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Abstract—We introduce a Prony-like method to recover a
continuous domain 2-D piecewise smooth image from few of its
Fourier samples. Assuming the discontinuity set of the image
is localized to the zero level-set of a trigonometric polynomial,
we show the Fourier transform coefficients of partial derivatives
of the signal satisfy an annihilation relation. We present neces-
sary and sufficient conditions for unique recovery of piecewise
constant images using the above annihilation relation. We pose
the recovery of the Fourier coefficients of the signal from the
measurements as a convex matrix completion algorithm, which
relies on the lifting of the Fourier data to a structured low-
rank matrix; this approach jointly estimates the signal and the
annihilating filter. Finally, we demonstrate our algorithm on
the recovery of MRI phantoms from few low-resolution Fourier
samples.

I. INTRODUCTION

The recovery of continuous domain parametric representa-
tions from few measurements using harmonic retrieval/linear
prediction has received considerable attention in signal pro-
cessing since Prony’s seminal work [1], [2]. Extensive research
has been devoted to the recovery of finite linear combinations
of exponentials with unknown continuous frequencies as well
as linear combinations of Diracs and non-uniform 1-D splines
[3]–[5]. Recently, convex algorithms that minimize atomic
norm were also introduced to recover such signals [6], [7];
these methods are off-the-grid continuous generalizations of
compressed sensing theory, which can avoid discretization
errors and hence are potentially more powerful. However,
the direct extension of the above Prony-like and convex off-
the-grid methods to 2-D piecewise smooth images is not
straightforward. Specifically, the partial derivatives of piece-
wise smooth images can be thought of as a linear combination
of a continuum of Diracs supported on the curves separating
the regions, which current methods are not designed to handle.

Recently, Pan et al. [8] introduced a complex analytic
signal model for continuous domain 2-D images, such that
the complex derivatives of the image are supported on a curve.
Under the assumption that the curve is the zero-set of a band-
limited function, the authors show the Fourier transform of the
complex derivative of such a signal is annihilated by convolu-
tion with the Fourier coefficients of the band-limited function.
This property is used to extend the finite-rate-of-innovation

model [3] to this class of 2-D signals. While innovative, the
framework offered in [8] has several limitations. One problem
is that a complex analytic signal model is not realistic for
natural images (e.g., the only real-valued analytic functions
are constant functions). In addition, if we are only measuring
a finite number of Fourier samples, one can choose analytic
functions such that the all of these coefficients vanish; i.e.,
the recovery of the signal from few Fourier coefficients of an
arbitrary signal in this class is ill-posed.

In this work, we address the above limitations by proposing
an alternative signal model based on the more realistic class of
piecewise smooth functions. We show that we can generalize
the annihilation property in [8] to this class of functions,
such that it is possible to recover an exact continuous domain
representation of the edge set from few Fourier samples.
We also determine necessary and sufficient conditions on the
number of Fourier samples required for perfect recovery of
the edge set in the case of piecewise constant images.

To recover the full signal, we propose a single-step convex
algorithm which can be thought of as jointly estimating the
edge set and image amplitudes. This is fundamentally different
than the two stage approach proposed in [8], which we
also investigated for super-resolution MRI in [9]. Motivated
by recently proposed algorithms for calibration-free parallel
MRI recovery [10], [11], our new approach is based on the
observation that the ideal Fourier samples of the signal lift to a
structured low-rank matrix, which allows us to pose the recov-
ery as a low-rank structured matrix completion problem. We
demonstrate our algorithm on the recovery of MR phantoms
from low-resolution Fourier samples.

II. SIGNAL MODEL

A. Piecewise smooth signals

In this paper, we consider the general class of 2-D piecewise
smooth functions:

f(r) =
n∑
i=1

gi(r) χΩi(r), ∀r = (x, y) ∈ [0, 1]2, (1)

where χΩ denotes the characteristic function of the set Ω:

χΩ(r) =

{
1 if r = (x, y) ∈ Ω

0 else.
(2)
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Here we assume each Ωi ⊂ [0, 1]2 is a simply connected
region with piecewise smooth boundary ∂Ωi. The functions gi
in (1) are smooth functions that vanish under of a collection of
constant coefficient differential operators D = {D1, ..., DN}
within the region Ωi:

Dj gi(r) = 0,∀r ∈ Ωi; j = 1, .., N. (3)

The above class of functions is fairly general and includes
many well-understood image models with the appropriate
choice of D.

1) Piecewise constant images: We set D to

D = ∇ = {∂x, ∂y}.

