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Fig. 1: Overview of the proposed method for CLIP-based defect detection. During training (left) the model learns to associate
images of runway surface with text inputs that describe the condition of the surface. In the inference phase (right), the model
can process a surface image and provide a text description regarding the existing defects and the damage severity.

Abstract—Maintaining runway infrastructure is vital for air
transport safety, with defects like cracks and tire marks posing
significant risks to the take-off/landing process. Researchers have
proposed various methods for automatic detection of surface
defects, using computer vision and machine learning. However,
they often require explicitly annotated datasets that demand sig-
nificant workload and field expertise. Additionally, the detection
outcome usually follows the low-level training labels scheme to
describe the detected defects, and requires post-processing for
high-level semantic information extraction, such as damage level
estimation. In this work, we present a novel method for defect
detection and damage severity estimation on runway surfaces,
leveraging the Contrastive Language-Image Pre-training (CLIP)
architecture for image-text pairing. Our model processes runway
images and attaches text descriptions mentioning detected defects
and severity level, identifying three defect types (crack, joint, and
tire mark) and categorizing damage severity into three levels
(low, medium, and high). Utilizing natural language annotations
simplifies the labeling process, eliminating the need for labor-
intensive low-level image-based annotations. The model exploits
the high-level natural language annotation for direct estimation
of damage severity and delivers high-level semantic information
to the end-user as text, providing a comprehensive runway
condition assessment tool. The proposed method demonstrates
high performance across various test sets, posing a valuable
human-centric approach for efficient defect detection and damage
estimation on runway surfaces.

Index Terms—Defect Detection, Construction Monitoring,
CLIP, Human-centric Approaches

I. INTRODUCTION

Airports serve as critical transportation hubs, facilitating
the movement of passengers and goods across the globe.

∗Corresponding Author

Detecting and addressing defects in airport infrastructure is
essential for maintaining operational continuity and mitigating
potential safety hazards [1]. Defects such as cracks, pot-
holes, surface irregularities like tire marks, and structural
damage, can compromise the integrity of runway, leading to
operational disruptions and safety risks during takeoff and
landing procedures. Traditional methods for defect detection
and operational maintenance often rely on visual on-the-
spot inspections, scheduled multiple times daily. However,
besides being time-consuming and potentially underestimating
damage, this approach also exposes airport personnel to risks
by requiring them to work directly on the runway.

The integration of computer vision techniques into defect
detection processes offers several advantages over traditional
manual inspection methods, enabling more rapid and accurate
defect identification across large volumes of products [2].
Integrating these capabilities with smart sensory systems, like
UAVs, airports can autonomously conduct defect detection
surveys with efficiency and precision [3], [4]. This reduces
reliance on manual labor while enhancing the overall safety
and reliability of airport operations. The typical computer
vision-based approach includes analyzing the captured im-
agery and automatically detecting the depicted defects. To this
end, several image processing methods have been employed
to extract and identify defect-related features from images.
The advancements in Deep Learning (DL) and Convolutional
Neural Networks (CNNs) have been employed in this domain
also, to provide more sophisticated solutions. In this light,
remarkable DL-based methods have been introduced to detect
various types of defects, even under challenging conditions



such as variations in size/shape, surface textures, etc. These
methods are capable of producing detailed defect detections,
sometimes even at the pixel level, enabling accurate identifi-
cation across a range of anomalies.

Nevertheless, these DL-based methods often rely on ex-
tensive annotated datasets for model training and evalua-
tion. However, the annotation process is inherently tedious
and time-consuming, requiring meticulous attention to detail,
consistency and domain expertise. Moreover, the annotated
data must adhere to specific model-oriented schemes, such
as pixel coordinates of bounding boxes, pixel-wise masks,
or numbered labels for different classes. Even when the
decision-making process of labeling instances is straightfor-
ward, adhering to specific annotation schemes can still prove
to be tedious and time-consuming for annotators. Furthermore,
this type of image-level annotations typically provide low-
level information, vaguely describing defects’ location and
shape. Hence, prediction outcome also follows this low-level
scheme, describing the detected defects in a low-level concept
that is not directly plausible from the end-user. Moreover,
it usually requires further post-processing of the detection
result to estimate meaningful information about the examined
infrastructure, e.g. quality of the damaged surface.

