsequence of actions beginning at
that point consisting of allowable flows which connect
to u. The following notation and definitions are used to
formalize the concept of an intransitive purge.

For any set X, the set of finite sequences in X is denoted
by Seqy ; in particular,

Seq, = the set of finite sequences in A .

For a € Seqy , llal| denotes the number of elements in
the sequence; ie.a: {1,..,|lall} - A

We frequently represent o by an n-tuple (a,.....a,),
where n = ||aj| and a,=a(i) for i€ {l ... lla]l } .

Fora€ A, (a,a) denotes the sequence (a,a,,...,
Bool = the set of boolean values: { True, False } .

Definition 2: For v, a € Seq, . v is a subsequence of
a, if each element of vy is in a and the ordering is
preserved; i.e.,

subsequence: Seq, x Sequ — Bool
subsequence(y,a) =
IN:{L...IM} = {L...llal} suchthat
Vi je{l.. W1}, vd=alNGD)
& i<j = N(@)<N(@).

Definition 3: A sequence o € Seq, , is an interference
path, if the domains of successive elements of a
interfere; i.e.,
interference_path: Seqs — Bool
interference_path(a) =
Vi< |lal , dom(a(i)) ~> dom(a(i+1)) .

104

Definition 4: Fora € Seqy .i€ {1...., Jlali } .u€ D,
the sequence o connects the index i to domain u, if
there exists a subsequence of a initiating at a(i) which
forms an interference path and the domain of its last
action interferes with uv; i.e.,

connects: Seqy xD — Seqgyy

Forie{1,.., |lall }, connects(a,u)(i) =

3 y€ Seq, suchthat subsequence(y,a), V(1) = afi),

interference_path(y), & dom(¥(|ivi})) ~> u.

We want to construct a purge function that describes
both standard and intransitive non-interference. To do
so, we first examine properties of the connects function
with respect to the interferes relation ~>. We begin by
noting that connects reduces to ~> when applied to a
singleton action ; that is, the connects predicate when
applied to a single action a, is true if and onmly if
dom(a) ~> u. Also, if a sequence cannot connect an
action to a domain, that element can’t interfere with the
domain. More specifically, for o € Seqy
i€ {1,...]lall }, and u € D, if a does not connect the
index i to u, then dom(a(i)) ~\> u. The proof of this
statement is by contradiction. If dom(a(i)) ~> u, we use
the singleton subsequence (a(i)) to violate the
assumption that connects(a,u)(i) is false.

Intransitive and standard non-interference are described
by:
Intransitive non-interference (rt,)
iy Seqq XD — Seqpool
7y (o,u) = connects(a,u) ; that is,
forie {1,..., |lall},

i, (au)(i) = connects(a,u)(i)

Standard non-interference (71,)
m,: Seqy xD — Seqpy
Forie {1,.., Jlal},
my(au)(i) = dom(a(i)) ~> u.

These two are examples of amappingn: Seqq xD —
Segp,,; which has the property:
YV a€ Seqq,u€ D,andi€ { 1,..., llafl }.

not(rn(a,u)(i)) = dom(a(i)) ~\> u .

In considering functions of the formnt: SeqaxD —
Seqpool - it is useful to understand the relationship
between 7((a.a),u) and n{a.u). Since the (i+1)st
element of (a.a,,....a;) = a; , we note the properties:

7y ((a.0)WG+D) = 7y (aw)(@)

(since connects((a.a),u)(i+1) = connects(a,u)())
and

not(r,((a,0),w)(1)) = not(m;((a).u)(1))

(since (a,a)(1)=a).

n, also satisfies these properties since dom((a.a)(i+1)) =
dom(a(i)). These observations form the basis for
defining a family of purge functions which include
intransitive non-interference(m;) and standard non-
interference (m,).

Definition 5: A mapping m: Seqy xD — Seqg, is
called a pi-mapping if

V¥ a € Seq, , u €D, the following conditions are
satisfied:
a). sequence lengths are invariant:
(o)l = llexll
b). reduce index property:
n((a.00).w)(i+1) = alau)(@) .
VYae A, i€ {1, ..., Jlal }
c). singleton constraint:
not(n((a.c}.u)(1)) = not(n((a)u)(1)),va€ A.