Note that Dg = 0 if and only if g = ci for ci ∈ C. Hence, (1)
reduces to the well-known piecewise constant image model:

f(r) =
n∑
i=1

ci χΩi(r), ∀r = (x, y) ∈ [0, 1]2, (4)

This case will be the primary focus of this work due to its
simplicity and provable sampling guarantees.

2) Piecewise analytic images: Choosing D = ∂z̄ = ∂x +
j∂y , then Dg = 0 if and only if g is complex analytic.
Hence this model is equivalent to the one proposed in [8].
As described above, this signal model is not very realistic for
natural images.

3) Piecewise harmonic: Both the above cases consider only
first-order differenial operators. One choice of a second-order
differential operator is the Laplacian D = ∆ = ∂2

xx + ∂2
yy .

Then Dg = 0 if and only if g is harmonic.
4) Piecewise linear images: If we consider all second or-

der partial derivatives D = {∂2
xx, ∂

2
xy, ∂

2
yy}, then Dg = 0 if

and only if g is linear, i.e. g(r) = 〈a, r〉 + b, for a ∈ C2,
b ∈ C, and so f has the expression

f(r) =
n∑
i=1

(〈ai, r〉+ bi) χΩi
(r), ∀r = (x, y) ∈ [0, 1]2. (5)

5) Piecewise polynomial: Generalizing the above case we
may consider all nth order partial derivatives D = {∂α}|α|=n
where α is a multi-index. Then Dg = 0 if and only if g is a
polynomial of degree at most (n− 1).

We will show that under certain assumptions on the edge set
C = ∪ni=1∂Ωi, the Fourier transform of derivatives of a piece-
wise smooth signal specified by (1) satisfies an annihilation
property. This will enable us to recover an exact continuous
domain representation the edge set C of a piecewise smooth
signal from finitely many of its Fourier samples by solving a
linear system.

B. Trigonometric polynomials and curves

Following [8], we will assume the edge set C to be the
zero-set of a band-limited periodic trigonometric polynomial

µ(r) =
∑
k∈Λ

c[k] ej2π〈k,r〉, ∀r ∈ [0, 1]
2
, (6)

where c[k] ∈ C and Λ is any finite subset of Z2; we call
any function µ described by (6) a trigonometric polynomial,

and the zero-set C : {µ = 0} a trigonometric curve. We
also define the degree of a trigonometric polynomial µ to
be the dimensions of the smallest rectangle that contains the
frequency support set Λ, denoted as deg(µ) = (K,L). For
trigonometric polynomials µ and ν, we say ν divides µ or
ν | µ if µ = ν ·γ where γ is another trigonometric polynomial.

Using elementary results from algebraic geometry, we may
show there is a unique minimal degree trigonometric polyno-
mial associated with any trigonometric curve C, which we call
the minimal polynomial for C:

Proposition 1. For every trigonometric curve C there is a
unique (up to scaling) trigonometric polynomial µ0 with C :
{µ0 = 0} such that for any other trigonometric polynomial µ
with C : {µ = 0} we have deg(µ0) ≤ deg(µ) and µ0 | µ.

The following property of minimal polynomials is also
important for our uniqueness results:

Proposition 2. Let C be the zero set of a trigonometric
polynomial with minimal polynomial µ0. Suppose ν is a
trigonometric polynomial such that ν = 0 and ∇ν = 0 on
C, then µ2

0 | ν. In particular, ∇µ0 = 0 for at most finitely
many points on C.

III. ANNIHILATION PROPERTY

We now show that the Fourier transform of the partial
derivatives of piecewise smooth signals (1) satisfy an anni-
hilation property.

1) First order partial derivative operators: First we con-
sider the case of a single characteristic function χΩ. Note that
since χΩ is non-smooth at the boundary, its derivatives are
only defined in a distributional sense. Letting ϕ denote any
smooth test function we have:

〈∂xχΩ, ϕ〉 = −〈χΩ, ∂xϕ〉 = −
∫

Ω

∂xϕdr = −
∮
∂Ω

ϕdy (7)

where the last step follows by Green’s theorem. Likewise,

〈∂yχΩ, ϕ〉 =

∮
∂Ω

ϕdx (8)

Hence ∂xχΩ and ∂yχΩ can be interpreted as a continuous
stream of weighted Diracs supported on ∂Ω. In particular, if
ψ is any smooth function that vanishes on ∂Ω then

ψ · ∂xχΩ = ψ · ∂yχΩ = 0 (9)

where equality holds in the distributional sense. Assuming
ψ = µ is a trigonometric polynomial, taking Fourier trans-
forms of (9) yields the following annihilation relation:

Proposition 3. Let f = χΩ with boundary ∂Ω given by
the trigonometric curve C : {µ = 0}. Let D be any first
order differential operator. Then the Fourier transform of Df
is annihilated by convolution with the Fourier coefficients
c[k],k ∈ Λ of µ, that is∑

k∈Λ

c[k] D̂f(ω − 2πk) = 0, for all ω ∈ R2. (10)
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Due to the above property, we call µ an annihilating
polynomial for Df .

