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Abstract 
Mobile  autonomous vehicles  require the  capability of 

planning  routes  over  ranges  that  are  too  great  to be  charac- 
terized by local  sensor  systems.  Completion of this  task 
requires  some  form of map  data.  Much  work  has been done 
concerning  planning  paths  through  local  areas,  those which 
can  be  scanned by on-board  sensor  systems.  However,  plan- 
ning  paths  based  on  long  range  map  data is a very  different 
problem.  Extant  solution  techniques  require  the  search of 
discrete,  node  and link  representations  which  characterize 
continuous,  two  dimensional  problem  environments.  We 
assume  the  availability of topographic  data  organized  into 
regions of homogeneous  traversal  cost.  Given  this, we present 
a solution  technique for the  long  range  planning  problem 
which  relies  on a Snell's  Law  heuristic  to  limit a graph  search 
for the  optimal  solution. 

Introduction 
Route  planning  has been an  area of interest  for  many 

years,  particularly  in  the  Operations  Research field '. Such 
problems  typically  feature a discrete  number of choices  for 
possible  paths  and  can  thus  be  characterized as essentially  one 
dimensional.  Recently,  interest  in  two  dimensional  route 
planning  has  grown. In this  domain,  there is  a continuum of 
available  choices  for  the  next  movement.  Such  planning  is 
appropriate for robot or human cross country  routing or  for 
determining  placements  for  the  future  construction of per- 
manent,  linear  features  such  as  pipelines or roads.  The sim- 
plest  version of this  problem is known as the  Find-Path prob- 
]em 2. 

A  solution to the  classic Find-Path  problem  consists of a 
routing  plan  tailored  to  a specific  environment.  In  the  robotics 
area.  the  problem  is  described as, given the  initial  and goal 
locations of an  object,  and a set of obstacles  in  the  environ- 
ment,  find a continuous  path  for  the  movement of the  object 
from  the  initial  location  to  the  goal  location  which  avoids col- 
lisions  with  any  obstacles  along  the  way '. The  problem  has 
typically  been  associated  with  planning  local  motion  control 
or manipulator  trajectory  control  for a robot  in a two or three 
dimensional  space  where  information  is  gained  through 
int,egral  sensor  systems,  primarily  visual. 

Another  version of the classic Find-Path  problem  requires 
planning  motion  over  ranges  too  great to be  explored by local 
sensor  systems.  We  term  this  problem  the  extended  Find- 
Path  problem.  Long  range  planning  is  a useful and  difficult 
problem  which  humans solve  easily many  times  each  day. 
Prior to initiating  any  movement,  humans,  either consciously 
or  not,  plan  a  part.icular  course to be  followed.  Moreover. the 
planned  course  has  the  charact,eristic  that  some  factor  is 
optimized (or at least  perceived as optimized).  A  typical 
optimization  factor  is  that, of time. 

A salient  difference  between the classic and  extended 

Find-Path  problems  concerns  optimization.  The  classic version 
posits a binary  view of the  world.  Every  point in the 
environment is  either  traversable or impassable. An optimal 
route  in  such  an  environment  can  be  found by planning  the 
shortest  distance  path  around  the  obstacles.  This "least dis- 
tance  implies  least  cost"  assumption  is  viable  in  the  classic 
version  because the  range of the  sensor  systems  generally 
encompasses  only  a  uniform  medium of traversable  areas. 
The  validity of this  assumption  can  easily  be  established by 
an  example  (using  time  as a measure of route  cost).  The  time 
required  to  walk  across  any  portion of a floor is the  same over 
the  entire floor, given the absence of obstacles. 

The  "least  distance  implies  least  cost"  assumption  is  not 
reasonable  for  the  extended  Find-Path  problem  because  the 
increased  physical  range  over  which  travel  occurs  generally 
implies  that  more  than  one  traversable  medium is 
represented.  Regardless of the  factor  which is to  be  optim- 
ized: one  medium  can  not  be  assumed  to  have  the  same 
traversal  characteristics as all  others.  given  the  diversity of 
objects  which  can  be  found  in  t,he  physical  world.  Thus.  a 
new parameter is  introduced  into  the cost  comput,atiorl fo r  
each  possible  path. In the  binary  case  problem,  the  cost of 
traversing every route is  computed  by  the  simple  formula 

Cost = Ed, where  there  are n line  segments in the complete 

path  and d; is  the  Euclidean  distance  along  the  i'th  line seg- 
ment.  Considering  the  extended  problem,  the  formula 

becomes Cost = Cc, xd, where n and d, have  the  same  mean- 

ing. The new  parameter, e, reflects  the  cost of the i'th  line 
segment.  Also,  the  number of line  segments is typically 
increased.  A  straight  line  traversing  two  different  cost  areas is 
represented  by  two  line  segments.  The  addition of cost  infor- 
mation  has  the effect of invalidating  the  straight line 
hypothesis so prevalent in the  binary  case  solution  techniques. 