Definition 6: The purge function for a pi-mapping n ,
denoted by purge,. , is the mapping:

purge,: Seqy x D — Seqs givenby
vie{l, .. llall}

a() . if n(au)(i)
purge, (au)(i) = {

Aa . otherwise .

Rushby [14] purges actions based on a function called
sources that serves the same purpose as the connects
function. Except for the distinction that we replace
purgeable actions with A, and he deletes them, the
formulations are equivalent. He points out that
intransitive non-interference is a generalization of
standard non-interference since the intransitive purge
reduces to the Gougen & Meseguer purge function when
the policy ~> is transitive. To understand this, consider
the interference path (ay.....a;) when n > 1. Since

a) ~> ay, a4 ~> a3, ..., 8, ~> a, , we apply the
transitivity of ~> n-1 times to conclude that a; ~> a,.

An output from the system as defined by the out
function requires both a state and an action (as does the
next function), so we maintain a coupling of the state
reached by applying a sequence of actions to an initial
state and an action by defining the two projection
functions state and action and the updating function
step. Several authors [7, 14, 17] produce this state by
defining a function run, and then add an action to
formulate non-interference. We choose to bundle the
state and action via the function state_action. These
functions are given by:

state: SxA 5 §
state(s,a) = s

action: SxA 5 A

action(s,a) = a

step: SxA)x A - SxA
step(z,a) = (next(state(z),a),action(z))

state_action: (SxA)x Seqq = SxA
state_action(z,a) = (next*(state(z),a),action(z)) ,
where next* is the usval extension of next to a

sequence of actions.

Security is defined in terms of the pi-mapping nt and
the purge function. For all action domains, we require
that the system produces the same output after
processing a sequence of actions as it does when
processing the purged actions.

Definition 7: A system safisfies non-interference with
respect to the pi-mapping n, if

Vz€ SxA, a€ Seqy
out(state_action(z,a)) =

out(state_action(z,purge,(a.dom(action(z))))) .

In characterizing when a system satisfies non-
interference, it is useful to consider those state-action
pairs that share a common output value:

view: Sx A — ASxA) (Pdenotes the power set)
view(z) = {veE Sx A loutlv) =out(z) } .

105

Our analysis begins with the examination of singleton
action sequences and observing that a necessary
condition for non-interference is that step(z,a) € view(z)
for purgeable actions a.

Remark 1: For the pi-mapping rt, a necessary condition
for non-interference isthat Vz€ SxAand a€A,

not(n((a).dom(action(z)))(1)) = step(z,a) € view(z) .

Proof: If non-interference with respect to n is to hold,
we require out(state_action(z,(a))) =
out(state_action(z purgen((a),dom(action(z))))). By
definition, purgen((a).dom(action(z))) = (A,) and we
note that step(z,A,) = (pext(state(z),A,).action(z))
(state(z),action(z)) = z . Therefore, out(step(z,a))
out(state_action(z,(a)))
out(state_action(z,purgen((a). dom(action(z)))))
out(state_action(z,(A4))) = out(step(z,A4)) = out(z).

This important property is the motivation for defining
basis elements and establishing that non-interference
reduces to finding an appropriate grouping of the basis
elements. The desired characteristics of the grouping
are given in the definition of a beta-family.

Definition 8: For the pi-mapping t and z € S x A, the
basis element for z with respect to m is given by
basis,(z) = { z } u { step(z.a) | a€ A and
n((a),dom(action(z)))(1) =False } .

Definition 9: The action image is the mapping:
T: ASxA)xA — ASxA)
T(B.,a)={ step(z,a)| z€ B} .

Definition 10: For the pi-mapping 7, a mapping
B.: SxA — PHSxA) is a beta-family with respect to
nif Vy,z€ SxA anda€ A:

Property 1. basis,(z) < B,.(z) € view(z)
Property 2. T(B.(2).2) € B.(step(z.a))
Property 3. B.(y) N Bu(2) =D

= B(y) = BLz) (B, sets are disjoint).

106

Br(step(z,a))

view(z) view(step(z,a))

Pinsky [13] showed that the existence of a beta-family
is a sufficient condition for standard non-interference to
hold. We will use the following results to establish the
equivalence of non-interference and the existence of
beta-families.

Lemma 1: If B, is a beta-family with respect to the
pi-mapping mand z€ Sx A thenz € B,(z) .

