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Abstract

This deliverable report provides an overview of the developments within Work Package 2
(WP2) of the SciLake project, detailing the progress on the initial version of the Scientific Lake
service. The service aims to streamline knowledge acquisition, knowledge graph creation, and
Scientific Lake navigation thus facilitating access to a vast and diverse array of scientific
datasets. By aggregating and indexing large-scale datasets into a collection of Scientific
Knowledge Graphs (SKGs) and providing efficient ways to access and reason over this data,
the service enhances the discoverability and usability of research data and provides a robust
data management foundation for downstream value-added services developed in other work
packages of this project (WP3 and WP4).

This project has received funding from the European Union’s Horizon Europe framework programme under
grant agreement No. 101058573. Views and opinions expressed are however those of the author(s) only and do
not necessarily reflect those of the European Union or the European Research Executive Agency. Neither the

European Union nor the European Research Executive Agency can be held responsible for them.
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1. Executive Summary

Scientific knowledge plays a pivotal role in deepening our understanding of the world, driving
technological innovations, and improving our everyday lives. Additionally, past discoveries lay
the groundwork for future research, building a cumulative foundation of understanding.
Today, the volume of scientific knowledge is larger than ever, unlocking tremendous potential
for future advancements. However, this knowledge is often fragmented and stored in
heterogeneous formats, hindering discovery and the extraction of valuable insights necessary
for informed decision-making. Addressing these challenges is crucial for maximising the
impact of scientific research and fostering continued progress.

Knowledge Graph (KG) and graph database technologies offer powerful technologies for
organising and analysing domain knowledge. By structuring data into interconnected nodes
and relationships, they provide a more intuitive and flexible way to represent complex
information compared to traditional databases. This interconnected structure allows for the
seamless integration of heterogeneous data sources, making it easier to discover patterns
and relationships that might otherwise remain hidden. Advanced query capabilities enable
users to traverse these connections, uncovering valuable insights and facilitating informed
decision-making.

Unfortunately, transforming domain knowledge into more structured formats is challenging
because domain experts typically lack the specialised technical expertise required for this
task. Conversely, knowledge management experts alone cannot effectively organise the
information without domain-specific insights. To address this problem, SciLake is introducing
the Scientific Lake service, a suite of customizable components designed to facilitate the
organisation, querying, and analysis of scientific knowledge. This innovative approach bridges
the gap between domain experts and knowledge management specialists, enabling a more
efficient and accurate transformation of domain knowledge into structured formats.

In this report, we present the initial version of this Scientific Lake service. It provides a data
management foundation for SciLake’s Scientific Knowledge Graphs (SKGs) and streamlines
data acquisition, catalogue management, KG creation and navigation across diverse scientific
domains. Our goal is to address the challenges associated with managing and utilising large
volumes of data in scientific research.

The rest of this document is structured as follows. Section 2 offers a short introduction to our
motivation and the challenges we have identified. Section 3 outlines the design process
followed. Section 4 discusses the implementation of major components of the service: data
acquisition and catalogue (4.1), knowledge graph creation assistant (4.2), data enrichment and

Initial version of the Scientific Lake service Page 7 of 39



Scilake

interlinking (4.3), and data lake search and navigation (4.4). Section 5 discusses the future
work and concludes.

2. Introduction

In the era of data-driven scientific research, the ability to efficiently manage, integrate, and
analyse vast amounts of heterogeneous scientific data to produce knowledge has become
crucial. The diversity of scientific domains and the lack of common practices in representing
and sharing scientific knowledge further contribute to the aforementioned heterogeneity. This
situation creates significant impediments to scientific discovery and progress, hindering the
extraction of valuable insights necessary for informed decision-making by researchers and
other professionals involved in research, such as research funding organisation officers.

The SciLake project aims to address this challenge by introducing the concept of a Scientific
Lake service - a comprehensive data management and analysis framework designed to
enhance the accessibility and usability of scientific knowledge across diverse domains.

This deliverable report outlines the initial version of the Scientific Lake service. The service
aims to streamline the process of knowledge acquisition, knowledge graph creation, and
navigation within Scientific Knowledge Graphs (SKGs) in a Scientific Lake. By aggregating and
indexing large-scale datasets into a collection of SKGs, the service enhances the
discoverability and usability of research data, providing a robust foundation for downstream
value-added services.

The Scientific Lake service addresses several key challenges in scientific data management:

Efficient data acquisition and cataloguing from diverse sources
Semi-automated creation of Knowledge Graphs from heterogeneous data
Interlinking of data across different scientific domains

W=

Advanced search and navigation capabilities within the Scientific Lake

By tackling these challenges, the Scientific Lake service aims to enable researchers with more
efficient tools for data discovery, integration, and analysis. This, in turn, has the potential to
accelerate scientific progress by enabling more comprehensive and insightful research across
disciplines.
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3. Design

In this section, we briefly discuss the main requirements of the service, the process followed

during its design, and how it is integrated into the SciLake ecosystem. More details about the

design process can be found in Deliverable D1.2 (“Initial integrated system”).

3.1.Initial requirements

In our design, we considered the following initial requirements for the Scientific Lake
service.

First, for Data acquisition and catalogue, we aimed to implement mechanisms for
acquiring full-text publications from open access sources and develop crawlers and
scrapers for retrieving scholarly content from web resources. We also planned to
create a toolset to facilitate community-driven content acquisition, implement a data
catalogue to keep track of all acquired and generated data assets, and ensure proper
metadata management for all acquired content.

