
Smart De-jittering using Network Digital Twin

Marc Mollà Roselló
Technology & Innovation

Ericsson
Madrid, Spain

marc.molla@ericsson.com

Manuel Lorenzo
Technology & Innovation

Ericsson
Madrid, Spain

manuel.lorenzo@ericsson.com

Abstract—The evolution of mobile networks is converging
with the pervasive digitalization of the industrial/
manufacturing sector, which is demanding highly reliable and
deterministic wireless networking. The performance levels of
wireless networks are greatly enhanced from one generation to
the next, but the variability of performance, especially with
regards to latency, remains an issue to be addressed since most
protocols and solutions are designed with the assumption that
underlying networks shall deliver performance levels with
very low variability, as it is the case, for example, of Ethernet
networks. In this work, we address this critical issue,
proposing and validating a novel solution approach for
achieving effective de-jittering in 3GPP networks that does not
require the modification of the end-user traffic (e.g.
timestamping), thus enabling its implementation on current
5G networks without demanding special UEs or new 5GS
capabilities. This solution approach is validated over a real 5G
network deployed at 5Tonic laboratory.

Keywords—5g, time-sensitive networking, Network Digital
Twin, deep reinforcement learning, 5tonic lab, non-public
networks.

I. INTRODUCTION
The evolution of the mobile networks provides not only

improvements in the performance but also new capabilities
that allows to adapt its architecture to specific use cases. For
example, using Network Slicing and other capabilities, it is
possible to create Non-Public Networks [1] for Industrial use
cases, which enables the integration of private segments of
mobile networks with public networks. This topic has been
a trend in the research and innovation of mobile networks
[2], being amplified nowadays by the nice convergence of
several complementary technology trends and innovations,
such as deterministic communications, Digital Twin and
Edge computing, for enabling robust communication
solutions for meeting more and more Industry 4.0
requirements.

Deterministic communications is an essential area for
providing reliable and predictable communications
networks for the Industry, especially for wired networks [3].
Currently there are efforts for implementing determinism in
wireless network (e.g. [4]), in the I4.0 context, as one of the
issues in this context is the variability of the wireless
networks performance. A major line of research in this area
aims at avoiding the inherent jitter that a wireless network
introduces in the end-user communications. Most of current
state of art solution proposals rely on buffering the end-user
traffic for apply de-jittering algorithms. In fact, it is a
standard capability of 5GS called hold-forward [5], which
was introduced in 3GPP Release 16 that provides a de-jitter
mechanism for 5G networks. In [6] a de-jittering approach

based on varying network delays for audio traffic is
proposed. And in [7], they propose the use of historical
information for adapting the multimedia streams to the
possible delay variation. In [8] the authors propose to
implement de-jittering in each hop by using different
priorities and queues. All these works assume that the de-
jittering mechanism is aware of either certain end-to-end
parameters, or the periodic nature of the traffic (e.g. audio
or video).

In this work we present a novel mechanism that relies on
the modeling of 5G network provided by a Network Digital
Twin for training a Deep Reinforcement Learning agent,
which will de-jitter the traffic without assuming or requiring
any a priori knowledge of end-to-end metrics (delays, jitter)
or the nature of the traffic. This new method is not only
implemented but also thoroughly validated over a real 5G
network. Our proposal can be implemented without
modification in the real traffic (e.g. timestamping the
packets) and without external requirement in the UE. As we
demonstrate in this work, this allows to implement the
mechanism in a vanilla 5G network, using commercially
available User Equipment without any modification.

This paper is organized in several sections as follows.
Section II describes the materials and methods used for the
development of the proposed smart de-jittering algorithm.
Section III includes the relevant results of different flavors
of smart de-jittering from the experimentation over the real
5G network previously described in section II. Section IV
contains the discussion of the obtained results and, finally,
Section 0 includes the relevant conclusions of this research
work.

II. METHOD AND MATERIALS
Key methods and material used in the development of

this work are described in the following sub-sections.