Employing a higher-level annotation scheme, which is
human-centric instead of tailored to the model design, such
as using natural language to label images, can enhance the
defect detection process in several ways. First, it simplifies the
annotation process by describing the depicted semantic content
(e.g. ”a wall surface with cracks”), while reducing the need for
field experts. Natural language allows for describing high-level
concepts depicted in the scene (e.g. ”an outside wall surface
with several cracks and spalling that needs some repair”).
Contrary to low-level image-based labels, utilizing this high-
level information guides a model to learn high-level concepts
that are enclosed in the training data and thus, associate the
text-described surface defects and the wall condition with the
visual attributes of the input images. Hence, a model capable
to pair images to text descriptions can exploit these attributes
and provide high-level semantic information in the form of
text captions, that are directly accessed from the end-user and
describe high-level concepts regarding the infrastructure, e.g.
”a damaged concrete surface with cracks and peeling paint
that needs to be repaired”.

In this light, we present a novel vision-language framework
for defect detection and damage estimation on runway sur-
faces. The proposed method is built upon the well-known
Contrastive Language–Image Pre-training (CLIP) [5] model,
a deep-learning architecture capable of pairing images to text.
As illustrated in Figure 1, during training, we attach text
descriptions to runway images, specifying the depicted defects
and the estimated damage level. The designed model is trained
to associate this natural language description with the visual
concept of the image. In inference mode, our framework en-
codes a given runway image and attaches to it the text caption
whose feature vector best matches the encoded representation,
mentioning the detected classes and the estimated severity of

damage. The proposed model detects three types of defects
- cracks, joints (repaired cracks) and tire marks - and cate-
gorizes the surface damage in three levels: low, medium and
high. Leveraging natural language simplifies the annotation
process and allows providing detection results that are directly
accessed from the end user. Furthermore, the model exploits
the high-level information from text descriptions to enhance its
robustness and efficiently learn the visual semantics related to
defects and damage severity — an aspect almost inaccessible
through traditional image-based annotation. Overall, we con-
sider our framework a novel human-centric approach for defect
detection and damage estimation, comprising a comprehensive
tool for runway condition assessment.

II. RELATED WORK

Research community of computer vision and machine learn-
ing has proposed several methods for defect detection on
construction infrastructures [6], [7]. Early approaches em-
ployed a variety of well-known image processing methods to
distinguish the depicted defect instance from the background
surface. To this end, methods utilizing techniques such as
image filtering [8], image thresholding [9], edge detection [10]
and image enhancement [11] have been proposed, aiming to
detect surface defects (usually cracks).

Advancements in deep learning have also been leveraged in
the domain of defect detection. In this light, a set of works
have been proposed based on deep learning architectures to
detect defects on images of infrastructure surfaces. Authors in
[12] developed a decision-making tool for buildings inspection
by fine-tuning a Deep Convolutional Neural Network (DCNN)
for surface crack detection. A comprehensive CNN-based
framework was developed in [13], capable to detect structural
cracks and estimate their real-world location. Zhang et al. [14]
built a custom dataset to develop a CNN model for defect
detection in pavement imagery. A CNN-based model, named
CrackNet, was introduced in [15] to identify cracks at pixel
level by preserving the spatial dimensions of the input image.
Similarly, authors in [16] proposed DeepCrack, a DL network
to semantically segment crack instances from the background.
The semantic segmentation approach was also employed in
[17] to identify crack defects on road surfaces. Authors in [18]
proposed a DCNN-based method that assigns bounding boxes
on surface defects over airport’s runway, while Makekloo et
al. [19] explored the utilization of dashcam imagery for the
detection of runway distresses.

Although the employment of natural language in defect
detection remains to some extent unexplored, a set of works
have been proposed in this direction. Authors in [20] proposed
WinCLIP, a method based on a set of multi-scale CLIP
encoders for defect detection on objects. Zhou et al. [21] pro-
posed AnomalyCLIP, a method utilizing object-agnostic text
prompts for defect/anomaly detection across various domains.
A CLIP-based architecture was employed in [22] for defect
detection on wall surfaces and combined with prompt engi-
neering to optimize model’s performance. Similarly, Cao et al.
[23] developed a framework for zero-shot defect segmentation



by utilizing field-expert text prompts and target image-based
prompts.