For the Knowledge Graph Creation Assistant, our requirements included developing
tools for creating Scientific Knowledge Graphs (SKGs) from structured and
unstructured data sources, and supporting semantic modelling and maintenance of
primary and auxiliary ontologies for SKGs. We also aimed to implement information
extraction techniques for entities, relations, and properties from unstructured raw
data, provide schema mapping tools for transforming (semi-)structured data to
property graphs, and develop a graph profiler to showcase graph information using
Graph Generating Dependencies.

In terms of Data Interlinking, we focused on developing tools and methods for
interlinking data across different SKGs and implementing entity resolution techniques
to identify matching entities across heterogeneous graph data. We also aimed to
support ontology alignment to facilitate integration of different knowledge domains
and provide mechanisms for federation of multiple SKGs.

For Data Lake search and navigation, our requirements included implementing
advanced search functionalities across heterogeneous scholarly content and
developing data virtualization techniques to provide a unified view of diverse data
sources. We also planned to create powerful navigation tools to explore the contents

Initial version of the Scientific Lake service Page 9 of 39



oo

Sciloke

of the Scientific Lake, support complex query capabilities across structured and
unstructured data, and implement efficient indexing and retrieval mechanisms for
large-scale data.

Finally, we established a number of cross-cutting requirements. These included
ensuring scalability to handle large volumes of heterogeneous scholarly content,
implementing data preservation practices, and ensuring FAIRness of all managed data.
We also aimed to support customization and integration with existing workflows of
researchers across different disciplines, implement community governance
mechanisms to democratise scholarly content management, ensure openness and
transparency in all aspects of the service, and comply with relevant standards and best
practices in data management and interoperability.

3.2.Design approach

To address these requirements, we followed a user-centric design process with the
following key principles. First, we co-designed with pilot partners. We closely
involved the pilot partners representing different research domains (neuroscience,
cancer research, transportation research, energy research) from the early stages of the
design process. This helped ensure the service addresses real needs across diverse
scientific communities. We employed agile prototyping. We adopted an iterative
approach with short development cycles, allowing for rapid prototyping and
continuous refinement based on feedback. This enabled us to quickly test ideas and
adjust the design as needed. We designed a modular system architecture to enable
flexibility, extensibility, and customization for different use cases. This allows
components to be developed and updated independently. Further, we paid special
attention to scalability. The architecture was designed to be scalable from the start,
able to handle large volumes of heterogeneous data. We emphasised standards
compliance. We aligned our design with relevant standards and best practices in data
management, preservation, and interoperability. Finally, we always aim to use open
APIs. Towards this, we prioritise the development of comprehensive, well-documented
APIs to facilitate integration with external systems and workflows.
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3.3.Integration into SciLake ecosystem

The Scientific Lake service is designed as a foundational component of the overall
SciLake ecosystem. It provides the core data management infrastructure on which
other SciLake services are built. The Scientific Knowledge Graphs created and managed
by this service serve as key data sources for the smart impact analysis (WP3) and
reproducibility assistance (WP4) services. Its APIs enable seamless integration with
other SciLake components and external systems. The service implements the common
data models and standards defined for the SciLake project to ensure interoperability
across services. By serving as the central data hub, the Scientific Lake enables the
creation of a cohesive ecosystem of services to support open, data-driven scientific
research.

4. Implementation

4.1.Data acquisition and catalogue

4.1.1. Data acquisition

DEScRIPTION

The PDF Aggregation Service handles the acquisition of the Open Access publications
(i.e. the PDF file) in the OpenAlIRE ecosystem.

It leverages publication URLs obtained from the publication’s metadata available in the
OpenAIRE Graph and employs cutting-edge algorithms to crawl the Web effectively. Its
primary function is to locate and download full texts of open-access publications,
prioritising recently published ones in the download attempts. Throughout this
process, it remains respectful of server capacities at repositories and publishers.

To efficiently manage the processing and download of millions of publications, the PDF
Aggregation Service orchestrates a distributed execution system on the Cloud. This
system relies on multiple microservices running in parallel for optimal performance. All
the retrieved publications are securely stored within an S3 Object Store. Furthermore,
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the service utilises an advanced pattern-matching algorithm to analyse the structural
elements of web pages, like tags, attributes and links, to pinpoint full-text URLs.
Additionally, during its execution, it monitors various performance indicators to
optimise the crawling speed and ensure maximum efficiency.

The PDF Aggregation Service also allows to bulk-import full texts from compatible data
sources, significantly accelerating the overall collection process. This allows the service
to efficiently gather a vast amount of full-text publications, ultimately enriching the
OpenAIRE ecosystem with valuable scientific content to text-mine.

COMPONENTS OF THE SERVICE

The PDF Aggregation Service operates as a distributed system, efficiently collecting full
texts of open access publications. This system consists of several key components
working in concert:

P

[ Impala S3 Object Store

E Controller E

b 4

'Repository 1

Journal 1

Figure 1: Key components of data acquisition and catalogue services
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Controller: The brain of the operation, the Controller receives requests from worker
applications deployed on the Cloud. It utilises a database (Apache Impala’) to construct
a list of assignments for these workers and then transmits this list back for processing.
Once complete, the Controller retrieves "Worker Reports" and requests full-text files in
batches. These retrieved full texts are then uploaded to the S3 Object Store for secure
storage. Finally, the Controller updates the database with relevant reports and the
newly acquired file locations. It can also handle bulk import requests from compatible
data sources, bypassing the crawling stage and directly receiving full-text files for
immediate storage. In the bulk import process, external services deposit research full
texts in a designated directory in the machine hosting the Controller. The Controller,
via an external call, is prompted to load the full texts. The Controller then generates
the OpenAlIRE identifier for each file and uploads them in the S3 Object Store. Lastly, it
generates a “payload” record with the basic information for the file and its OpenAIRE
identifier, thus connecting the pdf to the metadata of the publication existing in the
OpenAlIR Graph.