Brief  Review of Some  Extant  Solution  Techniques 

i = 1  

, = 1  

Visibility  Graphs The  prototypical  solution  technique for 
the  binary  case  problem  is  known  as  the  Visibility  Graph or 
VGraph  method '. This  method  relies  on  the  knowledge  that 
the  optimal  path  must be  either a straight line  from  start  to 
goal or a series of line  segments  which  includes  obstacle ver- 
tices as turn  points  along  the  start  to goal path.  The  VGraph 
technique  creates a graph  represent,ation of the  problem, G = 

(V,L),  where  the  set V includes all obstacle  vertices  plus  the 
s tar t   and goal  locations.  The  straight  line  hypothesis is  used 
to create  the  set L. Whenever  an  unobstructed  line  segment 
connects  any  two  members of V ,  that  segment is included in 
L. When  the  construction of the  graph is  complete.  standard 
graph  search  techniques  can be  used t o  find the  optimal  path 
in G.  
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The  exhaustive  nature of G defeats  the  interacting  sub- 
problems  difficulty of the  Find-Path  problem.  The cost  is that 
every  obstacle in the  problem  environment  must be  con- 
sidered.  When o obstacles  are  present,  having a total of v 
vertices,  the  cardinality of V is n = v +2. In the  worst  case, 

i line  segments  must be inspected to form L. This  can be 

expensive  for  large  problem  spaces. A dynamically  created 
graph  considering  only  those  obstacles in the  general  area of 
the  optimal  path  is  less  costly.  However,  care  must be taken 
to insure a global  problem view so that  interacting  subprob- 
lems do  not  prevent  optimal  solutions. 

, = n - 1  

, = I  

Propagation The  wavefront  propagation  technique is the 
most  common  method used to  solve  the  extended  prob- 
lem 5:6>11>1z. In this  technique, a uniformly  spaced  lattice is 
imposed  on  the  problem  representation.  Each link  is assigned 
a cost  relative to the  actual  cost of traversing  the  associated 
real  world  terrain.  Then?  an  omnidirectional  graph  search, 
similar to the  propagation of a wave,  is  conducted.  When  the 
wavefront  touches  the  goal,  the  optimal  path  can be retrieved 
by referencing  backpointers or a similar  technique.  This 
method  has  the  primary  advantage  that i t  is the only known 
technique  which  provides  optimal  solutions  to  the  extended 
problem.  However,  it  has  significant deficiencies. 

The  propagation  technique is  very expensive.  Much of 
the  search is expended in areas  that  do  not  hold  any  portion 
of the  optimal  path  since  there is no  guiding  principle  such as 
the  straight  line  hypothesis used in the binary  case  problem. 
41~0, there is a  digital  bias  inherent  in  the  problem  represen- 
tation so that  the  method  actually  returns a set of "optimal" 
paths,  each of which  must be compared  to  determine  the 
unique  solution '. That  is, the  method  finds a set of equal 
cost., "stairstep"  approximations  to  straight  line  solutions. 
These  must. be smoothed  out to characterize  the  optimal 
path. 

Homogeneous  Regions One  technique  which  attempts  to 
avoid  the  exhaustive  lattice of the  propagation  technique is 
the  homogeneous  regions  approach '. This  method  relies  on 
the  knowledge  that  the  physical  world is not a series of dis- 
joint  points,  but  rather a grouping of similar  regions  (fields, 
lakes,  etc.).  The  points  inside  each region have  equivalent 
traversal  characteristics.  The  method  operates by representing 
the  problem  space  as a grouping of polygons  (homogeneous 
regions)  and  conducting a graph  search  between region 
centers.  The  method  has deficiencies; not  everything in the 
physical  world  can be accurately  modeled by centrally  sym- 
metric  figures  and  paths  between region centers need not 
include  the  best  routes.  However,  the  observation  that  the 
real  world is a grouping of regions,  not  distinct  points, is 
important. 

Desirable  Solution  Technique  Characteristics 
A  solution  technique for the  extended  Find-Path  problem 

will have  several key properties.  First,  there  must be provi- 
sions  to  deal  with  the  interaction of subproblems. Specific 
domain  knowledge  can been employed  to  prevent  these 
difficulties as is the  case in the  VGraph model  where 
knowledge  leads  to  the  exhaustive  decomposition of the  prob- 
lem  into a graph of obstacle  vertices  which  can  be  intelligently 
searched.  The  analogous  problem  decomposition for the 
extended  problem  leads to the  imposition of a uniform  lattice 
structure as in the  wavefront  propagation  technique.  Again, 
an  intelligent  graph  search  can be conducted  to find an 
optimal  solution.  The  salient  difference is that  an  unintelli- 
gent  problem  representation  confounds  the  search  strategy 
and  leads  to  problems of representational  resolution,  combina- 

torial  explosion,  accumulation of error,  and a multiplicity of 
solutions  which  erroneously  appear as equivalent.  The  homo- 
geneous  regions  approach  attempts  to  establish a more  intelli- 
gent  problem  representation by grouping  similar  regions 
together.  However, this technique  also  fails  due  to  poor 
representational  robustness  (not  all  physical  world  features 
can  be  adequately  modeled)  and  the lack of an  appropriate 
straight  line  hypothesis  to  guide  search  (moving  from  region 
renter t,o region  center is inadcquate). Vle note  t.hat a dynam- 
ically created  graph  can  lead  to  greater efficiency by avoiding 
wasteful  computations. 