Proof: If follows from the definition of basis, and
Property 1 of a beta-family that z € basis,(z) S B,(z) .

Lemma 2: Suppose that B, is a beta-family for the
pi-mapping , v,z € Sx A, and a € A such that
y € B.(2) and n((a),dom(action(z)))(1) = False, then
step(y,a) € B,(z) .

Proof:

If follows from the definition of basis,; and Property 1
that step(z,a) € basis(z) & PB.(2). Since
step(z,a) € P (step(z.a)) (from Lemma 1), we have that
step(z.a) € B,(z) N PB.(step(z,a)) and B, (step(z,a)) =
Br(z) (from the disjoint property for beta-families).
Property 2 is used to conclude that
step(y.a) € T(B(2).2) & B(step(z.2)) = Br(2) .

The next lemma establishes the central property that
is used in Theorem 1 to prove that the existence of a
beta-family implies that non-interference holds.

Lemma 3: Suppose that B, is a beta-family with
respect to the pi-mapping 7, then

V X,y € SxA and a€ Seqy:
X € B(y) =
state_action(x,a) €
B,(state_action(y,purge,(a.dom(action(y))))) .

Proof: By induction on ||aif| using Lemma 2.

Base Case: |lali= 1, a=(a),a€ A

From Property 2 of a beta-family, state_action(x.a) =
step(x,a) € T(B,(y).a) S Br(step(y.a)).

True, then
therefore,

If m(adom(action(y)))(1) =
purge,((a).dom(action(y))) = (a}
state_action(x,or) € B(step(y.a))
B,(state_action(y.(a)))
B(state_action(y,purge, (a,dom(action(y))))).

On the other hand, if n(a,dom(action(y)))(1) = False,
then p= A, and step(y,a) € B,(y) (from Lemma 1
and Lemma 2). Also, y = (next(y.A,).action(y)) =
step(y.Ay) = state_action(y,(A,)) =
state_action(y,purge,(co,dom(action(y)))) ; therefore
state_action(x,a) € B, (step(y.8)) = B y) =
B, (state_action(y,purge, (a,dom(action(y))))).

Induction Step: lla)l =n ., a = (a,...,a,) and show

VX, y€ESxA,a€ A:
x € B.(y) = state_action(x,(a,a)) €
Br(state_action(y,purge,((a.ar) .dom(action(y))))) .

X a / step(x,a)\ ... \
y step(y,p) /.. Pn

Br(y) Br(step(y,p)) Br(Qy)

Induction Hypothesis
step(x,a) € B, (step(y.p)) = R, € B(Q,) where
p = purge,((a.a)) . dom(action(y)))(1)
R, = state_action(step(x,a),c)
Q, = state_action(step(y,p),purge, (a.dom(action(y)))) .

We show that step(x,a) € B(step(y.p)). If
purge,((a,a) dom(action(z)))(1) = True, then p = a and
apply Property 2 of a beta-family to obtain
step(x.a) € B.(step(v.a)) = PB.(step(y.p)). If
purge,((a.a) dom(action(z)))(1) = False, then p= Ay
and by Lemma 2, step(x,a) € B, (y) and since y =
step(y, Aa) = step(y.p), we have step(x,a) € B,(y) =
Br(step(y.p)) .

The state-action and purge functions have the property
that Vz€ SxA, ab€e A oy € Seqy ,u€ Dt
state-action(z,(b,y)) = state-action(step(z,b),y) and
purge((a.0).u) = (p.purge(a,u)) where
p = purge,{((a.c),u)1).

We apply the induction hypothesis to conclude:
state_action(x,(a,a)) = state_action(step(x.a),c)
R, € B(Qy
B(state_action(step(y,p)purge (a.dom(action(y)))))
B (state_action(y,purge, ((a,a),dom(action(y))))).

Theorem 1: If nis a pi-mapping and there exists a beta
family with respect to n , then non-interference with
respect to 7t holds.

Proof: Suppose that f_ is a beta-family with respect
ton, z€ Sx A, and o € Seqy, . then Lemma 1 and
Lemma 3 yields state_action(z,o) €
B.(state_action(z,purge.(a,dom(action(z))))) and by
Property 1,6, (state_action(z,purge, (a.dom(action(z)))))
c view(state _action(z,purge, (a,dom(action(z))))).
Therefore, out(state_action(z,c)) =
out(state_action(z.purge,(a,dom(action(z))))) .