A. Traffic Model
In this work an industrial use case defined at [9] is used

as reference. In the addressed use case, an industrial element
(e.g. a robot) communicates with a Programmable Logic
Controller (PLC) using a 5G network. The traffic was
modelled as described in TABLE I.

In the experimental setup, both industrial element and
PLC are simulated by using programmable traffic generators
implemented in the Network Digital Twin platform. The
PLC simulator is attached to a 5G CPE (Askey 5G NR ODU
NUQ3000M), which uses the 5G network described in
section B; and the Industrial Element is deployed in the Data
Network (DN) of the 5G network. In Fig. 1 we describe the
setup of the experiment.

TABLE I. INDUSTRIAL USE CASE TRAFFIC MODEL

Traffic Model parameter Value

Packet size 1440

Protocols UDP/IP

Direction Uplink/Downlink

Traffic Type Periodic

Interval 10 milliseconds

B. 5G network
We use the 5Tonic1 open laboratory, which provides a

commercial 5G SA network. In particular, a portable Non-
Public Network (NPN) with shared radio and control plane
and private user plane, which is inspired in 5G-ACIA white
paper [1], is used. The NPN part, as shown in Fig. 1, contains
the radio elements (radio unit, antennas and gNB), the User
Plane Function (UPF) and the transmission equipment
required for the integration with 5Tonic’s 5G Core and cloud
applications.

Fig. 1. High level design of Non-Public Network deployment.

The NPN is built on a portable system, designed to be
easily re-located to varied premises, as shown in the Fig. 2,
where different on-premises deployments are considered.
The goal is to extend the experimentation environment
provided by 5Tonic laboratory to the selected end-user
premises for experimentation, and that includes not only the
5G network but also the experimentation tools, like for
example the traffic generator and the probes, which are used
in this work.

Fig. 2. NPN portable system in different on-premises deployments
(photos from [10]).

The traffic generator uses the model defined in TABLE
I. for emulating our target traffic. The probes are software
probes deployed in different capturing points (UE, 5G Core
N3 interface, 5G Core N6 interface, vPLC) and provide
metrics of our traffic, such as Throughput, One-Way Delay
(OWD), Packet Loss for both downlink and uplink traffic.
All probes are synchronized in time using NTP through a
local OAM network that guarantees errors of the order of

1 https://www.5tonic.org

microseconds (as showed in Fig. 3), which is acceptable for
the accuracy required for the measurements to be obtained.

Fig. 3. NTP synchronization error during the experiments.

C. Network Digital Twin
One key element provided by the 5Tonic laboratory is a

Network Digital Twin (NDT) of the Non-Public Network, as
described in depth in [10]. As explained below, we propose
to use the NDT to model the 5GS response in terms of
latency to the use case traffic.

D. Smart de-jittering
In this work we present a novel method for performing

the traffic de-jittering using Deep Reinforcement Learning
(DRL), which consist in a reinforcement learning using
machine learning. The main idea is to not to have to
timestamp the traffic but, instead, leverage a Network Digital
Twin in order to model the latency introduced by the 5GS
and to use that model to train our DRL solution.

Fig. 4. Basic Deep Reinforcement Learning schema.

Following the schema described in Fig. 4, we create:

• An environment that simulates the 5GS response to
the use case traffic. The simulation is based on the
statistical information collected by NDT, and the
environment is capable of generating a pattern of
One-Way Delay (OWD) that matches with the
probability distribution of OWD of the real 5G NPN
system.

• An agent that, based on the input observation
provided by the environment, identifies the best
action to be performed on it.

In our solution the environment provides the following
information to the agent:

• State: The state (or observation) is the current state
of the environment, and it is used by the agent to take
decisions. It contains the Inter-Packet Arrival (IPA),
in milliseconds, of the current packet compared to
the previous one, and a delta, in milliseconds,

corresponding to the forwarding time of the last
packet.

• Reward: The reward defines how well the agent
performs in the previous step. Different methods for
calculating the reward are used, being described in
section E.

The agent interacts with the environment by the defined
action, which consist in the buffer time (in milliseconds) to
apply to current packet.