Humans  solve  similar  problems  routinely,  providing  rea- 
sonable  solutions  quite  efficiently.  Their  abilities  seem t o  rely 
on  several  principles.  First,  they  make use of topographical 
knowledge  and  knowledge of their  own  capabilities to parti- 
tion  the  problem  representation  into  homogeneous  areas  with 
similar  traversal  characteristics.  Secondly,  humans  reason at 
different  levels of abstraction. A high level route  plan  might 
contain  the  step ttgo through  Smithfield"  while  a lower  level 
abstraction  details  the  route  through  the  town. In this sense: 
abstraction is as useful in combating  combinatorial  explosion 
as is  the  homogeneous  regions  premise.  Humans  are  also 
opportunistic.  Special  cases of terrain  features  present  oppor- 
tunities for problem  decomposition.  This  concept  generalizes 
to  the  appearance of a corridor  through  an  otherwise 
impenetrable  obstacle. An example  is  the  occurrence of a sin- 
gle  road  through a densely  wooded  and  treacherous  mountain 
area. A suitable  solution  technique for the  extended  Find- 
Path  problem  must be able t o  achieve  opportunistic  decompo- 
sition by recognizing  similar  situations.  -4nother useful aspect 
of human  reasoning is that  it is multidirectional.  Moreover, 
directionality is intelligently  specified.  The  wavefront  tech- 
nique is multidirectional;  however,  ornnidirectional  search is 
not  an  intelligent  strategy. 

In summary, a suitable  solution  method for the  extended 
problem  should  exhibit  several  properties.  These  include  the 
use of a basic,  guiding  principle  for  search  (such  as  the 
straight  line  hypothesis),  domain  knowledge,  capability 
knowledge,  multidirectional (at least  bidirectional)  and  inteili- 
gent  search,  opportunistic  decomposition,  intelligent  problem 
representation,  and  levels of abstraction. Also, the  solution 
provided  should  be in some  sense  optimal.  We  have  noted 
that  humans quickly  solve the  problem,  but  not  necessarily 
with  optimal  results.  Graph  theoretic  techniques  can  provide 
optimal  solutions,  but  not necessarily quickly. A suitable 
solution  method for the  extended  Find-Path  problem will 
achieve  the  best  traits of both  methods. 

Proposed  Solution  Technique 
Representing  the  problem  as a lattice of uniformly  spaced 

nodes  produces  a  firm,  graph  theoretic  basis  from  which  an 
optimal  solution  can be obtained.  However,  obtaining  this 
solution  is  computationally  expensive. In the  wavefront  pro- 
pagation  technique,  the  computational  cost is relative  to  the 
distance to be  traveled  from  the  start  location to the  goal. 
The  number of  grid  squares  examined  here is approximately 
proportional  to  the  area of a circle  whose radius  is  the  start to 
goal  distance.  Thus,  the  computational  cost  grows  approxi- 
mately in proportion to the  square of this  distance. A tech- 
nique  to  intelligently  guide  the  wavefront  search is not  readily 
apparent.  Because of the  diversity of speeds  at,tainable  over 
different  physical  terrain  features  and  the  arbitrary  nature  of 
their  physical.  relative  placement. it is generally  not  possible 
to  determine if a specific area is more  favorable to  the  produc- 
tion of an  optimal  path  than  any  other  area,  unless  that  area 
is explicitly  moved to  and  examined.  This  characteristic 
causes  the  exhaustive,  omnidirectional  nature of the wave- 
front  propagation  search.  We  desire  to  produce a method 
which  constrains  the  search  required of wavefront  propagation 
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techniques.  Further,  the  developed  method  must  be  relatively 
efficient as computational excess is the  primary  problem  to be 
overcome. 

Normally,  limiting  graph  searches  involves  finding  good 
decision  criteria  for  use a t  branch  points.  This  does  not  seem 
appropriate  for  the  extended  problem.  However, we can 
bound  the physical  size of the  entire  graph.  Such a bound is 
possible  and  easily  derived.  Any  solution to the  problem 
serves as an  upper  bound  on  the  cost of the  optimal  solution. 
Consider a hypothetical  path  from  start  to  goal  which 
traverses  only  the  least  desirable (i.e. highest  cost)  regions  but 
avoids  all  obstacles.  Compute  the  cost of this  hypothetical 
path. Now, compute  the  distance which  can  be  traversed 
when  only  the  most  favorable  terrain  type  is used and  the 
same  cost  is  accrued.  Consider  this  second  distance  to  be  the 
sum of the  distances  from  each  foci  to  the  boundary of an  
ellipse.  Let  the  start  and goal  locations  define  such  foci. 
Clearly,  the  optimal  path  must lie entirely  within  this  ellipse. 
Thus,  we  have  created  a  physical  bound  on  the  area  to  be 
searched by a propagation  technique.  However,  the  bound is 
not  tight.  Remembering  that  computational  cost  changes in 
approximate  relation  to  the  square of the  dist,ance  to  be  trav- 
eled,  we  note  that  obtaining  the  best  bound possible is highly 
desirable. 

