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Abstract—The evolution of mobile networks is converging 
with the pervasive digitalization of the industrial/ 
manufacturing sector, which is demanding highly reliable and 
deterministic wireless networking. The performance levels of 
wireless networks are greatly enhanced from one generation to 
the next, but the variability of performance, especially with 
regards to latency, remains an issue to be addressed since most 
protocols and solutions are designed with the assumption that 
underlying networks shall deliver performance levels with 
very low variability, as it is the case, for example, of Ethernet 
networks. In this work, we address this critical issue, 
proposing and validating a novel solution approach for 
achieving effective de-jittering in 3GPP networks that does not 
require the modification of the end-user traffic (e.g. 
timestamping), thus enabling its implementation on current 
5G networks without demanding special UEs or new 5GS 
capabilities. This solution approach is validated over a real 5G 
network deployed at 5Tonic laboratory. 

Keywords—5g, time-sensitive networking, Network Digital 
Twin, deep reinforcement learning, 5tonic lab, non-public 
networks. 

I. INTRODUCTION 
The evolution of the mobile networks provides not only 

improvements in the performance but also new capabilities 
that allows to adapt its architecture to specific use cases. For 
example, using Network Slicing and other capabilities, it is 
possible to create Non-Public Networks [1] for Industrial use 
cases, which enables the integration of private segments of 
mobile networks with public networks. This topic has been 
a trend in the research and innovation of mobile networks 
[2],  being amplified nowadays by the nice convergence of 
several complementary technology trends and innovations, 
such as deterministic communications, Digital Twin and  
Edge computing, for enabling robust communication 
solutions for meeting more and more Industry 4.0 
requirements. 

Deterministic communications is an essential area for 
providing reliable and predictable communications 
networks for the Industry, especially for wired networks [3]. 
Currently there are efforts for implementing determinism in 
wireless network (e.g. [4]), in the I4.0 context, as one of the 
issues in this context is the variability of the wireless 
networks performance. A major line of research in this area 
aims at avoiding the inherent jitter that a wireless network 
introduces in the end-user communications. Most of current 
state of art solution proposals rely on buffering the end-user 
traffic for apply de-jittering algorithms. In fact, it is a 
standard capability of 5GS called hold-forward [5], which 
was introduced in 3GPP Release 16 that provides a de-jitter 
mechanism for 5G networks.  In  [6] a de-jittering approach 

based on varying network delays for audio traffic is 
proposed. And in [7], they propose the use of historical 
information for adapting the multimedia streams to the 
possible delay variation. In [8] the authors propose to 
implement de-jittering in each hop by using different 
priorities and queues. All these works assume that the de-
jittering mechanism is aware of either certain end-to-end 
parameters, or the periodic nature of the traffic (e.g. audio 
or video). 

In this work we present a novel mechanism that relies on 
the modeling of 5G network provided by a Network Digital 
Twin for training a Deep Reinforcement Learning agent, 
which will de-jitter the traffic without assuming or requiring 
any a priori knowledge of end-to-end metrics (delays, jitter) 
or the nature of the traffic. This new method is not only 
implemented but also thoroughly validated over a real 5G 
network. Our proposal can be implemented without 
modification in the real traffic (e.g. timestamping the 
packets) and without external requirement in the UE. As we 
demonstrate in this work, this allows to implement the 
mechanism in a vanilla 5G network, using commercially 
available User Equipment without any modification. 

This paper is organized in several sections as follows. 
Section II describes the materials and methods used for the 
development of the proposed smart de-jittering algorithm. 
Section III  includes the relevant results of different flavors 
of smart de-jittering from the experimentation over the real 
5G network previously described in section II. Section IV 
contains the discussion of the obtained results and, finally, 
Section 0 includes the relevant conclusions of this research 
work. 

II. METHOD AND MATERIALS 
Key methods and material used in the development of 

this work are described in the following sub-sections. 

A. Traffic Model 
In this work an industrial use case defined at [9] is used 

as reference. In the addressed use case, an industrial element 
(e.g. a robot) communicates with a Programmable Logic 
Controller (PLC) using a 5G network. The traffic was 
modelled as described in TABLE I.  