107

3 Equivalence Relations and Minimum Cover
Relations

This section establishes the equivalence of non-
interference and the existence of beta-families. We
prove the converse of Theorem 1, namely that if non-
interference for a pi-mapping = holds, then there exists
a beta-family with respect to r. Our approach separates
the equivalence relation arguments from the non-
interference properties. Other authors [2, 3, 8, 14]
construct equivalence relations for each subject and
prove that these equivalence relations satisfy unwinding
conditions. We introduce the notion of an absorbing
cover which deals with the unwinding condition stated
in Property 2 of a beta-family. Our equivalence classes
are generated automatically as a natural consequence of
the non-interference properties and minimum cover
relations developed in this section. We first present
some general results on equivalence relations which
apply to this problem.

We remind the reader that an equivalence relation ~
on the set X is a binary relation on X which satisfies the

properties:

ForabceX,

l.a~a (reflexive)
2.a~b=> b~a (symmetric)
3.a~b & b~c = a~c (transitive) .

The relation ~ defines a subset of X x X, where a~b
is the standard notation for denoting that (a,b) belongs to
the relation, and the equivalence class of x, denoted by
[x].,istheset { y€ XIx~y}. Thesetof distinct
equivalence classes partitions X into disjoint sets.

Definition 11: A collection C of subsets of X is a cover
Jor X if for every x € X, there is an element of C which
contains x; i.e.,

cover: AAX)) — bool
cover(C)= VY x€ X,
I B&Xsuchthatxe B and Be C.

For the remainder of this section, we assume that C is a
cover for X.

Definition 12: For x € X and the cover C, the cover set
Jor x, denoted by Uc(x), is the union of all elements of
C which contain x: i. e.,

U X - 2ZX\{ P}
Ucx) = UB (Uc(x) = @ since C is a cover) .
BeC

x€EB

We use U to build an equivalence relation on X,
where x and y are related if there is a sequence a of
elements in X, initiating at x and ending at y where the
cover sets corresponding to successive elements of o
intersect; i.e. ,

~C: XxX — bool
~C(x,y) =
3 o€ Seqy suchthat a(=x,a(lald =y,
andVi<|lall, Ucla(®d) N Ucloi+l) = @P.

Lemma 4: ~C is an equivalence relation.

Proof:

a). ~C is reflexive
Forx € X, the sequence (x,x) satisfies the definition
for ~C(x,x) (also denoted, x ~C x).

b). ~C is symmetric
Forx,y € X, with ~C(x.y) and corresponding
sequence a = (a;,....4,), we reverse the
sequence to form (a,....,a;) establishing ~C(y.x) .

c). ~C is transitive
Suppose x,y,z€ X, with a = (a;....,a,) verifying
~C(x,y) and B = (by,....b,) verifying ~C(y,z) .
We merge the two sequences to form
v=(ay,....4,,b;,....b) and note that a, =y =b, and
v is the required sequence for verifying that x is
related to z under the relation ~C.

Remark 2: The equivalence relation ~C has the
property that V x € X, Uc(x) & [x)l¢ since if
¥ € Uc(x), then the sequence (y.x) verifies ~C(y.x)
because y € Uc(y) N Uc(x). The next lemma shows
that ~C is the “minimal” equivalence relation that has
the property that every equivalence class contains the
cover set for each of its members.

Lemma 5:

Let Ec = { ~ | ~ is an equivalence relation on X with
the property, V x € X, Uc(x) < [x]. }, then Vx€ X,
[xl.c = N[xl. .

~€EC

108

Proof:

Suppose ~ € Ec- and y € [x]. ¢ . Then there exists
o= (aj,....a5) such that (1) =x ,a(n)=y,and Vi<n,
Ucla®) N Uca+l) = D.

a). [xl.c & M[xL
~€EC

For i< n [adl. N [ai+])]. = @ since
U(a@i) N Uc(ai+1)) € [adl. M [a(i+1)). . Hence
[a@]. = [a(i+1)]. (equivalence classes are disjoint)
and y € [a@)]. = ... = [a(1)]. = [x]. . Since y is an
arbitrary element of [x]. ¢ and ~ is an arbitrary element
of E¢, we conclude that

xl.c & M [x].