The  efficiency of human  produced  solutions  to  similar 
problems  stems  from  the  human  ability  to  group  many dis- 
tinct  points  into  homogeneous regions  and  then  plan  paths  on 
a region t o  region  basis.  The  resulting  paths  may  not  be 
optimal,  but  they  are  reasonable  and  can be  obtained 
efficiently.  Given  this  broad  characterization.  it  is  apparent 
tha t   an  efficient, human like  search of a  homogeneous  region 
problem  representation  constitutes a suitable  vehicle to  deter- 
mine a bound for the  propagation  techniques.  Optimality is 
not a requirement of the  bound. An efficiently  produced,  rea- 
sonable  solution  is  the  goal. 

The  two  drawbacks  associated  with  the  extant  homo- 
geneous  regions  method  are  detailed  above.  First,  we  over- 
come  the  problem  associated  with region  cent.ers.  Consider  the 
problem of finding  the  optimal  path in a simple  case.  Figure 1 
depicts a situation  where  the  requirement is t o  move  from  an 
initial  location  inside a "cheap"  region t o  a goal  also in the 
"cheap"  region  when  there is a rectangular  "expensive"  region 
on  the  straight line path  between  them.  The  optimal  path is 
some  perturbation of a straight  line  which  trades  increased 
distance  in  the  cheap region  for  deceased  distance in the 
expensive  region.  In  Figure 1: S1 and S2 represent  cost 
reciprocals. D,   d l ,   d2 ,  y l ,  y2 and  y3  represent  Euclidean  dis- 
tances.  Let T denote  the cost of a  path.  The  equation  describ- 
ing T is a sum of terms as below. 

____ 
T =  

d ' d l 2 + y l 2  , ~ ' ( D - d l - - d 2 ) ~ + y 3 ~ - d d 2 ~ + y Z ~  
s 1  s2 s1 

Taking  the  first  partial  derivatives  of T with  respect t o   d l  
and  d2  and  setting  the  resulting  equations  equal  to  zero  pro- 
duces: 

d l  - D - d l - d 2  
S 1 v ' y 1 Z + d 1 2 - -   S 2 d y 3 ' + ( D - d l - - d V  

d 2   D - d l - d 2  

SI-= S 2 d y S Z + ( D - d l - d 2 ) z  
___ 

In Figure 1, let A l ,  A2 and A3 represent  angular  measures. 
Note  that: 

sin ( A  I )= sin ( A  2)= 
d 2  

d y  12+ d 1' ' l&iGF2 

sin ( A  3)= 
D - d l - d 2  

d y  3% (D - d 1- d 2)z 

Figure 1 

cost 
s1 

Start 

Then,  the  above  computations simplify  to: 

.4 minimum  cost  path  is  the  result of satisfying  this  final 
equation. 

commonly  used in optics  to  compute  the  paths of light rays 
traveling  through  media of different  reflective  indices.  There is 
no  known, closed  form  equation t o  solve  a  Snell's Law prob- 
lem.  Iteration  and  search  (such  as  bisection  search)  are  nor- 
mally  used to  find  optimal  paths. Also, Snell's Law is known 
to  express  an  entirely  "local"  relationship.  Thus,  the 
homogeneous  regions need not be  strictly  represent,ed by rec- 
tangular figures: any  linear  boundary  separating  two regions 
is  sufficient to  support  application of the  law.  This  charac- 
teristic  eliminates  the  difficulties of those  homogeneous 
regions  methods  which  are  based  upon  movement from region 
center  to region  center  only '. Another benefit of Snell's Law 
is that  the  optimal  path  can  be  computed  across  any  number 
of  consecutive.  linear  boundaries. 

We  note  that  the  final  equation is exactly  Snell's  Law 

L o c a l i t y   A s p e c t  of S n e l l ' s  Law 
Figure 2 

. /Goal 

The  locality  aspect of Snell's Law also  has an adverse 
implication  as  illustrated by Figure 2. Let  region C be the 
most  favorable,  region A the  next  best  and region B be  the 
least  favorable  region.  Snell's  Law  will  simply  pert,urb  the  ori- 
ginal,  straight  line  st,art  to goal path  until  an  optimal  path 
involving  regions C and B is  determined  (as  represented by 
the  sol.id line).  The  law  has  no  ability to consider  alternate 
paths  involving region  A,  even though  the  optimal  path could 
easily  be  similar  to  the  dashed  line  path.  Thus.  Snell's Law 
implicitly  relies  on a straight line  hypothesis to propose  an 
initial  route.  The law ignores more favorable.  adjacent areas. 