Worker: These worker applications, deployed in multiple instances on the Cloud,
request assignments from the Controller. Each worker utilises the Publications
Retriever software to process the assigned tasks and download available full texts.
Once processing is complete, the results are reported back to the Controller. The
Controller then requests any missing full texts from the worker in batches. These
requested files are compressed using Facebook's Zstandard® compression algorithm
before transmission.

Impala: This database serves as the central repository for storing the state of the
download process. Information such as the download time for a PDF, the number of
attempts made in case of failures, and other relevant data are tracked within Impala.
Additionally, it prepares assignment lists for the Controller and stores information
derived from worker reports.

S3 Object Store: This secure storage solution houses all retrieved full texts.

DEPLOYMENT

The Controller instance, accessible through source code, is deployed within a Docker
container. This container connects to six worker instances (source code). These worker
instances operate on virtual machines hosted on Google Cloud. They utilise the
Publication Retriever software (source code). Finally, the code relies on an Impala
database and an S3 Object Store hosted on the same cluster.

' Apache Impala: https://impala.apache.org/
% Zstandard: https://facebook.github.io/zstd/
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4.1.2. Data catalogue

A crucial component of the SciLake project is the creation of a comprehensive resource
catalogue. This catalogue serves as a central registry, outlining the various tools and
datasets (e.g., SKGs) which are part of the SciLake ecosystem and available for use in
the SciLake use cases. These resources are developed, maintained, and extended
throughout the project's lifecycle.

The aim of the catalogue is to facilitate the exploration of the SciLake ecosystem,
facilitating the discovery of resources, their contents, functionalities, and specifications.
By presenting a clear and concise overview of each resource, the catalogue empowers
researchers (or other end-users) to identify the specific tools/datasets that align with
their needs and workflows. This fosters efficient adoption and utilisation of the SciLake
offerings, ultimately accelerating scientific progress within the interconnected research
environment envisioned by the project.

The catalogue itself delves deeper, detailing the functionalities and target audience for
each product. This includes tools for creating, managing, and interlinking Scientific
Knowledge Graphs (SKGs) across various disciplines. Additionally, the catalogue
showcases smart services designed to aid researchers in discovering emerging
research trends, identifying valuable research outputs, and enhancing research
reproducibility. For ease of access, the catalogue provides clear descriptions, user
guides, and links to relevant technical specifications for each product.

The catalogue leverages a two-part architecture: a back-end and a front-end.

e Back-end: The back-end infrastructure builds upon the one developed by ARC
for the Intelcomp Project
(https://code-repo.d4science.org/D-Net/scilake-catalogue). This foundation

ensures a robust and proven technical base.
e Front-end: The front-end interface is specifically tailored to match the needs of
SciLake users. The source code can be found on GitHub

(https://code-repo.d4science.org/D-Net/scilake-catalogue-ui).

This combined approach fosters a user-friendly and efficient information resource
aligned with the SciLake information space.
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The SciLake product catalogue leverages Docker containers for a robust and scalable
deployment. Two dedicated containers manage the back-end and front-end
functionalities. External volumes, independent of the Docker containers, house the
database and search engine critical for back-end operations. The front-end interacts
solely with the back-end, which in turn handles communication with other
components. This deployment resides on a Docker cluster hosted on CNR premises.
The cluster ensures high availability through a configuration of 3 master nodes and 8
worker nodes distributed across separate physical machines.

Code repo(s):
https://code-repo.d4science.org/lsmyrnaios/UrlsController
https://code-repo.d4science.org/Ismyrnaios/UrlsWorker
https://github.com/LSmyrnaios/PublicationsRetriever
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4.2.Knowledge Graph Creation Assistant

Local Data
3
e —
o] o Iy -
FTKB
Text

- 9

R2PG-DM

) | Q@%-

Organization Graph Graph lterative Loop  Gyraph
Profiling Interlinking

. GGDMiner
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Clinical KG

Knowledge Graph Creation Assistant Tool Bundle
Third-Party Data

Figure 2: Workflows in the knowledge graph creation and interlinking

Within the Knowledge Graph Creation Assistant Tool Bundle, our aim is to deliver a
set of automated and semi-automated tools to facilitate the creation of a collection of
SKGs, following the task of data acquisition. Use-case partners have different data
sources which could be structured as well as unstructured and would utilise the tools
we provide to create their own pipeline with respect to the creation of a knowledge
graph. Unstructured data would be transformed to (semi-)structured data by
information (entity, relation, property) extraction. Schema mapping tools are
developed to transform (semi-)structured data to a property graph which captures
both topological and data artefacts in a flexible-schema data structure. For example,
R2PG-DM is a direct mapping from relational databases to property graphs. Moreover,
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ProGGD, a graph profiler, is developed to employ Graph Generating Dependencies to
showcase graph’s information, such as interaction between graph entities,
relationships and graph patterns.