In the experimental setup, both industrial element and 
PLC are simulated by using programmable traffic generators 
implemented in the Network Digital Twin platform. The 
PLC simulator is attached to a 5G CPE (Askey 5G NR ODU 
NUQ3000M), which uses the 5G network described in 
section B; and the Industrial Element is deployed in the Data 
Network (DN) of the 5G network. In Fig. 1 we describe the 
setup of the experiment. 



TABLE I.  INDUSTRIAL USE CASE TRAFFIC MODEL 

Traffic Model parameter Value 

Packet size 1440 

Protocols UDP/IP 

Direction Uplink/Downlink 

Traffic Type Periodic 

Interval 10 milliseconds 

 

B. 5G network 
We use the 5Tonic1 open laboratory, which provides a 

commercial 5G SA network. In particular, a portable Non-
Public Network (NPN) with shared radio and control plane 
and private user plane, which is inspired in 5G-ACIA white 
paper [1], is used. The NPN part, as shown in Fig. 1, contains 
the radio elements (radio unit, antennas and gNB), the User 
Plane Function (UPF) and the transmission equipment 
required for the integration with 5Tonic’s 5G Core and cloud 
applications.  

 
Fig. 1. High level design of Non-Public Network deployment. 

The NPN is built on a portable system, designed to be 
easily re-located to varied premises, as shown in the Fig. 2, 
where different on-premises deployments are considered. 
The goal is to extend the experimentation environment 
provided by 5Tonic laboratory to the selected end-user 
premises for experimentation, and that includes not only the 
5G network but also the experimentation tools, like for 
example the traffic generator and the probes, which are used 
in this work. 

 
Fig. 2. NPN portable system in different on-premises deployments 
(photos from [10]). 

The traffic generator uses the model defined in TABLE 
I. for emulating our target traffic. The probes are software 
probes deployed in different capturing points (UE, 5G Core 
N3 interface, 5G Core N6 interface, vPLC) and provide 
metrics of our traffic, such as Throughput, One-Way Delay 
(OWD), Packet Loss for both downlink and uplink traffic. 
All probes are synchronized in time using NTP through a 
local OAM network that guarantees errors of the order of 

 
1 https://www.5tonic.org 

microseconds (as showed in Fig. 3), which is acceptable for 
the accuracy required for the measurements to be obtained.  

 
Fig. 3. NTP synchronization error during the experiments. 

C. Network Digital Twin 
One key element provided by the 5Tonic laboratory is a 

Network Digital Twin (NDT) of the Non-Public Network, as 
described in depth in [10]. As explained below, we propose 
to use the NDT to model the 5GS response in terms of 
latency to the use case traffic. 

D. Smart de-jittering 
In this work we present a novel method for performing 

the traffic de-jittering using Deep Reinforcement Learning 
(DRL), which consist in a reinforcement learning using 
machine learning. The main idea is to not to have to 
timestamp the traffic but, instead, leverage a Network Digital 
Twin in order to model the latency introduced by the 5GS 
and to use that model to train our DRL solution.  

 

 
Fig. 4. Basic Deep Reinforcement Learning schema. 

Following the schema described in Fig. 4, we create: 

• An environment that simulates the 5GS response to 
the use case traffic. The simulation is based on the 
statistical information collected by NDT, and the 
environment is capable of generating a pattern of 
One-Way Delay (OWD) that matches with the 
probability distribution of OWD of the real 5G NPN 
system. 

• An agent that, based on the input observation 
provided by the environment, identifies the best 
action to be performed on it. 

In our solution the environment provides the following 
information to the agent: 

• State: The state (or observation) is the current state 
of the environment, and it is used by the agent to take 
decisions. It contains the Inter-Packet Arrival (IPA), 
in milliseconds, of the current packet compared to 
the previous one, and a delta, in milliseconds, 

 



corresponding to the forwarding time of the last 
packet. 

• Reward: The reward defines how well the agent 
performs in the previous step. Different methods for 
calculating the reward are used, being described in 
section E. 

The agent interacts with the environment by the defined 
action, which consist in the buffer time (in milliseconds) to 
apply to current packet. 