This  situation can lead to a  form of the same  problem 
that.  effects  t,he  wavefront  propagation  technique, i.e. com- 
binatorial  explosion  and  computat,ional  excess.  Deriving a 
tight  bound by  applying  Snell's Law to a  large  number of dis- 
tinct  regions  requires  that  each  region  within  some  cir- 
cumscribing  limit be  specifically  examined. The problem  is 
somewhat less  serious  because the size of each  individual  area 
requiring  examination  is  generally  much  larger  than  the  areas 
used in a lattice  representation.  However.  the  type of tech- 
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nique  we  desire  must  produce a bounding  solution  eficiently 
t o  be valuable. I t  does  not  appear  that a method which must 
"look everywhere"  can fulfill this  requirement. 

This  indicates  that  Snell's Law  may  not  be an  appropri- 
ate  formula  to  apply.  However,  abandoning  the  law is not a 
realistic  opt,ion.  The  analysis  began  with a mathematical,  cal- 
culus  based  description of a minimum  cost  path  through a 
single  homogeneous  region.  The  solution  to  the  calculus  prob- 
lem  produced  Snell's  Law as a result.  Thus,  short of finding 
another  mathematical  basis  for  the  minimization  problem 
itself,  it  seems  that  any  characterization of the  minimal  cost 
route will have  the  same  problems as Snell's  Law.  Another 
option  is  to  develop a heuristic  which  allows a more  intelligent 
representation of the  problem  space so that  Snell's  Law  will 
be  applicable in an efficient  manner. 

To  derive  such a heuristic,  we  again  appeal to  the  human 
solution  model.  While  humans use the  homogeneous regions 
approach,  they  seem  to rely on a very small  number of region 
groupings.  Again refer t o  Figure 1 where Snell's  Law works 
perfectly.  There  are  only  three  possible  types of regions associ- 
ated  with  this  situation,  optimal,  impassable  (obstacle),  and 
regions  which  are  traversable,  but  not at optimal  cost.  The 
use of only  three  region  groupings solves the  problems  stem- 
ming  from  the  local  nature of Snellk  Law. If a path (or path 
segment)  traverses only an  optimal  region,  there is no need t o  
ltlookt'  elsewhere  for a possibly better  solution. If a path 
traverses a non-optimal  region,  it  is  only  necessary to examine 
paths  through  immediately  bordering  regions (as well as  the 
original  path  through  the  non-optimal  region)  because  the 
border  regions  must be optimal.  Thus, a ternary  representa- 
tion of the  problem  space  facilitates  the  application of Snell's 
Law.  This  representation  also  corresponds  to a human-like 
strategy of grouping  regions  as  either  the  best  (optimal),  the 
worst  (obstacle), or somewhere in between  (traversable,  but 
not at optimal  cost). 

Thus, we have a general  method of combining  human-like 
efficiency with  the  capability of graph  theoretic  representa- 
t ions  to achieve  optimal  solutions.  The  requirement of the 
human-like  planning  process is to  develop Ilas good a plan as 
possible"  within  the efficiency constraints.  The "goodness" of 
the  solution  determines  the  degree of constraint  imposed  on 
the  efforts  required by an  optimizing  graph  search  procedure. 

The Ternary  Case Assumption 
The  importance of capability  knowledge is established in 

preceding  sections.  Without such knowledge,  homogeneous 
regions  cannot  be  created.  To  establish  capability knowledge. 
some  specific  type of motion-achieving  entity  must be refer- 
enced.  There  has been a large  amount of progress  towards 
solving  the  extended  problem  for wheeled  vehicles '. This 
being  given,  we  select legged entities  as  the  capability  model 
for  this  study.  Legged,  autonomous  vehicles  have  characteris- 
tics  which  greatly  differentiate  them  from wheeled  vehicles '. 
First?  roadways  do  not  exhaustively  define  the  set of most 
favorable  terrain  features for traversability.  Clearly, using a 
human  model for illustration,  one  can walk across  an  open 
field as  easily  as a road.  A second characteristic of legged 
machines is that  their  total  range of attainable  speeds is not 
as  great as that of wheeled  vehicles. Thus, a collection of ter- 
rain  features  grouped  into a single  homogeneous region based 
on a  generalized  range of attainable  speeds  contains  more 
members  than a region  created  using  wheeled  vehicles  as  the 
model.  Based  upon  these  two  general  capability  traits, as well 
as  the  discussions  concerning  Snell's  Law,  an  assumption per- 
taining  to  the  creation of homogeneous  regions  is  appropriate. 
Accordingly, we posit  the  ternary  case  assumption:  all  physi- 
cal  terrain  features  can be placed  into  one of three  disjoint 
equivalence  classes by a traversability  relation  based  upon 
legged  vehicle capabilities.  The  first.  class  contains  optimum 