Inspired by prior works, our method relies on a CLIP-based
network capable of detecting various types of defects and
assessing the severity of damage across the surface. Moving
a step forward from the previous approaches, we implement
our method in a realistic scenario, employing real-world data
instead of simplified datasets that streamline the problem (e.g.
featuring only one type of defect per image, objects depicted
from consistent distance/angle, uniform background texture,
constant lighting conditions, etc.). Furthermore, our approach
harnesses the power of CLIP technology not only to detect
defects but also to provide insightful captions that categorize
the severity of detected damage and thus, provide valuable
contextual information, facilitating efficient maintenance and
safety measures for runway infrastructures.

III. METHODOLOGY

A. CLIP Architecture

The core element of the proposed framework is a CLIP-
based network. CLIP is a novel architecture designed to
associate visual concepts with natural language. In specific,
CLIP is capable to estimate how well a given image and a
text description fit together. To this end, the CLIP architecture
is based on an image and a text encoder to initially encode
image and text inputs to vectors, respectively. The encoded
representations are projected to a multi-modal embedded
space, through a trainable mapping network, where they can
be compared to each other. During training, a set of image-text
pairs is fed to the network and it is estimated the similarity
of each image to every text prompt in the embedded space,
in terms of cosine similarity. The overall network is trained
with a contrastive objective function that aims to maximize
the similarity of the correct image-text pair and minimize the
similarity with rest incorrect pairs. In the inference mode, the
trained model can be fed with a single image and a set of
candidate text descriptions and estimate which description fits
the best to the provided image. Towards this direction, one can
easily assign text to images, that describe the visual concept
or even classify the images according to it. The specific design
of CLIP enables zero-shot performance, since there is no
restriction for specific labels in the inference phase.

B. Proposed Method

The proposed method follows the aforementioned scheme
in order to attach text descriptions to runway surface images.
In specific, a CLIP-based network is designed to recognize
possibly existing defects and characterize the condition of the
depicted runway surface, in terms of damage severity. An
overview of the proposed method is presented in Figure 1. Our
framework is composed of three main elements, namely the
image encoder, the text encoder and the projection network.

During training each image Ii ∈ Rm×n×3 of the training set
and its corresponding text description Ti are fed to the image
and text encoder, respectively. The image encoder process
Ii and leads to a compact vector representation ei ∈ RN ,

that encloses high-level visual features of the input imagery.
Correspondingly, the text encoder process the text input Ti and
leads to a vector wi ∈ RM that encodes the provided natural
language context. For the image encoder the ResNet [24]
deep-learning architecture is employed, specifically ResNet50,
which is well-known for its robustness. While the text encoder
is a DistilBERT [25] model, a Transformer network based on
BERT [26] architecture (yet significantly lighter) for efficient
language representation. Each one of the two vectors ei and
wi, acquired from the image and text encoder, respectively,
enclose a different modality of the input information. By
comparing ei and wi one can estimate how closely the two
modalities describe the common semantic content of the input.
Yet, since ei and wi differ in size, they remain incomparable to
each other. Thus, they should be transferred in common multi-
modal feature space where the similarity estimation among the
different modalities is enabled.

To achieve this, a projection network is utilized to map
each encoded vector to the common K-dimensional embedded
space F . As illustrated in Figure 1, the encoded vector
ei ∈ RN is forwarded to the projection network, which adopts
a simple architecture consisting of fully-connected layers.
Specifically, ei is fed to a fully connected layer to transform
it to a K-sized vector, aligning with the dimensionality of the
embedded space F . Next, the GELU [27] activation function
is applied to the output of the fully connected layer, followed
by another fully connected layer with dropout. Similarly to a
ResNet-like architecture, the output of the first fully connected
layer is added to the output of the second fully connected
layer. Lastly, layer normalization is applied, yielding the
projected vector fei ∈ RK of the embedded space F . Similarly,
the output of the text encoder w ∈ RM is processed by
another projection network, sharing the same aforementioned
architecture, resulting in the transformed vector fwi ∈ RK

within F .
Since the two encoded vectors have been mapped to the

common space F , the similarity among the image-based and
the text-based embedded vectors fwi and fwi , respectively, can
be easily estimated by calculating their dot product. During
training, the dot product among each image and text embedded
vector of the batch is calculated, and every image is paired
with the text that leads to the maximum dot product value.
Thus, the objective function is to minimize the cross-entropy
loss among the estimated pairs and the correct ones.