The goal of the proposed smart de-jittering approach is
to reduce the baseline jitter (Fig. 5) by using simple
information that can be calculated in any of the 5GS
endpoints without having to modify the end-user traffic.

Fig. 5. Complementary Cumulative Distribution Function of latency
using 5Tonic’s NPN deployment for use case traffic model.

E. Reward
Based on our experience ([10], [11], [12]), the reward is

key to obtain good results in DRL. In this work three
different methods were defined for calculating the reward:

• Jitter method: Calculates the jitter between two
consecutives packets.

• Average OWD: Calculates the difference between
current packet OWD with the average OWD.

• Packet Delay Budget (PDB): Defines a packet delay
budget and calculates the difference between the
PDB and the current OWD for each packet.

In all cases, if the difference is less than 1 millisecond,
the step reward will be positive (+1), and if not, the reward
will be negative (-difference). For the PDB method a strict
hyperparameter that reduces the threshold to 0.5
milliseconds is also used.

F. Traffic model generation
In order to validate our approach, we use in the training

of the agent not only the traffic generated using the NDT
platform but also real traffic. With that, the accuracy of our
NDT approach can also be estimated.

G. Hyperparameters
During our experimentation, we define the following

hyperparameters:

• Reward method, as described in section E.

• Reward modifier: weight to apply to the reward.

• Evaluation frequency: Number of steps to evaluate
the agent performance.

• Time steps: Number of steps for the training.

• PDB: target PDB for this reward method.

• Strict: threshold for the rewards (0.5 or 1.0
millisecond)

• Traffic model: model of traffic used during training.

H. Agent
Both agent and environment are implemented using

Python. In case of the agent, we use stable baselines3 [13]
as our DRL library, and we use a Proximal Policy
Optimization [14] implementation.

I. Training and Validation
With all the setup described in this paper, different agents

are trained, using a combination of the hyperparameters for
Uplink and Downlink scenarios. One of the hyperparameters
define how many steps are used for the training, which order
of magnitude is 10 million steps. The environment executes
episodes of 1024 packets, so the maximum reward is 1024.
Every Evaluation Frequency steps we evaluate the
performance of the agent, as showed in Fig. 6. In each
evaluation the obtained performance is evaluated vs. the
previous results, and the best model is saved. That allowed
us to obtain the best performance model even if we over
trained the agent.

After the training the best evaluated model is selected
and then validated using real traffic over the real 5G network,
as described above. All results included in the next section
are obtained in this way. That allowed us to verify the real
performance of the agent in a real scenario.

III. RESULTS
In this section we include the relevant results of our

work.

As example, the Fig. 6 shows the training and
performance evaluation of a model. In this case, the training
step is set to 1e7 steps, and the evaluation is based on the
result of executing 50 episodes each Evaluation Frequency
steps. The average reward is shown in Red, and the minimum
and maximum reward is shown in Blue.

Fig. 6. Example of agent training.

The Fig. 7 shows the validation of the agent using
different reward methods for the training. For the
comparison, the original One-Way Delay is shown, along
with the output of the smart de-jittering using different
reward methods:

Fig. 7. De-jittering using different methods for Uplink traffic.

TABLE II. presents the details of the results of the
different methods for uplink. The jitter is calculated by not
including the outliers, that is, the difference between the
minimum value of the OWNand the 𝑄! + 1.5 ∗ 𝐼𝑄𝑅, where
𝑄! is the third quartile and 𝐼𝑄𝑅 is the Interquartile range
(𝑄! − 𝑄"). The precision is the percentage of packets which
OWD are included in the jitter.

TABLE II. UPLINK TRAFFIC DETAILS

Case Jitter (ms) Precision
Original 19.9 0.999

Jitter method 7.24 0.999

Avg. OWD 2.23 0.993

PDB 2.73 0.995

The Fig. 8 and TABLE III. provide the same comparison
of validation for downlink traffic. In both figures the best
combination of hyperparameters using the minimum average
One-Way Delay was selected.

Fig. 8. De-jittering using different methods for Downlink traffic.