4.2.1. R2PG-DM

It is well known that large amounts of enterprise data is stored in relational databases
(RDB) [6]. Since our goal is to assist in creation of Knowledge Graphs from available
enterprise data sources, it is essential to handle the translation of relational data into a
graph.

The R2PG-DM tool developed as a part of our Knowledge Graph creation assistant
bundle aims to provide an automated translation of data stored in the relational
databases (relational data model [4]) into a property graph (property graph data model

[5]).

LiMmITATIONS OF PRevious MAPPINGS

Previous mappings focus on the idea of query efficiency, which try to optimise the
query execution over the generated graphs. As a result, the generated graphs are
either too complex, lossy or obfuscate the input RDB schema. Moreover, proving the
correctness of these mappings is difficult, since it is infeasible to reason over
properties such as information preservation, query preservation or semantics
preservation, because of being procedural and by aggregating data. Different from the
previous mappings, R2PG-DM is a direct mapping which follows a natural, logical
translation of relation databases to property graphs by preserving the schema and by
reasoning over basic properties of a direct mapping.

INTRODUCTION OF DIRECT MAPPING

A direct mapping M is a total function from RC to G, where G is the set of all property
graphs and RC is the set of all triples of the form (R,Z,I) where R is a relational schema, |
is its corresponding instance and X is a set of PKs and FKs over R. A direct mapping
translates relational databases into property graphs without any input from the user.
The input of a direct mapping M is a relational schema R, its corresponding instance |
and a set £ of PKs and FKs over R. The output is a property graph. Direct mapping is
defined as a set of Datalog rules, which are divided in two parts: translate relational
instances and translate relational schemas.

To translate a relational database to a property graph, we applied Datalog rules [7] for
the generation of nodes, edges and properties. Several Datalog rules are also
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represented for encoding a relation schema into a property graph. Corresponding
details could be seen in [1].

ProPERTIES OF DM

The properties of R2PG-DM include two fundamental properties: information
preservation and query preservation; and two desirable properties: monotonicity and
semantics preservation. The fundamental properties are important because they
assure that the data is unaltered after the direct mapping is applied, which is
meaningful for our SciLake pilots. It can contribute to the reusability and
reproducibility of research to support energy planning towards eco-transition for
regional energy planning (REP) pilot. Also, the query preservation guarantees that
every relational algebra query over the relational database has a G-CORE query
equivalent over the resulting property graph. This fundamental property is very
powerful as it assures that G-CORE queries can be translated over other more popular
query languages used in real-life such as SQL. In addition, we have monotonicity as a
desirable property. This would ensure that any update to the relational database will
have a minimal impact on the mapping. Finally, the semantics preservation property
ensures that any violated integrity constraints of relational databases are also reflected
as inconsistency over the resulting property graph.

1. Information preservation: A direct mapping is information preserving if no
information about the relational instance being translated is lost during the
mapping process.

2. Query preservation: A direct mapping is query preserving if every query over a
relational database can be translated into an equivalent query over the
resulting property graph.

3. Monotonicity: A direct mapping monotone if for any pair of instances (I,,1,),
where |, is a subset of |,, the property graph generated from the instance |, is a
subset of the property graph generated from the instance I,.

4. Semantics preservation: A direct mapping is semantics preserving if the
mapping reflects the condition of a set of PKs and FKs defined over a relational
schema R. It generates a consistent property graph from corresponding
instance when the set ¥ of PKs and FKs over the relational schema R is
consistent.
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IMPLEMENTATION

R2PG-DM has been implemented as a Java application using Maven® as the build
automation tool. The project is open-source and can be found in the following Github
repository: https://github.com/avantlab/R2PG-DM. The JDBC library has been used for
obtaining the schema of the database in order to construct the mapping. We wanted

the Java application to be as generic as possible. R2PG-DM takes as input a database
instance from which the metadata is extracted such as relation names and foreign
keys.The output is stored into a relational instance as well into three different tables:
node, property and edge. The two connections are retrieved at run-time from a
configuration file. It is important to mention that three classes are used for the
implementation, each representing a property graph object as follows: (1) a Node class
is used for storing the node properties (id, ,label), (2) a Property class is used for
storing the property properties (id, key, value), and (3) an Edge class is used for storing
the edge properties (id, sourceld, targetld, label). The implementation starts by
retrieving all the relational names from the input database. Then the algorithm is
divided into two steps: (1) first, we create nodes and properties and (2) second, we
create the edges.

4.2.2. ProGGD-Graph Data Profiling with GGDs

Use cases oF PRoGGD

In Knowledge Graphs, especially in big graphs from pilots such as the Clinical
Knowledge Graph used by the Cancer Research pilot, the interplay among different
graph entities, properties, and more complex patterns that emerge in the graph is
crucial to understanding its content. Although many methods for profiling Knowledge
Graphs have been proposed, few systems employ graph data dependencies to
represent information about the data, which conveys detailed information about the
Knowledge Graph to the user, and in turn, offer insights into the quality of the data.

INTRODUCTION AND FUNCTIONALITIES OF PROGGD

ProGGD is a system that employs Graph Generating Dependencies to showcase
information about the graph’s content. We identify GGDs from the data based on the
frequency of a graph pattern’s appearance and the prevalence of similar or correlated
attributes of nodes/edges in the graph. In ProGGD, our goal is to not only display
interesting information about the data to the user but also make it easy to understand

* Apache Maven: https://maven.apache.org/
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the discovered GGDs so that the user can also use it in their downstream tasks, for
example, graph interlinking between different graphs.