~€EC

b) M [xl. € [x].c since ~C € E (from Remark 2).

~€EC

We now apply these results to the non-interference
problem. There is a natural cover for S x A consisting
of basis elements and sets obtained by applying
arbitrary action sequences to basis elements. For
Be ASx A)and a € Seqy , let

SA(B,a) = { state_action(z.a) | z€ B}.

Definition 13: The non-interference cover for S x A
with respect to the pi-mapping 7, denoted by ni_cover,,
is the set

ni_cover, = { basis (z)| z€ SxA } U
{ SA(basis (z),0) | z€ Sx A, o€ Seq, }.

Properties of beta-families involve basis elements,
views, and the application of actions to sets generated
from basis elements. The cover ni_cover, has the
properties:

1). Vz€ S xA, basis(z) € ni_cover,
2). V B € ni_cover,,a€A, T(B,a) € ni_cover,

The first property holds by the definition of
ni_cover,. To understand why the second property
holds, first consider z € S x A and note that
T(basis,(z).a) = { step(x.a) | x € basisy(z) }
{ state_action(x,(a))] x € Dbasis(z) }
SA(basis;(z).(a)) € ni_cover,. Secondly, if a
(a,....a,) € Seq, . we form the sequence y = (a,,....a,,3)
and note that T(SA(basis,(2),a).a)

nmn

{ step(state_action (x,0),a) | x € basis(z) }
{ state_action (x.Y) I x € basis(z) }
SA(basis,(z),y) € ni_cover,,.

non

The property T(B,a) € ni_cover, is related to
Property 2 of a beta-family. The following definitions
will be used in constructing beta-families.

Definition 14: A cover C, covers all basis sets with
respect to the pi-mapping ,if V z € S x A, there exists
aset B € C such that basis, (z) € B .

Definition 15: A cover C, absorbs actions, if v B € C
and a € A, there exists D € Csuch that TB.a) € D.

Definition 16: A cover C, contains views, if ¥V B € C,
there exists z € S x A such that B S view(z) .

Definition 17: For the cover C, the beta-operator for C,
denoted by PB-operatorc , associates each element of
S x A with its minimum cover equivalence class; i.e.,

B-operatorc : SxA — HASxA)\{ D1}
B-operator(z) = {z].¢ .

Lemma 6 relates absorbing covers to Property 2 of
beta-families and Theorem 2 completes the equivalence
of non-interference and the existence of beta-families.

Lemma 6: If the cover C absorbs actions, then
Vze Sx A ac A, T([z].c.a) € [step(z,a)l.c .

Proof:
Suppose thaty, z€ Sx Aanda€ A such thaty € [z]..
For some positive integern and i € { 1, ... ,n }, let

%€ SxA, C,D,e Csuchthatz=x, ,y=x,,%€ C,
T(Ci.a) c Di . and for i< n, v; € Ci m Ci+1' The
existence of n, {C; , Dy, .., C, ., D,}, {x;, ... x,}, and
{v, . .. Vp.1} are guaranteed by the definition of ~C and
the assumption that C absorbs actions. The sequence
(step(x;.a), step(xp,a)) verifies that
step(y,a) € [step(z.a)].c since step(x;,a) € D; for
i€ {1,...,n}andfori<n,D; D, # D because
step(v;.a) € T(C;,a) N T(C;,;.2) ED; ND;,,; .

109

Theorem 2: If n is a pi-mapping and C is a cover for
S x A which covers all basis elements with respect to 7t,
contains views, and absorbs actions, then B-operator is
a beta-family with respect to .

Proof:

We first show that V z € Sx A, [z].c & view(z).

Lety € [z].c with x;....,x, € A, C,,..C, € Csuch
that Vie {1,,n} x€C ,andfori<nm,
G N Cy #@ . Since C contains views, there exists
b, ... bh € SXxA suchthat Vie { |, ..,n}
C, < view(b). Now z = x; € C, & view(b;). Then
out(z) out(b,) and view(b,)
{ w e § x A | out(w) = outb;) }
{we Sx Alout(w) = out(z) } = view(z) . Since for
i<n G N Cy; * @, the same argument shows that
view(b,) = view(b,,). Therefore, view(z) = view(b,) =
view(b,) = view(y), and since y is a arbitrary
element of [z]..., we conclude that [z].c & view(z).