(per  traversability)  features  such i ~ s  roads,  open  fields,  non- 
wooded  areas  with  little  elevation  change,  pastures  and  trails. 
The second  class  contains  terrain  features  which  are  travers- 
able,  but  not at an  optimum  speed.  Typical  class  members  are 
sparsely  wooded  areas,  marsh or rocky  areas  with  marginal 
footing,  areas  with  moderate  elevation  changes  or  slopes  and 
congested  areas,  such as townships.  The  final  class  contains 
non-traversable  features.  This  class  contains  such  features as 
rivers,  buildings,  densely  wooded  areas,  steep  mountains  and 
restricted  areas.  Given  that  features  can  be recognized (or 
provided a priori),  an  algorithmic  means  to  utilize  the  ternary 
case  assumption  and  solve  the  extended  Find-Path  problem is 
presented. 

Path  Planning  Through  Elliptical  Limiting 
A  method  which  combines  the  advantages of human  and 

graph  theoretic  models  is  the  desired  goal.  We  have  observed 
that  human  solutions  are  efficient  while  graph  theoretic 
methods  produce  optimality.  This  suggests a natural  division 
of the  algorithmic  organization  into  two  primary  parts.  The 
first  part  relies  upon  human  inspired  traits  to  efficiently  pro- 
duce a possibly non-optimal  solution.  This  solution is  used as 
a bound  to  constrain  the  efforts of a second  stage  process 
which  is  designed to  ensure  optimality. In all  further  discus- 
sion  we  assume  that  terrain  features  have been recognized  and 
grouped  according  to  the  ternary  case  assumption.  Conceptu- 
ally, we assume  the  existence of a two  dimensional  plane 
where  nonoptimal,  traversable  class  features  and  obstacle  class 
features  are  represented as convex  polygons.  Optimal  class 
features  are  not  specifically  presented  but  are  considered t o  be 
the  "background"  over  which  the  polygons  are  superimposed. 
The  linear  sides of polygonal  figures  support  application of 
Snell's Law. 

The  initial  step  is  to  perform  an  opportunistic  decomposi- 
tion of the  problem by recognizing  corridors  through  impass- 
able  regions.  A  knowledge  based  component  can  perform  this 
function.  Each  part of this  decomposition  can  be  solved 
independently. An appropriate  overall  solution is achieved by 
geometrically  linking  the  subproblem  solutions  together at 
corridor  entry/exit  points.  Since  each  subproblem is indepen- 
dent, we only  need t o  concern  ourselves  with  the  solution t o  a 
single  problem. 

The second  step  solution  process  resembles a bidirectional 
A*  search lo over a dynamically  created  graph  and  uses a 
straight  line  hypothesis  to  guide a generate  and  test  metho- 
dology.  A  homogeneous region representation is  used to  
dynamically  construct  the  graph.  The  difficulties  associated 
with  interacting  subproblems  are  avoided by using  bidirec- 
tional  A*  search  and  selectively  remembering  nonobstructed 
links. In the  case  where only one  obstacle lies between  the 
start  and  goal  there is no  opportunity for subproblem con- 
flicts  to  occur.  The  solution  technique  utilizes  recursion  to 
extend  this  situation  over  the  entire  graph. 

First,  propose a straight line path  from  start  to  goal. If a 
collision occurs  on  this  path,  determine  those  vertices  which 
facilitate  movement  around  the  associated  obstacle.  Then, 
treat  each  obstacle  vertex as the  current  location  and  generate 
two new paths  from  this  point,  one  to  the  start  and  one  to 
the  goal.  Similar  actions  occur  when  traversable,  but  non- 
optimal  areas  are  intersected. We determine  the  vertices 
which  facilitate  movement  around  the region and  treat  these 
as new,  current  locations. We also  compute  the  best  path 
through  the region in  accordance  with  Snell's  Law.  This  path 
terminates  at  the start, the  goal, or another  region  intersec- 
tion.  Eventually,  the  entire  process  finds  an  unobstructed 
link set  to  both  the  start  and  goal.  At  this  point,  the  process 
stores  only  those  links  which  directly  connect  an  obstacle ver- 
tex  to  either  the  start or goal.  Once  this  process  has been 
completed,  all  the  "best"  links  going  into  the  start  and  into 
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the  goal  have  been  located.  We  then use the A* estimate 
function  to  approximate  the  cost of completing  the  middle of 
each  possible  path.  When  the  most  favorable  start  and  goal 
link  pair  has  been  determined, we treat  the  interior  endpoints 
of the  links as new start  and  goal  locations  and recursively 
apply  the  same  technique.  When  the  actual  cost of completing 
the  most  favorable  partial  path is zero,  the best  "straight 
line"  solution  has  been  found. 