As depicted in Figure 1, in inference mode the trained
framework is utilized to attach a text description to a pre-
viously unseen image. To this end, the provided image is fed
to the model and projected to the embedded space F , where
the dot-product similarity among a set of candidates embedded
text descriptions is measured. Finally, the text description with
the most similar embedded vector is selected as the caption of
the given image.

The deployed framework can significantly advance the
process of defect detection over runway areas. By training
the model with paired images and texts that describe the
condition of the depicted surface - naming the captured defects



and the severity of the damage - it can learn to associate
the given visual content with the high-level semantic infor-
mation of the text caption. Unlike traditional image-based
detection methods, which typically rely on labor-intensive,
low-level annotations tailored to the model architecture (e.g.
bounding box coordinates, pixel-wise annotations masks, class
labels, etc.), our approach enables the use of simple natural
language as a high-level annotation scheme. This simplifies
the labelling process and relaxing the constraint of involving
only field experts. Moreover, typical image-based detection
methods guided by the aforementioned low-level types of
ground truth during training primarily learn to recognize basic
visual attributes (e.g. color, shape, geometry, etc.) of the
defects. On the contrary, our approach leverages the high-
level semantic information of the natural language annotations
to recognize high-level concepts in the visual input and thus,
detect different types of defects as well as estimate the level
of existing damage.

C. Dataset Creation

To deploy the proposed method, we developed an image-
text dataset designed for runway monitoring tasks. To this
end, we utilized an existing UAV-based dataset, developed
for semantic segmentation tasks under the scope of H2020
ASHVIN project [28]–[30]. More specifically, the dataset
contains a set of high-resolution UAV images captured over
Zadar airport, Croatia. Data were collected via two flights,
conducted at different dates and covering different sub-regions
of the airport’s runway area. During the first mission, 108
images of size 5000×5000 pixels were collected. While from
the second mission, 201 images of size 2000 × 1500 pixels
were acquired. The collected images capture a wide variety
of textures of the runway’s surface. Moreover, field-experts
have annotated in pixel-level the collected images, highlighting
three main types of surface defects, cracks, joints (repaired
cracks) and tire marks.

These UAV images were utilized to create a bigger set of
runway surface images, while the corresponding pixel-level
annotations to generate the text descriptions, that characterize
the condition of the depicted area. In this direction, each image
was split to non-overlapping patches of size 112×112, which
is half of the typical 225×225 patch size that was used in the
original CLIP paper. For every image patch, the corresponding
patch from the annotation mask was also cropped. Then,
the corresponding text description of the image patch was
automatically generated based on its semantic content, which
was available through the cropped annotated patch.

Specifically, the generated text description characterize the
condition of the depicted surface in terms of existing defects
and the severity of damage. Each description follows the
format: ’A surface of [damage level] damage containing
[detected defects].’ Where, [damage level] represents the
severity of damage, categorized as low, medium, or high,
while [detected defects] encompasses the various types of
identified defects. The types of defects within each patch
are directly accessible from the corresponding annotation.

While, damage severity is estimated by initially calculating the
damage percentage d, as described by the following equation:

d =
N crack +N joint +N tire mark

W ×H
(1)

where N crack, N joint and N tire mark represent the number of
pixels annotated as crack, joint and tire mark, respectively. W
and H denote the width and height of the patch, respectively.
Please note that the value of d belongs to the range [0, 1].

Next, the damage level is classified according to the follow-
ing thresholding:

damage level =


low if 0 < d < 0.1

medium if 0.1 ≤ d < 0.2

high otherwise
(2)

The specific threshold values were selected by analyzing the
created dataset and estimating the d value over the whole set.
The aim was to create three main categories of damage level,
each of which contains a sufficient number of samples.