Given a graph G, we consider interesting GGDs for data profiling i.e., GGDs with graph
patterns and constraints according to the similarity of the attributes (differential
constraints) that: (1) occur frequently on G, (2) validated according to a user-defined
rate (called confidence in our system) and, (3) can maximise the total number of
matched nodes and edges in the graph G (called coverage in our system).

ProGGD has three main components: GGDMiner, sHINER and Interface.

To discover GGDs from G, we use our GGDMiner discovery algorithm. The main
parameters of GGDMiner that need to be set by the user through ProGGD are
frequency, confidence, and the maximum size of the result set of GGDs. More details
and the source code for GGDMiner are available at
https://github.com/avantlab/ggdminer.

SHINER runs the validation of the input GGDs and "fix" it by generating new
nodes/edges in the graph, which can also solve the entity resolution problem and
perform graph interlinking between different graphs such as the OpenAIRE Graph and
the Clinical Knowledge Graph. Source code of sHINER system is available at

https://github.com/avantlab/gcore-spark-ggd.

The interface component is to give overall information about the graph such as
statistics about the attributes and graph pattern query results. We use the Spark
framework as the primary backend of ProGGD, to retrieve information about the
attributes and also query graph patterns by using the G-Core language. For the user’s
ease of navigation, we divide functionalities of ProGGD into four main panels: (1)
Metadata information and initialization, (2) Attribute information, (3) Topological
Information and, (4) GGDs. Each one of these panels displays information about the
graph data according to a different aspect of the graph. More details could refer to [2].
The following figure from [3] shows an overview of the ProGGD functionalities.
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Attribute Similarity Attribute Statistics
Information about similar Standard statistics about
attributes of a node/edge nodefedge properties
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describes the graph satisfy a given GGD
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Graph patterns that Exan;gle matchesbcf a graph
f il th pattern query by using
reaen ;g;hpfr enhe G-Core language

Figure 3: The overview of the ProGGD functionalities

4.2.3. ProGGD Pipeline

As explained above, ProGGD is a system that employs Graph Generating Dependencies
to showcase information about the graph’s content. We now present a demo to show
how ProGGD works within the knowledge graph creation assistant tool bundle.

Firstly, we need to build and run sHINER's REST APl mode. And then run the
ggd-backend and ggd-interface components. Please refer to ProGGD's Github for more

details: https://github.com/avantlab/proggd.

The following figures show the interactive interface of ProGGD. From the left-hand
side, we can choose to showcase information of Dataset, Attributes, Graph Pattern and
GGDs. The first figure is about the information of Dataset. We could choose one
specific graph dataset, for example Graph Amazon. It shows the number of nodes and
edges, labels and configuration parameters of differential constraints. The second
figure shows the information of Attributes, and the third one shows the information of
Graph Pattern. The last panel shows the overview of GGDs in the selected dataset. We
visualise GGDs discovered from the knowledge graph along with the total number of
source matches, target matches and the rate of validated sources.
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With the information provided by ProGGD, we are able to understand the content of
knowledge graph more comprehensively, which is significantly useful for downstream
tasks, for example, graph interlinking.

< ProGGD - Graph Data Profiling with GGDs

Graph Datasets Graph Amazon

o Dataset Amazon
Amazon

company_graph

people_graph

Mw.»\mamn

-

dummy_graph

ProdugtAmazon

e 0 0 0 o

social_graph

v

ih Attributes

Number of nodes and edges

VERTICES EDGES Label |abe|

Property Type Values
Label Number of vertices
£ 4 Graph Patterns

ih
1

. . Configuration Parameter:
Unique, duplicate and null values 9 s

Differential Constraints parameter

String type Number type
< GGDs
~ Min. threshold Min. threshold
7 20
Min. difference Min, difference
127.0.0.1:3000/#/ 1 5

Figure 4: ProGGD main panel
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¢ ProGGD - Graph Data Profiling with GGDs
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Figure 5: ProGGD attributes panel
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< ProGGD - Graph Data Profiling with GGDs

Graph patterns of Amazon
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Figure 6: ProGGD graph pattern panel
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Graph Generating Dependencies Overview
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Figure 7: ProGGD graph generating dependencies panel

4.3.Data Interlinking

4.3.1.

Introduction of Data Interlinking

This task is to deliver (semi-)supervised tools and methods for data (ontology, entity,
relationship, property) interlinking in SciLake's SKGs. Graph Generating Dependencies,
which can capture both differential and topological information, will be used to

perform entity resolution and generate sameAs edge in case a GGD is violated.

GGDMiner is developed to mine a set of Graph Generating Dependencies which are
used for the entity resolution problem.
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4.3.2. Limitations of the state of the art

Entity resolution is the task of identifying the same real-world entity from instances of
data. Entity resolution can be used not only to deduplicate data but also to interlink
different data sources which have the same real-world entities. The entity resolution
problem in our case is to identify matching entities of heterogeneous graph data such
as OpenAlRE Graph and Clinical Knowledge Graph, from which we can integrate
different sources of graph data into one. Specifically, we work on a property graph and
perform entity linkage to two matching nodes or relationships or graph patterns of two
graph data which is significant for graph data interlinking.