It is straightforward to extend the above proposition to
piecewise constant functions f =

∑n
i=1 ciχΩi

, provided µ = 0
on the union of the boundaries C = ∪ni=1∂Ωi. Likewise, if
f = g · ∂Ω where Dg = 0, then by the product rule

Df = Dg · χΩ + g ·DχΩ = g ·DχΩ

which has support on ∂Ω and so, µ ·Df = 0, which implies
(10) holds for f , and similarly for the linear combination f =∑n
i=1 gi · χΩi

, where Dgi = 0 for all i = 1, ..., n.
2) Second order partial derivative operators: Now con-

sider the case where D is any second-order differential op-
erator. Let f = g · χΩ where Dg = 0. We show that µ2 is an
annihilating polynomial for Df , where µ is any trigonometric
polynomial that annihilates the partial derivatives of χΩ.

Let ∂2 = ∂2∂1 where ∂i ∈ {∂x, ∂y}, i = 1, 2. By the
product rule we have:

∂2f = ∂2g · χΩ + ∂1g · ∂2χΩ + ∂2g · ∂1χΩ + g · ∂2χΩ.

Since ∂1χΩ and ∂2χΩ are annihilated by µ, we have

µ2 · ∂2f = χΩ · µ2 · ∂2g + g · µ2 · ∂2χΩ.

Again by the product rule

µ2 · ∂2χΩ = ∂2(µ2 · ∂1χΩ)− 2µ · ∂2µ · ∂1χΩ = 0,

which implies

µ2 · ∂2f = χΩ · µ2 · ∂2g

and so by linearity

µ2 ·Df = χΩ · µ2 ·Dg = 0.

The above shows that µ2 is always sufficient to annihilate
Df , where D is second-order. However, using Prop. 2, we
may show that when g does not vanish on ∂Ω, then µ2 is
also necessary for annihilation of Df , in the sense that if ν is
any other trig polynomial satisfying ν ·Df = 0, then µ2

0 | ν,
where µ0 is the minimal polynomial for ∂Ω. If deg(µ0) =
(K,L), this implies any annihilating polynomial ν for Df
has deg(ν) ≥ (2K − 1, 2L− 1).

3) Partial derivative operators of arbitrary order: A simi-
lar argument shows that when D is any nth order differential
operator, and f = g · χΩ where Dg = 0, then

µn ·Df = 0. (11)

This yields the following annihilation relation for higher-order
differential operators:

Proposition 4. Let D be any nth order differential operator.
Let f = g · χΩ with Dg = 0 and ∂Ω ⊂ {µ = 0} for some
trigonometric polynomial µ. Then the Fourier transform of
Df is annihilated by convolution with the Fourier coefficients
d[k],k ∈ Γ of µn, that is∑

k∈Γ

d[k] D̂f(ω − 2πk) = 0, for all ω ∈ R2. (12)

Likewise, by linearity, (12) is valid for linear combinations
f =

∑
i gi · χΩi , where Dgi = 0 and µ = 0 on ∪i∂Ωi.

IV. RECOVERY FROM FINITE FOURIER SAMPLES

We now investigate necessary and sufficient conditions for
the recovery of the filter coefficients describing the edge set
from finitely many Fourier samples of the original signal f .
For these results we restrict our attention to piecewise constant
signals.

A. Necessary conditions

For a piecewise constant signal f , from the annihilation
condition (10) we may form the linear system of equations:{∑

k∈Λ d[k]f̂x (2π[l− k]) = 0,∑
k∈Λ d[k]f̂y (2π[l− k]) = 0,

∀ l ∈ Γ. (13)

where f̂x and f̂y may be computed from samples of f̂ by
f̂x(ω) = −jωx · f̂(ω), and f̂y(ω) = −jωy · f̂(ω). Supposing
the sampling grid Ω is a rectangular of dimensions (K ′, L′),
and the minimal polynomial for C has degree (K,L), with
coefficients c[k] supported in Λ, then we may form at most
M = 2 · (K ′ − K + 1) · (L′ − L + 1) valid equations from
(13). Therefore to solve for the at most K ·L unknowns c[k],
k ∈ Λ, we require at least M = K · L equations. This gives
the following necessary condition for recovery of C:

Proposition 5. Let f be piecewise constant such that the edge
set C has minimal polynomial µ of degree (K,L). A necessary
condition to recover the edge set C from (13), is to collect
samples of f̂ on a (K ′, L′) rectangular grid such that

2 · (K ′ −K + 1) · (L′ − L+ 1) ≥ K · L.