The goal of the proposed smart de-jittering approach is 
to reduce the baseline jitter (Fig. 5) by using simple 
information that can be calculated in any of the 5GS 
endpoints without having to modify the end-user traffic. 

 
Fig. 5. Complementary Cumulative Distribution Function of latency 
using 5Tonic’s NPN deployment for use case traffic model. 

E. Reward 
Based on our experience ([10], [11], [12]), the reward is 

key to obtain good results in DRL. In this work three 
different methods were defined for calculating the reward: 

• Jitter method: Calculates the jitter between two 
consecutives packets. 

• Average OWD: Calculates the difference between 
current packet OWD with the average OWD. 

• Packet Delay Budget (PDB): Defines a packet delay 
budget and calculates the difference between the 
PDB and the current OWD for each packet. 

In all cases, if the difference is less than 1 millisecond, 
the step reward will be positive (+1), and if not, the reward 
will be negative (-difference). For the PDB method a strict 
hyperparameter that reduces the threshold to 0.5 
milliseconds is also used. 

F. Traffic model generation 
In order to validate our approach, we use in the training 

of the agent not only the traffic generated using the NDT 
platform but also real traffic. With that, the accuracy of our 
NDT approach can also be estimated. 

G. Hyperparameters 
During our experimentation, we define the following 

hyperparameters: 

• Reward method, as described in section E. 

• Reward modifier: weight to apply to the reward. 

• Evaluation frequency: Number of steps to evaluate 
the agent performance. 

• Time steps: Number of steps for the training. 

• PDB: target PDB for this reward method. 

• Strict: threshold for the rewards (0.5 or 1.0 
millisecond) 

• Traffic model: model of traffic used during training. 

H. Agent 
Both agent and environment are implemented using 

Python. In case of the agent, we use stable baselines3 [13] 
as our DRL library, and we use a Proximal Policy 
Optimization [14] implementation. 

I. Training and Validation 
With all the setup described in this paper, different agents 

are trained, using a combination of the hyperparameters for 
Uplink and Downlink scenarios. One of the hyperparameters 
define how many steps are used for the training, which order 
of magnitude is 10 million steps. The environment executes 
episodes of 1024 packets, so the maximum reward is 1024. 
Every Evaluation Frequency steps we evaluate the 
performance of the agent, as showed in Fig. 6. In each 
evaluation the obtained performance is evaluated vs. the 
previous results, and the best model is saved. That allowed 
us to obtain the best performance model even if we over 
trained the agent. 

After the training the best evaluated model is selected 
and then validated using real traffic over the real 5G network, 
as described above. All results included in the next section 
are obtained in this way. That allowed us to verify the real 
performance of the agent in a real scenario. 

III. RESULTS 
In this section we include the relevant results of our 

work. 

As example, the Fig. 6 shows the training and 
performance evaluation of a model. In this case, the training 
step is set to 1e7 steps, and the evaluation is based on the 
result of executing 50 episodes each Evaluation Frequency 
steps. The average reward is shown in Red, and the minimum 
and maximum reward is shown in Blue. 

 
Fig. 6. Example of agent training. 



The Fig. 7 shows the validation of the agent using 
different reward methods for the training. For the 
comparison, the original One-Way Delay is shown, along 
with the output of the smart de-jittering using different 
reward methods: 

 

 
Fig. 7. De-jittering using different methods for Uplink traffic. 

TABLE II. presents the details of the results of the 
different methods for uplink. The jitter is calculated by not 
including the outliers, that is, the difference between the 
minimum value of the OWNand the 𝑄! + 1.5 ∗ 𝐼𝑄𝑅, where 
𝑄!  is the third quartile and 𝐼𝑄𝑅  is the Interquartile range 
(𝑄! − 𝑄"). The precision is the percentage of packets which 
OWD are included in the jitter.  

TABLE II.  UPLINK TRAFFIC DETAILS 

Case Jitter (ms) Precision 
Original 19.9 0.999 

Jitter method 7.24 0.999 

Avg. OWD 2.23 0.993 

PDB 2.73 0.995 

The Fig. 8 and TABLE III.  provide the same comparison 
of validation for downlink traffic. In both figures the best 
combination of hyperparameters using the minimum average 
One-Way Delay was selected. 