We apply this result to show that the three properties
of a beta-family with respect to 7t hold:

1. Since basis,(z) < B for some B € C, we apply
Remark 2 and the definition of U~ to obtain
z € basis,(z) € B € Uc(z) € [z].c € view(z).

2. Since C absorbs actions, we apply Lemma 6 to show
that Property 2 holds; i.e.,
T(B-operator(z).8) = T([zl.c.8) < [step(z.a)l.c=
B-operator(step(z.a)) .

3. Property 3 holds since equivalence classes of any
equivalence relation (~C in particular) are disjoint .

Corollary: I rn is a pi-mapping and non-interference
with respect to nt holds, then there exists a beta-family
with respect to 7.

Proof: Let C be any cover for S x A which covers all
basis elements with respect to 7, contains views, and
absorbs actions. Ni_cover, is one such cover (from
remarks and the discussion above and the observation
that basis,(z) < view(z) and
SA(basis,(z),a) < view(state_action(z,a))
vV z€ SxA a€ Seqq whenever non-interference is
satisfied). =~ Apply Theorem 2 to conclude that
B-operator is a beta-family with respect to 7.

>

110

4 A Decision Procedure

All the sets described in this paper become finite
when implementing computer systems. In this section,
we formulate an algorithm for determining if non-
interference holds, based on Theorem 2. We start with
the set of all basis elements and aggregate them to form
a partition of S x A based on applying actions. This
process is repeated until either a new set does not have a
constant view or an absorbing cover is obtained. We
present an example before formalizing the decision
procedure.

Example 2: This system, devised by Jon Haugsand [11],
does not satisfy non-interference.
S= { So, Sl' 52. S3. S4 }, A= { lo, hjgh, A’A b
D={ {lo}. {high}, {As} }, 0={ 0. 02. 3¢ 1.
{lo} ~> {high} and {high} ~\> {lo}:

next | lo high A, out{ lo high Aj

So | So S1 So So{O1 O A

S1 |S2 8¢ S1 81101 O Ap

S3 |S3 8 S 5001 O Ap

Sq 1S4 S4 S4 S41 0 Oy Ag
Computations:

1. basis elements for standard non-interference

a). basisnz((So.lo)) = { (Sg.10), (S1.10) }

b). Fors € { 51, S,, 53,54 1. basis_((s,l0)) ={ (s,lo) }
c).Forse S, basisﬂ.q((s.high)) = { (s,high) }
d).Forse€ S, basismz((S.AA)) ={(s.Ap) } .

Step 1: Initial partition

Po={ {(Sp.l0). (51.10)}. {(5,.10)}, {(S3.10)},{(S4,10)},
{(So.high)}. {(S1.high)}. {(S, high)}.
{(S3.high)}, {(S,.high)},

{So.Aa)} {(S1AD) {(S2A001 {S3.A4)}
{420} }.

Step 2: For B € P, compute T(B,lo) and union the
elements of P which contain elements of T(B lo).

a). T{ Splo) , (Silo) }lo) = { (Splo) , (Sp.l0) L
therefore { (Sq.l0) , (S1.10) } U { (S,.10) }.

Py =1{ { (S.l0), (5;.10). (S3,10) }. {(S3,10)}, {(S4.l0)},
{(So.high)}. {(S.high)}. {(S,.high)},
{(S3,high)}, {(S4.high)}, {(So.An)}. {(S1. 20},
{220} {S3a0) {S4A0))

b). repeat Step 1 for T({ (Sg.l0), (§.10), (S,.l0) }lo) to
obtain:

P, = { { (Sg.l0), (S1.10). (S2.10), (S3.l0) }, {(S4.l0)}.
{(Sg,high)}, {(S;high)}, {(S,high)},
{(S3,high)}, {(Sghigh)}. {(Se.An)}. {(S1.A4)).
{S2A4)} {S3.24)) {(Sga01)

c). repeat Step 1 for
T({ (So.0), (S1.10), (8,.10), (S3.l0) }.lo) to obtain:

Py = { { (§0.10) . (51,10), (85,10} . (83.10) , (S4.l0) },
{(Sp.high)}. {(S,,high)}, {(S;.high)},
{(S3.high)}, {(S,.high)}, {(Sg.Ax)). {(S1.A00).
{(S2A)} {(S3.A0)) {(S4Aa)1)}