Following the aforementioned process, various text descrip-
tions are generated based on the surface condition and depicted
defects. Additionally, in case that no defects are present in
a patch, the accompanying text description is formed as ’A
runway surface without defects’. Similarly, patches depicting
regions outside the designated runway area are characterized
by the phrase ’An image outside the runway area’. This
differentiation serves to distinguish between cases where the
depicted runway surface is defect-free and those where the
depicted region falls outside the area of interest. By including
this characterization, the model is guided to learn the visual
features of a defect-free runway surface more effectively.
An overview of the aforementioned data-creation process is
presented in Figure 2.

Through this approach we developed a new image-text
dataset tailored for tasks related to runway monitoring. A
total of 47, 192 and 44, 421 image-text pairs were generated,
respectively, by processing data from the first and second UAV
mission, respectively. As a result, a comprehensive image-
text dataset containing 91, 613 (approximately 100k) samples
was created, capable for efficiently training and evaluating the
designed CLIP-based network.

IV. EXPERIMENTAL RESULTS

A. Implementation Details

The developed dataset was divided into train and test sets
according to the following strategy. Image-text pairs generated
from the first UAV mission (47, 192 samples) were reserved
for training only. Meanwhile, image-text pairs derived from the
second UAV mission (44, 421 samples) were randomly split
into training (80%) and testing (20%) subsets. Consequently,
the training set comprises 82, 728 samples, while the testing
set consists of 8, 884 samples. Please note that only image-text
pairs from the second UAV mission are employed in testing
phase. Instead of a more conventional method of dividing
to train-test sets the samples from both UAV missions, we



Fig. 2: Dataset creation overview. Non-overlapping patches are cropped from each image and its corresponding annotation
mask. Text descriptions are automatically generated for each patch based on its annotation. Cracks are marked in red, joints
in blue, tire marks in green, and background in black.

selected this method as a more challenging, yet realistic,
approach, since it increases the diversity between the training
and testing data. Please note that the non-overlapping approach
described in Section III-C guarantees that no information of
the training set is leaked to the testing phase.

During training a data augmentation strategy was followed
to increase the generalization ability of the model. In partic-
ular, every input image was resized to 224 × 224, which is
the go-to input size in the original CLIP work. Additionally,
transformations were applied to each input image with a
possibility of 0.5 each, namely horizontal flip, vertical flip and
rotation within the range [−10◦, 10◦]. The deployed network
was trained for 30 epochs with AdamW optimizer and weight
decay equal to 0.2 epochs. The learning rate was set equal
to 1e − 3, 1e − 4 and 10−5 for the projection network, the
image encoder and the text encoder respectively. The image
encoder leads to embedded vectors of size 2048, while the
text encoder to size 768. The projection network maps the
vectors of each encoder to the common multi-modal space
F of 1024 dimensions. The image encoder was pretrained
in ImageNet [31] while text encoder to BookCorpus [32]
dataset. The specific datasets are established for guaranteeing
the robustness of the encoders to extract high-quality features
and operate efficiently, especially when processing in-domain
data. Towards this direction, we kept the weights of the two en-
coders frozen during the first epoch to avoid backpropagating
noisy updates due to the random weight initialization of the
projection network and conduct a smooth training process. For
the rest of the training epochs, the weights of all submodules
are updated to adapt to the special characteristics of the runway
dataset, which is considered as out-of-domain, in respect to the
datasets that the two encoders were pretrained.

B. Quantitative Results

We assess the performance of the proposed method by eval-
uating the top-k score across the test set. For each image in the
test set, we feed it into the network and estimate the probability
of it matching with each possible text description, i.e. different

combinations of damage level and depicted defects, defect-less
cases, or out-of-interest areas. To ensure a robust evaluation,
we adopted the well-known k-fold validation approach. Thus,
the random splitting of the created dataset to train-test sets, as
described in III-C, was repeated 3 times leading to 3 distinct
dataset folds. For each k-fold we keep the model weights
of the epoch that led to the maximum top-k score. Table I
summarizes the results for top-1 (similar to accuracy metric),
top-3 and top-5 scores. Since the created dataset is to some
extent imbalanced due to the nature of the problem - images
depicting defect-free surfaces are more than those enclosing
defects - we also measured the top-1 score, specifically for
cases where defects are present. The results of this scenario
are presented in the last column of Table I.