Current entity resolution methods such as entity embedding based techniques and ML
methods are inherently lacking in explainability and interpretability, which prevents
explicit encoding of domain knowledge and interactive debugging of results. There are
some logic-rule based methods, but most of them utilise attribute information to
develop distance- or similarity-based measures, without consideration of topology or
structure information.

GGDs can solve all the above problems, focusing on graph generation using source and
target graph patterns. Source graph pattern is depicted as two disjoint interesting
patterns which have potential matching entities from two different sources graph data,
while sameAs edges or new patterns are generated in target graph pattern. GGDs can
also express the similarity between the properties of the entities to be matched with
the differential constraints. In case GGDs are violated, the target graph pattern is
completed for the validation of GGDs and to link two matching entities or patterns.

4.3.3. SsHINER for Entity Resolution

SHINER system is implemented for entity resolution in graph data using GGDs. The
following figure shows the sHINER system architecture. sHINER has mainly two
components, the G-Core language interpreter and the GGDs component. Source code
of SHINER system is available at https://github.com/avantlab/gcore-spark-ggd.
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G-CORE INTERPRETER

The G-Core language interpreter is an interpreter of the G-Core graph query language
built over Apache Spark®. Its implementation is open source and can be accessed in the
Linked Data Benchmark Council repository. We chose to use G-Core language and its
language interpreter for mainly two reasons: (1) the possibility of returning graphs as
results of the queries and, (2) the G-Core interpreter is built over Apache Spark
framework which gives the possibility of querying/analysing big data. One of the main
characteristics of the G-Core language is that the result of a graph query is also a

graph.

GGDs ComPONENT

The following figure from [3] shows the main logical component of sHINER, responsible
for the interpretation and execution of the GGDs validation and graph generation
algorithms used in the entity resolution.

sHINER Component

Ciuery the
graph patterns
GIG0 Validation
and Graph Generation "
Engine to query graphs

- . Included Similarity Join
oparator on SparkSQL

GGD Spark SQL Extended types of

L queries on graphs

Extension ‘[ G-Core |:‘tﬂrpra1.er
. v
}_: f;l 3 GE 3
) G-Cora can be
isad to query
Gy

¥

Input Graph Sources G] 1 Gz Entity Resolution Output Graph
e e
Set of GGOs %) {Graph Generation) (3

Figure 8: sHINer system architecture

* https://spark.apache.org/
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4.3.4. Use Case of Cancer Pilot

The following example shows one possible way of using GGDs to express matching
rules for clinical knowledge graph and cancer specific OpenAire graph.

The source graph pattern (left-hand side) includes the entity of Publication from the
clinical knowledge graph and the entity of Result from the OpenAIRE Graph. The
variables depicted for them are x and y which could be any character. There are two
differential constraints for the source graph pattern. The first one is about the type of
entity of Result, since Publication is not the only one type of Result in the OpenAIRE
Graph. This constraint expresses that the attribute of type of Result should be
Publication. The second constraint expresses that the edit distance between DOI of
Publication from clinical knowledge graph and DOI of Publication from OpenAIRE
Graph should be no more than 1. Moreover, the entity of Publication and entity of
Result cannot be the same one.

The target graph pattern (right-hand side) generates the sameAs edge to match the
entity of Publication from clinical knowledge graph and entity of Result from OpenAIRE
Graph, if there is no existing sameAs edge between the two entities. The differential
constraint of target graph pattern is empty, stating that the matching of target graph
pattern is without the consideration of attributes of entities, which is different from the
matching of source graph pattern.

Q Q,
Publication . Result Publication Result
—
De 2y
ﬁ-m,g (y.type, 'Publication’) = 0, >
G (x.DOL y.DOl) ==1, %2y

Figure 9: Using GGDs for entity resolution in the cancer pilot
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The above GGD encodes the rules to perform entity resolution over clinical knowledge
graph and cancer specific OpenAIRE Graph. To perform ER, we can add links of type
sameAs between the matched entities in the target graph pattern. These links will be
generated to validate the defined GGD.

Paper(s):

Code repo(s):
https://github.com/avantlab/R2PG-DM
https://github.com/avantlab/proggd
https://github.com/avantlab/gcore-spark-ggd
https://github.com/avantlab/ggdminer

Shimomura, L. C., Fletcher, G., & Yakovets, N. (2023). ProGGD-Data Profiling on
Knowledge Graphs using Graph Generating Dependencies. ISWC 2023 Posters and
Demos: 22nd International Semantic Web Conference, 2023, Athens, Greece
Shimomura, L. C. (2024). On Graph Generating Dependencies and their Applications
in Data Profiling. PhD Dissertation. Eindhoven University of Technology.

Larissa C. Shimomura, Nikolay Yakovets, George Fletcher, Reasoning on property
graphs with graph generating dependencies, Information Sciences, Volume 672,

2024, 120675, ISSN 0020-0255, https://doi.org/10.1016/}.ins.2024.120675.
Another paper under review

4.