TABLE III. DOWNLINK TRAFFIC DETAILS

Case Jitter (ms) Precision
Original 3.76 0.974

Jitter method 6.65 0.9993

Avg. OWD 2.88 0.992

PDB 2.19 0.979

Fig. 9 shows the result of using strict training (PDB
variation less than 0.5 ms) for PDB method:

Fig. 9. De-jittering using PDB strict method for Downlink traffic.

Fig. 10 and TABLE IV. show the comparison of agent
performance using NDT modelled traffic and real traffic
(captured from 5G network, but simulated. Please refer to
II.A) for the training. We also include the precision of the
jitter, which is calculated as percentage of packets which
OWD is less than 𝑄! + 1.5 ∗ 𝐼𝑄𝑅 , where 𝑄! is the third
quartile and 𝐼𝑄𝑅 is the Interquartile range (𝑄! − 𝑄").

Fig. 10. NDT modeling versus Real Traffic for training.

TABLE IV. PRECISION WITH DIFFERENT TARGET PDB AND MODELS
FOR TRAFFIC

Traffic Average OWD
(ms) Jitter (ms) Precision

NDT model 4.81 1.95 0.95

Real traffic 5.12 1.33 0.90

Real traffic 8.9 1.77 0.96

Real traffic 9.7 1.68 0.98

Real traffic 11.5 2.33 0.94

IV. DISCUSSION
For uplink traffic (TABLE II.), the result of all methods

presents improvements over the original Jitter, performing
effective de-jittering with different degrees and precision.
Jitter method is the one performing worsts, as this method
focuses on the “local” jitter of two consecutives packets,
which is able to reduce to less than 0.5 ms. However, if we
compare all packets, we notice that the OWD fluctuates, and
the resulting jitter is still high. The other methods perform
better, and the jitter is close to 2 milliseconds with a precision
similar to the original one.

For downlink we see (TABLE III.) a similar result: Jitter
method is not performing well (in general) and the other two
present improvements in the jitter with similar (or even
better) precision than the original. Focusing in the PDB
method, we see at Fig. 9 that being stricter with the reward
provides small improvements in the jitter, at the expense of
the precision.

Finally, we compare the result of the agent trained with
the NDT modeled traffic versus the agent trained with real
traffic. We can see that the jitter improves in this case but the
precision decreases, and in this case 1 of each 100 packets
OWD are not in the limit of 1.33 ms. of jitter. As stated in
TABLE IV. , using real traffic for traffic requires an increase
of the PDB for improving both jitter and precision.

V. CONCLUSIONS
In this work we presented a novel mechanism for

implementing effective de-jittering without having to
modify the end-user traffic, which allows to implement this
mechanism on top of existing 5G networks without
demanding special support on the UE side. We demonstrated
that a well-trained DRL agent can perform the de-jittering by
just using the information available in one of the endpoints,
and without knowing the end-to-end jitter or delay. For that,
we successfully relied on a Network Digital Twin that
models the behavior of a particular architecture of a 5G
System, and we used such information to train the DRL
agent. All these claims are backed by the results presented
and discussed in this paper, which provide real validation of
smart de-jittering with significant results, especially for
uplink traffic, where the original jitter was worse. The NDT
modeling is also validated, as it provides even a better way
of training the smart de-jittering.

There are two limitations that this work did not address.
The first one is the long tail problem, which especially
impacts downlink traffic. In our opinion this issue must be
addressed in lower layers, as the solution in transport layer
only consist in increasing the target PDB. The second one is
regarding the nature of the traffic that is not well captured by
the agent. The use case model is periodic, and we estimate
that a recurrent neural network could produce better results.

For future work we plan to: (i) improve the NDT traffic
model, which will allow us to (ii) validate the Smart De-
jittering with other kind of traffic (e.g. burst traffic) and (iii)
use recurrent model for improving the final jitter.