Step 3: Check the view for the set { (Sq.l0), (S.l0).
(S,.10), (83.,10), (S4lo0) }. This set does not have a
constant view since out((Sp,l0)) = O; and out((S4.10)) =
O, . The algorithm terminates with non-interference
failing. We confirm this result with the state-action pair
(S¢.lo) and action sequence (high.lo.lo,lo):

out(state_pair((Sg.10),(high.10,10,10))) = out(S4,lo) = O,
and

out(state_pair((So,lo).ipurge((high,lo.lolo),{10}))) =
out(state_pair((Sy.10).(A4 10,0,10))) =
out(state_pair((next(Sy,A4).10),(l0,10,10))) = out(Sy.lo)
= 01 .

The following notation and functions are used to
formalize the decision procedure:

Let Z=ASxA) and A={a,.....|Al} .

Z intersect: Z x AZ) » Z
Z_intersect(VB)= U D
DeB

VD =@

Z_disjoint: Z x ®Z) — ®Z)
Z_disjoint(VB)= {DEB | VAD=@}.

A cover for S x A can be converted into disjoint sets
by repeatedly applying Z_intersect. For
C=1{C...C,}.start with B, = Z_intersect(C,,C).
Let E = Z_disjoint(C,,C), and if E # @ , then

E={E,, .. ,E } and compute B, =Z_disjoint(E; E).
Since C, ¢ E, E is a subset of C with fewer elements,
and we continue the process until @ is reached.

Upd: Z x AZ) — AZ)
Upd(V.B) =Z_intersect(V,;B) U Z_disjoint(V,B).

¥or the partitionP = { P, ..., P||P| }LLIPI>1,anda€ A:
Form{ T(P;.a),T(P"p“,a) } and update as follows:
U, (a) = Upd(T(P,,a).P)
U,(a) = Upd(T(P,,a),U;(a))

Uypy(a) = Upd(T(®ypy,a).Uppy-1(a)) -

The final partition is captured in the function
update_action:

update_action: RZ)x A - HZ)
update_action(Ra) = U”p"(a) .

We repeat the update process for all actions using the
recursive function:

update_all actions: Z x {1,..,l|Al} — Z

vpdate_all_actions(P,1) = update_action(P.,a,) .
Vi<||A}, update_all_actions(Pi+1) =
update_action(update_all_actions(Pi).a;, ;) .

Updating all actions in A is given by:

update: RZ) — AZ)
update(P) = update_all_actions(PJJA]) .

The function fixed point produces a cover which
absorbs actions:

fixed_point: HZ) — RZ)

{ P if update(P) =P
fixed_point(P) =
fixed_point(update(P)),

if update(P)+#P.

Let P, be the partition of basis elements, then
fixed_point(P;) computes a partition of S x A which
“absorbs actions”. This is accomplished by using the
function update to union the elements of P, which
intersect sets of the form { T(U,a) | a € A } where
Ue€ Pyand a€ A. I update(Py) = Py, then P, “absorbs
actions”; otherwise, we let P, = update(P,) and note

111

that |[P]l < |[Pll - 1 since at least two elements of P,
have been mezged by update. The partition update(P;)
is checked for equality with P;. The function
fixed_point continues this process and terminates either
by finding P, such that update(P,) = P, or reaches the
partition that unions all the elements of P ; namely
{SxA}.

The maximum number of calls to Upd is
Pgll _(Ill’gllil)_ Al
since
f[Poll HAII
1Poll-1
= E. (IPoll-i) HAII = [IPoll .(..IIPOZII:I-_L) IAll .

i=0

+ (iPgll- 1) A}l + ... + 1 ||A]]

A decision procedure for non-interference has been
developed. This immediately raises the question of its
applicability to system designs. How large does |[Pl| or
[[All have to be before the computations become
unwieldy or how well does the procedure scale for
larger systems? We do not know the answers to these
questions; however, we are automating the algorithms
and plan to examine these issues.

5 Conclusion

Although intransitive policies require a much more
complex purge function than standard non-interference,
our unified approach uses a method to determine when a
system satisfies non-interference which has the
complexity of the standard case. The system designer
can demonstrate that his system satisfies non-
interference either by a). satisfying the conditions of
Theorem 2, or b). executing the decision procedure, or
¢). proving that the unwinding theorems hold.