4.Data Lake search & navigation

4.4.1. Data management for SKGs

To provide a robust and efficient analytics and storage engine for scientific knowledge
graphs (SKGs), we employ AvantGraph, a next-generation graph processing engine.
Figure 10 showcases its architecture. AvantGraph is designed from the ground up to
efficiently process complex analytics, utilising a number of novel techniques and
optimizations. Specifically, AvantGraph uses advanced graph storage and indexing
techniques to enable the execution of novel worst-case optimal join algorithms. Special
care is taken in handling large intermediate results (IR), which often occur during
complex analytical query processing. These results are significantly reduced through IR
factorization. Additionally, AvantGraph features an advanced query planner and
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optimizer tailored to handle graph queries involving recursion. In the context of the
SciLake project, we are enhancing AvantGraph with native support for user-defined
algorithms, as discussed in the following sections.

query

H '
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[} . r
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Figure 10: Architecture of the AvantGraph graph processing engine

4.4.2.

Integrating Analytics in Databases

With the growing deployment of graph databases, more and more users are finding
the data that they need to analyse stored inside a graph database. To access the data,
the user sends queries in a graph query language such as Cypher or GQL. These
languages excel at expressing graph patterns, yet they lack the expressive power to

encode arbitrary algorithms.

For users wanting to perform complex graph analytics, a common approach is to
export the contents of the graph to a text file and process it in Python instead.
However, involving external tools brings with it multiple issues:
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Data wrangling: An interchange format must be found that the database can
write and the external tool can read. Widely-used formats such as CSV
(comma-separated values) have ambiguity in their definition, which leads to
import failures or data loss in the conversion process.

Data duplication: Exporting often requires a full copy of the graph.

Overhead of import/export: For highly selective analyses, the time spent
exporting and importing data can dominate the execution time of the analysis.

Database vendors have also identified the need for algorithm support in their systems.
Multiple approaches to integrating algorithm support have been explored in both
industry and academic systems. These invariably suffer from at least one of three key

problems:

Flexibility: Widely useful algorithms are difficult or impossible to express. In
some cases the set of algorithms is completely fixed, so even minor variations
of common algorithms require an external tool.

Performance: Analytics tasks are an order of magnitude slower than they
would be in a competent external tool. Often due to lack of optimization or
mismatch in execution paradigm.

Lack of Integration: Queries and algorithms are strictly separated and are not
interoperable. In some cases algorithms even run on a separate representation
of the graph, which brings back the data duplication issue from the external
tool scenario.
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Figure 11: Different approaches to graph analytics in databases
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4.4.3. GraphAlg: Algorithm Support Done Right

GraphAlg is a language for writing graph algorithms that is designed to be tightly
integrated into graph databases. GraphAlg is fully integrated with the AvantGraph
database management system, allowing users to embed algorithms directly into
cypher queries. The language is specifically designed to easily express graph
algorithms. It has a theoretically sound foundation rooted in linear algebra, enabling
aggressive optimization for maximum performance.

func SSSP(graph: Matrix<s, s, trop_real>,
source: Vector<s, bool>)
-> Vector<s, trop_real> {
v = cast<trop_real>(source);
for 1 in graph.nrows {
v += v * graph;
}

return v,

Figure 12: Single-source shortest paths in GraphAlg

4.4.4. Use Cases for GraphAlg in Other Work

Packages

Algorithm support in AvantGraph is a key building block for other work packages and
pilot partners. GraphAlg will be used to power the smart impact analysis service,
computing impact analyses on the OpenAIRE graph and domain-specific SKGs for pilot
partners.

For example, the BIP! Toolbox today computes PageRank scores in the OpenAIRE
graph using a heavily-contested cluster of more than a thousand of cores over dozens
of nodes. With the OpenAIRE Graph already stored in AvantGraph, GraphAlg is ideally
suited to take over this responsibility: Doing so will eliminate the current data
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wrangling, reduce a complex distributed Apache Spark workflow to a simple 100 line
algorithm, and allow PageRank computation of the full OpenAIRE graph on a single
server.

The neuroscience and transportation research pilot partners both indicate a desire to
use the smart analysis service, either through the OpenAIRE Graph or in custom SKGs.
GraphAlg will therefore provide value to these partners indirectly by supporting impact
analysis. Additionally, GraphAlg is available to all AvantGraph users through the regular
Cypher interface, ready to use for any custom analytics workloads that pilot partners
may wish to experiment with.

4.4.5. Implementation of GraphAlg

GRAPHALG LANGUAGE DESIGN

We categorise GraphAlg as a domain-specific language (DSL) for writing graph
algorithms in the language of linear algebra. All of the fundamental operations in
GraphAlg are linear algebra operations such as matrix multiplication and element-wise
product. These familiar operations not only make it easier for new users to learn the
language, but they also provide a solid mathematical foundation. In contrast to other
DSLs in the same space, GraphAlg has a formally defined grammar, type system and
operational semantics that fully capture the language.

The formal properties of GraphAlg are achieved by reducing complex operations to a
small core language with simple, well-defined operations. Our core language is
equivalent to the MATLANG language when extended with a limited form of iteration.
MATLANG is a formal language for matrix manipulation whose expressive power has
been well-studied. Of particular note is that MATLANG has a predefined translation
into relational algebra, which makes it an ideal starting point for integrating algorithm
support into a database system.