The  above process  requires  the  use of the  straight line 
hypothesis.  A  form of the  hypothesis  based  on  the  ternary 
case  assumption is available.  Clearly,  the  hypothesis is valid 
inside a single  homogeneous  region.  This  includes  the  case of 
going  around  obstacles  where only the  leftmost  and  rightmost 
(conceptually)  vertices need to  be  located.  The  difficulty 
arises  when  passing  between slow and high  speed  traversable 
areas. In this  case,  Snell's  law  can  be  applied  to  find  the 
optimal  entry/exit  point  on  the  slow/fast region boundary. 
Once  Snell's  law  has  found  the  pertinent  boundary  points, 
they  can  be  added  to  the  dynamically  created  graph  as  easily 
as obstacle  vertices. 

Figures 3 through 5 illustrate  the  operation of the second 
step process.  In  each  figure,  the  original  start is located at   the  
origin.  The  goal  has  coordinates (30:25). The filled rectangles 
represent  obstacles.  The  single,  unfilled  rectangle  represents  a 
non-optimal,  traversable  region. In Figures 3 and 4, the 
dashed  lines  represent  unobstructed  links  to  the  start while 
the solid  lines  depict  similar  links  for  the  goal.  Figure 3 shows 
the  solution  state at the  end of the  first recursion  where the 
start   and goal are as listed  above.  There  are 3 links  connected 
to   the  goal and 5 for the  start.  Of the  start  links,  two involve 
the  non-optimal  region.  There is a straight line  segment  con- 
necting  the  upper left  vertex of this region to  the  start.   This 
point is static.  The second  link is a  path  perturbed by Snell's 
Law  which  connects  the  start  to  an  obstacle  vertex at coordi- 
nates (10,20). The  path  (and  path  cost) is static as are  the 
endpoints.  Subsequent  paths  through  the region  require new 
computations.  As  an  example, if it  proves  desirable  to  move 
from  the  vertex  at (4,6) to  the  vertex  at (10;20), a new Snell's 
Law path  must be computed. 

At  the  end of the  first  recursion, all possible  pairs of start 
links  and goal  links  are  matched  to  determine  the  most 
promising  pair.  Note  that  two  complete  paths  already  exist. 
However,  their  costs  are  greater  than  the  actual  cost of the 
(0,O) to  (6,4) link  plus  the  actual  cost of the (30,25) to  (20,lO) 
link  plus  the  estimated  cost of the  uncompleted  portion of the 
remaining,  middle  link.  This  particular,  hypothetical  path  has 
the  most  favorable  cost  estimate of any  link  pair.  Thus, (6,4) 
is selected as the new start  and (20,lO) the new  goal t o  be 
used  in the second  recursion  (Figure 4). The second  recursion 
finds a complete  path  between  t,hese  two  points  which  also 
happens  to  have  the  least  cost  estimate of any  pair of links 
discovered to  that  point.  Therefore,  the process  is  complete 
and  the  path [(O,O), (6,4), (11,9), (20,10), (30,25)] is returned 
as the  optimal  solution at the conclusion of two recursive 
applications  (see  Figure 5).  This second step  portion  has been 
implemented  in Prolog. The  execution  times  recorded by the 
method  compare very  favorably to  those of the  VGraph  tech- 
nique  in the  solution of binary  case  problems. 

The  result of the second  st,ep  process  is a reasonable, 
perhaps  nonoptimal,  path  through a region characterized 
according  to  the  ternary  case  assumption.  The process  relied 
on  homogeneous  regions, a dynamically  created  graph,  gui- 
dance by a form of the  straight line  hypothesis,  planning for 
interaction  conflicts,  opportunistic  decomposition,  recursion  to 
save  useful  results  and  intelligent,  bidirectional  search.  The 
solution  has been  achieved  relatively  quickly  and  wasteful 
computations  have been  avoided. It remains to ensure 
optimality. 

The  third  step of the elliptical  limiting  method is 
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designed  to  provide  an  optimal  solution.  Here, a lower level 
of abstraction is appropriate.  Assume  t.hat  the homogeneous 
regions  format  can  be  converted (or is otherwise  available) to 
a  lattice  representation  such  as  t.hat used in the  wavefront 
propagation  methods. Given this  representation.  the  solution 
obtained in the  second  step can  be  used  as a bound  to con- 
strain  the  efforts  required  for  a  wavefront  propagation  tech- 
nique.  Any  optimal  solution  must  have a cost  less than or 
equal  to  that  required by the second step  solution.  The  cost 
of that  solution is known.  We  compute  the  greatest  distance 
that  can be  traveled at equal  cost if only the  best speed 
regions  are  traversed.  We  then  construct  an  ellipse as dis- 
cussed  previously.  Any  optimal  solution  must lie entirely 
within  this  ellipse.  The  number of points  interior to the ellipse 
can  be  reduced by eliminating  any  points  belonging  to  the 
obstacle  class as defined  in the  homogeneous region  classifica- 
tion.  We  then  conduct a wavefront  propagation  over  the  lat- 
tice of remaining  points  to  find  the  optimal  solution. 