ACKNOWLEDGEMENT
This work has been partially funded by the European

Commission Horizon Europe SNS JU PREDICT-6G (GA
101095890) Project and the Spanish Ministry of Economic
Affairs and Digital Transformation and the European Union-
NextGenerationEU through the UNICO 5G I+D 6G-
EDGEDT (TSI-063000-2021-124), 6G-DATADRIVEN
(TSI-063000-2021-132) and 6G-DAWN (under references
TSI-063000-2021-54, TSI-063000-2021-55) projects.

REFERENCES

[1] 5G-ACIA, “5G Non-Public Networks for Industrial Scenarios,”
5G ACIA, White Paper WP_5G_NPN_2019_01., Jul. 2019. [Online].
Available: https://5g-acia.org/wp-
content/uploads/2021/04/WP_5G_NPN_2019_01.pdf
[2] M. Lorenzo et al., “Innovation Trends in I4.0 enabled by 5G
and Beyond Networks.” Zenodo, Oct. 2023. doi: 10.5281/zenodo.8367578.
[3] “Time-Sensitive Networking (TSN) Task Group |.” Accessed:
Dec. 05, 2022. [Online]. Available: https://1.ieee802.org/tsn/
[4] János Farkas, Balázs Varga, György Miklós, Joachim Sachs,
“5G-TSN Integration for Indrustrial Automation.” Ericsson Technology
Review, Aug. 27, 2019. [Online]. Available:
https://www.ericsson.com/en/reports-and-papers/ericsson-technology-
review/articles/5g-tsn-integration-for-industrial-automation
[5] 3GPP, “System architecture for the 5G System (5GS),” 3rd
Generation Partnership Project (3GPP), Technical Specification (TS)
23.501, Sep. 2022. [Online]. Available:
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetail
s.aspx?specificationId=3144
[6] R. Ramjee, J. Kurose, D. Towsley, and H. Schulzrinne,
“Adaptive playout mechanisms for packetized audio applications in wide-
area networks,” in Proceedings of INFOCOM ’94 Conference on
Computer Communications, 1994, pp. 680–688 vol.2. doi:
10.1109/INFCOM.1994.337672.
[7] C. J. Sreenan, J.-C. Chen, P. Agrawal, and B. Narendran,
“Delay reduction techniques for playout buffering,” IEEE Trans.
Multimed., vol. 2, no. 2, pp. 88–100, 2000, doi: 10.1109/6046.845013.
[8] B. M. Nyambo, Gerrit. K. Janssens, H. Marufu, M. Munyaradzi,
B. Mapako, and K. Dzinavatonga, “Queue Modelling and Jitter Control in
Mobile Ad Hoc Networks,” in 2022 1st Zimbabwe Conference of
Information and Communication Technologies (ZCICT), 2022, pp. 1–6.
doi: 10.1109/ZCICT55726.2022.10046032.
[9] P.-6G Consortium, “D1.1 Analysis of use cases and system
requirements.” Zenodo, Jul. 2023. doi: 10.5281/zenodo.8138548.
[10] M. M. Roselló, J. V. Cancela, I. Quintana, and M. Lorenzo,
“Network Digital Twin for Non-Public Networks,” in 2023 IEEE 24th
International Symposium on a World of Wireless, Mobile and Multimedia
Networks (WoWMoM), 2023, pp. 495–500. doi:
10.1109/WoWMoM57956.2023.00086.
[11] M. M. Roselló, “Multi-path Scheduling with Deep
Reinforcement Learning,” in 2019 European Conference on Networks and
Communications (EuCNC), 2019, pp. 400–405. doi:
10.1109/EuCNC.2019.8802063.
[12] C. Villasante Marcos, “Artificial Intelligence Edge
Applications in 5G Networks,” in Proceedings of Sixth International
Congress on Information and Communication Technology, X.-S. Yang, S.
Sherratt, N. Dey, and A. Joshi, Eds., Singapore: Springer Singapore, 2022,
pp. 269–279.
[13] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and
N. Dormann, “Stable-Baselines3: Reliable Reinforcement Learning
Implementations,” J. Mach. Learn. Res., vol. 22, no. 268, pp. 1–8, 2021.
[14] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O.
Klimov, “Proximal Policy Optimization Algorithms.” 2017.