TABLE I: Top-k Score (%) Results of the Proposed Method
Over the Defect Detection Dataset

Split Top-1 Top-5 Top-3 Top-1
(Defects Only)

1 86.90 96.73 98.84 71.70
2 87.46 97.52 99.17 71.18
3 87.37 97.39 98.95 72.30
Mean 87.25 97.22 98.99 71.73

Results of Table I imply the robustness of the proposed
method. Notably, the model achieves consistently high top-k
scores across all three splits, demonstrating high performance.
These scores indicate the ability of the model to associate input
images to text prompts that accurately describe the semantic
content of the scene, i.e. mention existing defects and estimate
the severity of the surface damage. Apart from the typical
top-k metrics, this is also underscored from the reported top-
1 metric for defects only, where the model showcases mean
accuracy equal to 71.73%. Thus, the proposed method is
a valuable approach to efficiently detect different types of
surface defects while simultaneously estimating the quality of
runway surface.



Fig. 3: Qualitative results of the proposed method for a set of test images. For each input image, the top-3 predicted text
descriptions are presented among with their corresponding probabilities. The prediction corresponding to the ground truth is
highlighted with light blue color.

C. Qualitative Results

Figure 3 presents a set of qualitative results for the proposed
method. For each sampled test image, the probabilities of
the top-3 predicted text descriptions are reported. Results
imply that in the majority of the cases, the developed method
can accurately detect the depicted classes and characterize
the damage level. It is also interesting to examine the rest
two most probable text descriptions predicted by the model.
One can notice that the second and third most probable
captions are semantically related to the first one. For instance,
when the surface has no defects, the second most probable
text description is a caption mentioning low damage level.
Similarly, when the image depicts an area outside the runway,
the second most relevant option is a description of a defect-
less surface. In cases where defects are detected, the remaining
most probable estimations are also relevant, either in terms of
damage level or defect classes. The above indicate that the
developed model has effectively learned the semantic content
of the images and how the visual information is related to the
examined defects and the different severity levels.

V. CONCLUSIONS

Monitoring and maintaining airport runway infrastructure
is crucial for ensuring high safety standards in air transport.
Defects on the runway surface, such as cracks or tire marks,
pose significant risks to the take-off and landing process. Re-
searchers haver proposed several approaches to automatically
detect these defects, via computer vision and machine learning
methods. Nevertheless, a key prerequisite of these approaches
is the utilization of relevant explicitly annotated datasets,
which demands a heavy workload and field experts. Moreover,
the corresponding detection outcome usually follows the low-
level scheme of the training labels and requires further post-
processing to extract high-level semantic information.

In this work, we present a novel method for defect detection
and damage severity estimation on the runway surface based
on CLIP architecture. Our model processes runway images and
attaches text descriptions indicating defect types (crack, joint,
tire mark) and severity levels (low, medium, high), providing
a comprehensive assessment of the runway condition. To
develop our method, we created a custom image-text dataset,
utilizing an existing dataset for semantic segmentation of
runway defects and generating text descriptions based on
the semantic content. The proposed method presented high
performance, in terms of top-k score, across all random three
splits of train-test sets. Results imply that the proposed model
is a valuable approach that can efficiently detect different
types of defects and estimate the damage level on the runway
surface. This high-level information is provided in the form of
natural language and can be directly accessed by the end-user,
enhancing the human-centric design of the system. Moreover,
since the annotation process is based on text captions, there
is no requirement for specific low-level image-based labels
(bounding boxes, pixel-wise masks, etc.) that typically demand
extensive labor from field experts.

In the future, we aim to extend our work with additional
cross-over experiments and by employing prompt engineering
to enrich text captions’ semantic information and enhance
the model’s capabilities. We will also investigate advanced
methods for runway condition characterization, e.g. relative
construction and material indexes, to shape the text descrip-
tions. Lastly, we will explore using the encoded representa-
tions, which contain vital surface condition information, in
tasks such as image generation and semantic segmentation.
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