In the design of GraphAlg we strike a careful balance between expressive power and
analyzability: On the one hand the language is powerful enough to express a wide
variety of algorithms, but it is also limited enough to remain amenable to aggressive
optimization. We provide high-level operations that are necessary for
high-performance implementations of multiple algorithms, while prohibiting
operations that are known to exhibit poor performance on large graphs. Our proposed
core language has only a small number of high-level operations with well-defined
semantics, allowing for extensive compiler analysis and optimization.
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e == (e) (parentheses)
| M (matrix variable)
| onev(e) (one vector)
le.T (transpose)
| diag(e) (diagonalize vector)
| apply(lam, e1, e2) (function application)
|e1 * ez (matrix multiplication)
| sring(D) (scalar literal)
| zero(sring) (additive identity)
| one (sring) (multiplicative identity)
|er {+-./==<} e2 (scalar binary operator)
| cast<sring>(e) (scalar cast)

Figure 13: Definition of expressions in the GraphAlg core language

INTEGRATION WITH REGULAR QUERIES

AvantGraph allows embedding algorithms directly inside of Cypher queries. A simple
example is shown below.

WITH ALGORITHM "

fune TriangleCount{graph:Matrix<s, s, bool>) -> int {
C = Matrix<int>(graph.nrows, graph.ncols);
C<graph> = cast<int>{graph) * cast<int>{graph);
return reduce(C) / 6;

3

CALL TriangleCount ()

RETUREN count

Algorithms can be invoked directly from Cypher queries. It is also possible to provide
inputs to the algorithm as subqueries, and to process query results as part of a query.
This deep integration is made possible by our unified intermediate representation (IR).
Queries and algorithms are both converted into the same IR, after which there is no
more explicit distinction between the two. Our approach allows for maximum research
of existing infrastructure for query processing: The existing optimization and execution
pipeline is reused for algorithms.

Another benefit of the unified IR is that it enables cross-optimization: Optimizations that
cross the border between query and algorithm. Because the unified IR removes all
separation between queries and embedded algorithms, we can perform additional
optimization that would be impossible to perform exclusively on the query or
algorithm side.
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ComPILING GRAPHALG
The compilation of GraphAlg is done in two stages: A simplification and optimization
step into the core language, followed by a lowering into an extended relational algebra.

MATLANG Extended
Lo Relational
b Algebra

Simplify Transform

SimpLIFIcATION TO MATLANG WiTH Loors

Complex GraphAlg operations are replaced with simpler ones from the core language
(based on MATLANG). The majority of the optimization is done after this simplification
step since the remaining operations are simple and thus easier to reason about.

LOWERING TO EXTENDED RELATIONAL ALGEBRA

This lowering step converts the core language operations into the unified IR used
internally by much of the AvantGraph system. The lowering step bridges any
differences between the operations available in GraphAlg and those available in
AvantGraph. As a result, AvantGraph can optimise and execute algorithms in the same
pipelines used for queries. An example of this is the conversion of data types:
GraphAlg operates on matrices, but AvantGraph operations process tuples, so the
lowering step decomposes matrices into tuples.

(row, column, value)
(0,0,1)
(0, 1, 2)
(2, 2,9)

Figure 14: An example sparse matrix converted into an equivalent set of tuples.

Most of the GraphAlg core operations can be readily converted into standard relational
algebra operators. A notable exception here is the conversion of loops. Loops are not
part of the standard relation algebra definition, and most database systems do not
implement them efficiently, if at all. To support this, we have extended AvantGraph
with a custom loop operator that supports all GraphAlg use cases. It is part of the
unified IR and is supported throughout the pipeline, including in the query optimizer.
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4.4.6. Demonstration

The functionalities that were described above are demonstrated in our AvantGraph for

SciLake repository. This repository serves as a practical guide for users to leverage
AvantGraph for managing and analysing scientific data within the SciLake framework.
The repository demonstrates the following functionalities:

e Graph Database Integration: It integrates AvantGraph, a graph database, to
manage and query scientific data efficiently.

e Data Ingestion: The demo includes scripts and tools for ingesting scientific
datasets into the graph database.

e Querying Capabilities: We provide examples of how to perform complex
queries on the ingested data using AvantGraph's query language.

e Documentation and Examples: Comprehensive documentation and example
scripts are provided to help users understand how to use the functionalities of
AvantGraph within the context of SciLake.

Paper(s):
e Paper in preparation

Code repo(s):
https://qithub.com/avantlab/avantgraph

Demo(s):
https://github.com/avantlab/scilake-demo
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5. Conclusions

We presented our progress in creating the first version of the Scientific Lake service as part of
the SciLake project. We have set up a foundation for the service, making it easier for
researchers to find and use a wide range of scientific data through our Scientific Knowledge
Graphs (SKGs). Our work has focused on putting together different parts like gathering data,
creating knowledge graphs, linking data together, and improving how users can search
through the data lake. For each task, we provide the lists of scientific publications published
under SciLake project and links to corresponding code repositories. We provide links to
demonstration code, where appropriate.

Looking ahead, we are looking forward to keeping improving the service. Notable future work
areas include the following. First, tailoring and scaling the data acquisition service to meet the
demands of the pilots. Second, improving/tailoring the knowledge graph construction for the
pilots will provide a structured representation of the data, facilitating better analysis and
insights. Profiling the constructed knowledge graphs is another key area, as it will help in
understanding the data's characteristics and quality. Additionally, enriching and interlinking
the knowledge graphs (especially with third-party data, like the OpenAIRE Graph) will enhance
their utility by integrating diverse data sources. Deeper embedding and interoperability of the
AvantGraph into the SciLake data management service is also a priority, as it will streamline
data management and improve data accessibility. Finally, supporting non-trivial analytical
tasks for downstream SciLake services will enable more complex and insightful analyses
while, at the same time, reducing the computational requirements.
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