The key to non-interference with respect to a
pi-mapping 7 is captured by the properties of the set of
basis elements {basis (z) | z € S x A}. Establishing
non-interference reduces to finding an appropriate
grouping of the basis elements. From Theorem 2, this
occurs if there exists a cover for S x A which covers all
basis elements, contains views, and absorbs actions.
We have presented an algorithm that determines if such
a cover exists, whenever the underlying sets are finite.

We begin with the cover consisting of only basis
elements and successively apply actions in A to update
the cover. This process is continued until there is no
change in the cover ; hence producing a cover which
absorbs actions. If the resulting cover also contains
views, then non-interference holds and the algorithm
has produced a beta-family. Checks at intermediate
stages of the algorithm could be made to determine if
the updated covers satisfy the contains view property.

Whenever the algorithm terminates with a cover
which contains views and absorbs actions, the
“minimal” beta-family is obtained. By starting with the
disjoint collection of all basis elements, we produce the
set of equivalence classes corresponding to the minimal
equivalence relation that has the property that every
equivalence class contains the cover sets of each of its
members.

6 Acknowledgments

We are indebted to Will Harkness for conveying the
“mathematical essence” of non-interference by
generalizing the Haigh-Young View-Identical problem
to arbitrary finite sets [10]l. We benefited from
conversations with Tim Redmond, Jon Millen, and Josh
Guttman. We especially thank Bill Young, Tom Haigh,
and John Rushby for explaining the subtleties of
intransitive purges. We also thank anonymous referees
for their suggestions.

References

[1] E. Boebert and R. Kain, A practical alternative to
hierarchical integrity policies. In Proceedings of the
Computer Security Initiative Conference, 1985.

[2] T. Fine, T. Haigh, D. O’Brien, and D. Toups,
Noninterference and Unwinding for LOCK. In
Proceedings of the Computer Security Foundations
‘Workshop II, 1989.

[3]1 T. Fine, Constructively Using Noninterference to
Analyze Systems. In Proceedings of the IEEE
Symposium on Security and Privacy, 1990.

112

[4]1 R. Focardi and R. Gorrieri, A Taxonomy of Trace-
Based Security Properties for CCS. In Proceedings of
the Computer Security Foundations Workshop VII,
1994,

5] J. Goguen and J. Meseguer, Security policies and
security models. In Proceedings of the IEEE
Symposium on Security and Privacy, 1982.

[6] J. Goguen and J. Meseguer, Inference Control and
unwinding. In Proceedings of the IEEE Symposium on
Security and Privacy, 1984.

{71 J. Haigh and W. Young, Extending the non-
interference model of MLS for SAT. In Proceedings of
the IEEE Symposium on Security and Privacy, 1986.

[81 J. Haigh and W. Young, Extending the
noninterference version of MLS for SAT. In IEEE
Transactions on Software Engineering, SE-13(2), 1987.

91 C. A. R. Hoar, Communicating Sequential
Processes. Apprentice-Hall International. London,
1985.

[10] W. Harkness, The General LOCK Model and
Unwinding Theorem. R21 Informal Technical Report,
Department of Defense, October 1990.

[11] J. Haugsand, Private communication, University of
Solo, Norway, 1994.

[12] J. McLean, A General Theory of Composition for
Trace Sets Closed Under Selective Interleaving
Functions. In Proceedings of the IEEE Symposium on
Security and Privacy, 1994.

[13] S. Pinsky, An Algebraic Approach to Non-
Interference. In Proceedings of the Computer Security
Foundations Workshop V, 1992,

[14] J. Rushby, Noninterference, Transitivity, and
Channel-Control Security Policies. SRI International,
CSL Technical Report, 1992,

[15] J. Rushby, The design and verification of secure
systems. In 8th ACM Symposium on Operating System
Principles, ACM Operating System Review, Val 15, No.
5, 1981.

[16] J. Rushby, Verification of secure systems.
Technical Report 166, Computing Laboratory,
University of Unchaste upon Tone, UK, 1981.

[17] W. Young and W. Bevier, A State-Based Approach
to Noninterference. In Proceedings of the Computer
Security Foundations Workshop VII, 1994.

113