To illustrate this bound, suppose the minimal polynomial
has degree (K,K), then this requires at least 1.71K× 1.71K
Fourier samples to recover the edge set C. Our numerical
experiments on simulated data (see Fig. 1) indicate the above
necessary condition might also be sufficient for unique recov-
ery; that is, we hypothesize the minimal filter coefficients c[k]
are the only non-trivial solution to the system of equations
(13).

B. Sufficient conditions

We now focus on sufficient conditions for the recovery of
the edge set. Here we will use mΛ to denote a dilation of the
set Λ by a factor of m: if Λ = {(k, l) : |k| ≤ K, |l| ≤ L},
then mΛ = {(k, l) : |k| ≤ mK, |l| ≤ mL}.

Theorem 6. Let f = χΩ be the characteristic function of a
simply connected region Ω with boundary ∂Ω having minimal
polynomial µ with coefficients c[k],k ∈ Λ. Then the c[k] can
be uniquely recovered (up to scaling) as the only non-trivial
solution to the equations{∑

k∈Λ c[k]f̂x (2π[l− k]) = 0,∑
k∈Λ c[k]f̂y (2π[l− k]) = 0,

∀ l ∈ 2Λ. (14)

The proof entails showing any other trigonometric poly-
nomial η(r) having coefficients d[k], k ∈ Λ, satisfying (6)
must vanish on ∂Ω, from which it then follows that η is
a scalar multiple of the minimal polynomial µ by degree
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Fig. 1. Exact recovery of the edge set of a piecewise constant image
from the necessary minimum number of Fourier samples. The original
piecewise constant signal is shown in (a), and was generated to have
edge set {µ = 0} where the degree of the minimal polynomial µ
is known to be (9, 9). Here the minimal polynomial and edge set C
is shown to be recovered from the system (13) having dimensions
81 × 81 corresponding to the 15 × 15 necessary minimum number
of Fourier samples predicted by Prop. 5. The singular values of this
system are plotted in (d), indicating the recovered µ is the only non-
trivial solution.

considerations. We also are able to show similar result holds
for piecewise constant signals, provided the characteristic
functions do not intersect:

Theorem 7. Let f(r) =
∑n
i=1 aiχΩi(r) be piecewise con-

stant, where the boundaries ∂Ωi are described by non-
intersecting trigonometric curves {µi = 0}, where µi is the
minimal polynomial for ∂Ωi. Then, the coefficients d[k],k ∈ Λ,
of µ = µ1 · · ·µn, and equivalently the edge set C = ∪ni=1∂Ωi,
can be uniquely recovered (up to scaling) as the only non-
trivial solution of{∑

k∈Λ d[k]f̂x (2π[l− k]) = 0,∑
k∈Λ d[k]f̂y (2π[l− k]) = 0,

∀ l ∈ 2Λ. (15)

Note that to form the equations in (14) and (15) requires
access to Fourier samples f̂ [k] for all k ∈ 3Λ, which is greater
than necessary number of samples given in Theorem 5. We
conjecture that the uniqueness results in Theorems 6 and 7 can
in fact be sharpened to the necessary number of samples, and
extended to piecewise constant signals where the boundaries
of the regions intersect.

V. RECOVERY ALGORITHMS

Up to now we have only considered the problem of re-
covering the edge set of a piecewise constant signal f =∑n
i=1 aiχΩi from finite Fourier samples. In analogy with

Prony’s method, once the edge set is determined it is the-
oretically possible to recover the signal amplitudes ai by
substituting f back into (15) and solving a full rank system.
However, this is not feasible in practice since it requires factor-
ing a high degree multivariate polynomial into its irreducible
factors. Instead we pursue approaches that allow us to pose
the recovery as the solution to a convex optimization problem.

A. Curve-aware recovery

Supposing we have access to an annihilating polynomial
µ of the signal (equivalently, the edge set C : {µ = 0}), one
approach is to pose the recovery as the weighted total variation
minimization problem:

f = arg min
g

∫
|µ(r)∇g(r)| dr subject to ĝ[k] = f̂ [k],∀k ∈ Γ

(16)
Here, since µ = 0 on the edge set C, the gradient of the image
is not penalized along the curve, which allows for the recovery
of an image with sharp edges along C.