The  third  step process  results i n  a set of start   to goal 
paths which  all  require  the  same  amount of traversal  time. 
The  final  step in the  elliptical  limitring  process  determines  the 
actual,  optimal  path  from  this  set. Before the  ternary  group- 
ing  can  be  made.  the  boundaries of all  areal  features in th r  
environment  must be  recognized. N0t.e that in an  optimal 
path,  turn  points only  occur at feature  boundaries  because 
within a single  region.  the  least  cost  path is always a straight 
line. T o  find  the  optimal  solution: we superimpose  the  solu- 
tions  found in the  third  step process  over  the  original  (unpro- 
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cessed,  analog  map  feature  image)  problem  representation. 
Any  point in the  third  step  solution  set  not  corresponding  to 
a boundary  crossing  can be eliminated.  Moreover,  the  accu- 
mulation of error  present in "stairstep"  digital  representations 
of straight,  diagonal  lines  is  eliminated. 

Figures 6 through 8 illustrate  the  entire  elliptical  limiting 
process  on a simple  problem  which  includes only optimal  and 
obstacle  class  regions.  The  optimal  regions  are  composed of 
roadways  and  open,  flat  fields.  Obstacle  class  features  include 
a river  and  several  buildings  (the  checkerboard filled rectan- 
gles).  Figure 6 illustrates  the  initial  step of the process. The 
optimal  path  must  cross  the  bridge  over  the  river.  The  result 
is  an  opportunistic  decomposition  which  includes  the  formula- 
tion of additional  start  and  goal  locations.  There is a  new 
goal in the lower subproblem  and a new start  for the  upper 
subproblem.  The  dashed  line  through  the  river  represents  the 
decomposition  boundary.  Figure 7 depicts  the second step 
solution  to  the  lower  subproblem.  The  shaded  areas  are  ohsta- 
cle regions.  The  background  is  the  optimal region. This  situa- 
tion  is  overly  simplified by the  absence of non-optimal 
traversable  regions. In fact,  the  absence of such  areas  results 
in a  simple  binary  problem  for  which  the second step  process 
will produce  the  exact,  optimal  solution.  Figure 8 depicts  the 
ellipse  produced  from  the second step  solution  and  the 
optimal  path  found by the  graph  search  performed as the 
third  step.  The  final  step  requires  that  the  set of optimal 
paths  found in the  graph  search be overlaid  on  the  original 
problem  representation.  The  only  turn  point  in  the  path pro- 
duced by the  graph  search  which  lies  on a feature  boundary 
corresponds  to  the  obstacle  vertex  considered by the second 
step  process.  Thus,  the  optimal  path  contains  the  start loca- 
tion, a single turn  point,  and  the goal location.  This  path is 
exactly  the  route  depicted in Figure  7,  the  second  step solu- 
tion. 

Summary 
The  extant  extended  case  solution  methods  exhibit  one or 

more of several,  salient deficiencies. Either  they  fail  to  pro- 
duce  optimal  solutions,  they  are  computationally excessive, or 
they  require  heuristic,  ancillary  operations t o  determine  the 
optimal  path  from a set of solutions.  Elliptical  limiting  minim- 
izes these deficiencies and  includes  new  techniques. In this 
approach,  human-like  capabilities  are  combined  with  those of 
a machine. Also, our system  includes a ternary  problem 
representation  and  an efficient method  to  solve  this case. 
Previously, only "intelligent"  solutions  to  binary  case  prob- 
lems or "brute force" techniques for the  n-ary  case  problems 
have been available.  Elliptical  limiting  features  an  intelligent, 
second  step  strategy  usable on uniprocessor  architectures  and 
a constrained  third  step  process  which  can be implemented  on 
multiprocessors.  (Propagation  techniques  have been  imple- 
mented  on  parallel  machines ".) The  process  is  also flexible. 
If timeliness is the  paramount  concern, only the  first  two 
st,eps  need be invoked to  produce a quick:  reasonable  solution. 
When  optimality  must he ensured,  all  steps  can be utilized. 
The  process  involves  mutually  cooperating processes; each 
serves  to  ameliorate  the poor performance  aspects of the  oth- 
ers.  The first, two  steps  are efficient and need not be overly 
concerned  with  optimality  (much  as is the  human  path  plan- 
ning  process).  The  third  step  ensures  optimality by searching 
a space  which  has been greatly  pruned by the  efforts of the 
earlier  processes.  Further,  the  better  the  result of the second 
step,  the less  effort. required in the  third  step.  Finally,  the  last 
step det.ermines  the  true  optimal  path  without  resort  to 
heuristic,  ancillary  operations.  Our  plans  for  the  future 
include  an  implementation of the  entire  method so that  i t  
may  be  measured  against  competing  processes as well as 
diverse  problem  representations. 
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