 

Fig. 8. De-jittering using different methods for Downlink traffic. 

 

TABLE III.  DOWNLINK  TRAFFIC DETAILS 

Case Jitter (ms) Precision 
Original 3.76 0.974 

Jitter method 6.65 0.9993 

Avg. OWD 2.88 0.992 

PDB 2.19 0.979 

 

Fig. 9 shows the result of using strict training (PDB 
variation less than 0.5 ms) for PDB method: 

 

Fig. 9. De-jittering using PDB strict method for Downlink traffic. 

Fig. 10 and TABLE IV. show the comparison of agent 
performance using NDT modelled traffic and real traffic 
(captured from 5G network, but simulated. Please refer to 
II.A) for the training. We also include the precision of the 
jitter, which is calculated as percentage of packets which 
OWD is less than 𝑄! + 1.5 ∗ 𝐼𝑄𝑅 , where 𝑄!  is the third 
quartile and 𝐼𝑄𝑅 is the Interquartile range (𝑄! − 𝑄"). 

 
Fig. 10. NDT modeling versus Real Traffic for training. 

TABLE IV.  PRECISION WITH DIFFERENT TARGET PDB AND MODELS 
FOR TRAFFIC 

Traffic Average OWD 
(ms) Jitter (ms) Precision 

NDT model 4.81 1.95 0.95 

Real traffic 5.12 1.33 0.90 

Real traffic 8.9 1.77 0.96 

Real traffic 9.7 1.68 0.98 

Real traffic 11.5 2.33 0.94 



IV. DISCUSSION 
For uplink traffic (TABLE II. ), the result of all methods 

presents improvements over the original Jitter, performing 
effective de-jittering with different degrees and precision. 
Jitter method is the one performing worsts, as this method 
focuses on the “local” jitter of two consecutives packets, 
which is able to reduce to less than 0.5 ms. However, if we 
compare all packets, we notice that the OWD fluctuates, and 
the resulting jitter is still high. The other methods perform 
better, and the jitter is close to 2 milliseconds with a precision 
similar to the original one. 

For downlink we see (TABLE III. ) a similar result: Jitter 
method is not performing well (in general) and the other two 
present improvements in the jitter with similar (or even 
better) precision than the original. Focusing in the PDB 
method, we see at Fig. 9 that being stricter with the reward 
provides small improvements in the jitter, at the expense of 
the precision.  

Finally, we compare the result of the agent trained with 
the NDT modeled traffic versus the agent trained with real 
traffic. We can see that the jitter improves in this case but the 
precision decreases, and in this case 1 of each 100 packets 
OWD are not in the limit of 1.33 ms. of jitter. As stated in 
TABLE IV. , using real traffic for traffic requires an increase 
of the PDB for improving both jitter and precision. 

V. CONCLUSIONS 
In this work we presented a novel mechanism for 

implementing effective de-jittering without having to 
modify the end-user traffic, which allows to implement this 
mechanism on top of existing 5G networks without 
demanding special support on the UE side. We demonstrated 
that a well-trained DRL agent can perform the de-jittering by 
just using the information available in one of the endpoints, 
and without knowing the end-to-end jitter or delay. For that, 
we successfully relied on a Network Digital Twin that 
models the behavior of a particular architecture of a 5G 
System, and we used such information to train the DRL 
agent. All these claims are backed by the results presented 
and discussed in this paper, which provide real validation of 
smart de-jittering with significant results, especially for 
uplink traffic, where the original jitter was worse. The NDT 
modeling is also validated, as it provides even a better way 
of training the smart de-jittering. 

There are two limitations that this work did not address. 
The first one is the long tail problem, which especially 
impacts downlink traffic. In our opinion this issue must be 
addressed in lower layers, as the solution in transport layer 
only consist in increasing the target PDB. The second one is 
regarding the nature of the traffic that is not well captured by 
the agent. The use case model is periodic, and we estimate 
that a recurrent neural network could produce better results. 

For future work we plan to: (i) improve the NDT traffic 
model, which will allow us to (ii) validate the Smart De-
jittering with other kind of traffic (e.g. burst traffic) and (iii) 
use recurrent model for improving the final jitter. 
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