A version of this approach was investigated in an earlier
work for the super-resolution recovery of MR signals from
few Fourier samples [9]. However, we found this scheme to
have certain drawbacks, namely that it requires discretization
onto a spacial grid, the optimization of many parameters, and
is very sensitive to the estimate µ. Hence we consider an
alternate approach which does not rely on an explicit estimate
of the annihilating polynomial µ, but instead jointly recovers
the image and the annihilating polynomial in a single stage
algorithm.

B. Low-rank recovery

The annihilation equations specified by (13) can be repre-
sented in the matrix form as[

Tx[f̂ ]

Ty[f̂ ]

]
︸ ︷︷ ︸

T[f̂ ]

d = 0 (17)

where d is a vectorized version of the Fourier coefficients
d[k],k ∈ Λ, and Tx and Ty are block Toeplitz matrices
corresponding to the 2-D convolution of d[k] with the dis-
crete samples of jωx f̂(ω) and jωy f̂(ω). Specifically, if the
coefficient support set Λ has dimensions K × L, each row
of Tx(f̂) is the vectorized K × L patch of jωx f̂(ω), and
likewise for Ty(f̂). The number of rows is equal to the
number of distinct patches, which corresponds to the number
of annihilation equations.

Note that for a given piecewise constant signal, a priori we
do not know the degree of the minimal polynomial describing
the edge set, which is needed to specify the size of T.
However, if the coefficients d[k],k ∈ Λ′, corresponding to
the trigonometric polynomial µ is a solution to (17) with
support Λ′ strictly smaller than the assumed support Λ, then
any multiple ν = µ · γ having coefficients e[k] = (d ∗ g)[k]
supported within Λ, is also a solution. This implies that if
we consider a larger filter size than required by the minimal
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polynomial, i.e. more columns in T than the number of
coefficients in d, the matrix T will be low-rank.

The preceding discussion suggests we may pose the recov-
ery of the signal as a structured low-rank matrix completion
problem, entirely in the Fourier domain:

f̂ = arg min
ĝ

rank(T[ĝ]) subject to ĝ[k] = f̂ [k],∀k ∈ Γ

(18)
We note this approach is still “off-the-grid” in the sense that
we may recover a discrete image at any desired resolution by
extrapolating f̂ to this resolution in Fourier space, and apply-
ing an inverse DFT. We propose solving a convex relaxation
of (18),

f̂ = arg min
ĝ
‖T[ĝ]‖∗ + λ‖PΓĝ − b‖22 (19)

where ‖·‖∗ denotes the nuclear norm, i.e. the absolute sum of
singular values, λ is a tunable parameter, PΓ is the projection
onto the sampling set Γ, and b is the vector of original
Fourier measurements. Here we incorporate the quadratic data
penalty to address the case of noisy measurements and model-
mismatch. A standard approach to solving problems of the
form (19) is by an iterative singular value soft-thresholding
algorithm, which requires an SVD of the estimate T [ĝ] at
each step. Due to the size of T [ĝ], such an algorithm is
computationally prohibitive in this case. Instead we use the
SVD-free algorithm proposed in [12], which involves intro-
ducing auxiliary variables U ∈ CM×r and V ∈ CN×r via
the well-known relation ‖X‖∗ = minX=UVH ‖U‖2F +‖V‖2F ,
and enforcing the constraint T[ĝ] = UVH , with the ADMM
algorithm.

In Fig. 2 we demonstrate the ability of the proposed
algorithm to recover a piecewise constant signal from few of
its uniform low-resolution Fourier samples. We experiment
on simulated data obtained from analytical MRI phantoms
derived in [13]. We extrapolate from 65×49 = 3185 analytical
Fourier samples of the Shepp-Logan phantom to a 256× 256
grid (≈20-fold undersampling), and recover the signal by
performing a inverse DFT. Note that the ringing artifacts
observed in the recovery are to be expected due to fact we are
recovering exact Fourier coefficients of the signal, and could
be removed with mild post-processing.

VI. CONCLUSION

We propose an extension of the annihilating filter method to
a wide class of 2-D piecewise smooth functions whose edges
are supported on level set of a band-limited function. This en-
ables us to recover an exact continuous domain representation
of the edge set from few low-frequency Fourier samples. In
the case of piecewise constant signals, we derive conditions
of the necessary and sufficient number of Fourier samples to
ensure exact recovery of the edge set. Finally, we introduce
a convex one-stage algorithm to recover piecewise constant
images which extrapolates the signal in Fourier domain.

(a) Fully sampled (b) Zero-padded (c) Low-rank

Fig. 2. Recovery of Shepp-Logan phantom on a 256x256 grid from
65x49=3185 Fourier samples (≈20 fold undersampling). The top row
shows the spatial domain images, while the bottom row shows the
Fourier transforms of the images (log scale).
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