Electromagnetic vs. Plane Wave Models for
Superdirective 2D Adaptive HF Receive Antenna
Performance Assessment

Geoffrey San Antonio
US Naval Research Laboratory
Washington, DC 20375 USA

WR Systems

Index Terms—HF OTHR, 2D Arrays, electromagnetic model,
superdirectivity

I. INTRODUCTION

In a number of recent papers [1], [2], [3], [4], [5], two-
dimensional (2D) antenna arrays with regular rectangular
or hexagonal element spacing structures and inter-element
spacing d smaller than one-half the radar wavelength\

d<\/2 D

have been analyzed for HF operations in the presence of strong
external noise, typical for night time skywave propagation
conditions [6], [7]. It has been demonstrated that for typical 2D
external noise distributions, localized within the “noise ring”
below the critical elevation angle, optimal beamforming for
such antenna arrays provides essential signal-to-external noise
ratio (SENR) gains with respect to conventional beamforming.
More specifically, it has been demonstrated that for near
grazing elevation angles, these SENR gains are primarily
achieved due to the superdirective properties of the optimal
(or adaptive) beamformer which shifts a significant part of
the conventional main beam into the so-call “invisible” spatial
angle region [8], [9], [12]. In the case of surface wave over-the-
horizon radar (OTHR) which always has its receive main-beam
steered to 0° elevation angle with respect to the horizon, this
property of the optimal beamformer in oversampled 2D arrays
is very important. In contrast, for beamsteering elevation
angles close or above the critical elevation angle, as per some
HF line-of-sight applications, very substantial SENR gains
can be demonstrated by the optimal (adaptive) beamformer
due to the re-distribution of the beampattern volume away
from the “external noise ring,” in the noise free area at high
elevation angles. Yet, within the elevation sector of 10-20
degrees, the optimum performance in these arrays is very
close to performance of conventional beamforming and is up
to 4dB worse than for the grazing (elevation=0 deg) angle.
For sky-wave operations this degradation is essential, despite
the fact that in general, higher elevation angles correspond to a
shorter distances with a smaller propagation loss and therefore
higher SNR on a specified target cross-section. Therefore,
when available physical space permits, more appropriate 2D
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geometries could be proposed to avoid this degradation; a prac-
tical example of such an array is introduced in our companion
paper [13]. Since superdirective properties in these arrays are
also exploited, performance analysis of 2D oversampled (dense
and sparse) arrays is quite important for sky-wave, surface-
wave and line-of-sight applications.

II. NUMERICAL ELECTROMAGNETIC MANIFOLD
MODELING

Prior analysis of SENR gains in these arrays has been con-
ducted with ideal plane-wave antenna manifold models which
corresponds to the impractical open-circuit loaded antenna
model [4], [10]. Naturally, it was always understood that for
practical performance evaluation, the accurate electromagnetic
(EM) model of such an array erected on a ground with realistic
properties and certain ground screen arrangement, should
be computed. Moreover, unlike long uniform linear arrays
(ULA) with apertures greater than 2-3km and the number of
antenna elements N > 300 where only a small number of
edge elements are under non-homogeneous EM conditions, in
2D rectangular arrays the non-homogeneous EM conditions
should be expected in two dimensions. Since in most designs,
the width of a rectangular 2D array is much smaller than
its length, this non-homogeneity is of great concern, since
it cannot be controlled by a heavy taper, as per multi-
element ULA’s. These concerns affect the antenna element
design as well. Indeed, the more matched and broadband
antenna elements are, the larger the external-to-internal noise
ratio (EINR) that could be delivered by those elements and
therefore potentially higher SENR gains may be provided
by the optimal (adaptive) beamformer. On the other hand,
matched antenna elements are more coupled as well and if this
increased mutual coupling is not accounted for in the actual
antenna manifold used in optimal (adaptive) beamforming the
SENR degradation caused by the mismatch between the actual
antenna manifold and its (plane wave) model, could be very
severe as per any superdirective array. Therefore, a comparison
of the EM-predicted and plane-wave model derived properties
of the optimum (adaptive) beamformer, is needed to address
a number of very important questions.

In consideration of the above mentioned concerns, the
following set of issues have to be addressed.
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1) Are the potential gain predictions for a typical external
noise model derived based upon the accurate EM model
of a 2D array, the same as per the simplistic plane-
wave model? Note, the potential SENR are assessed with
EM-predicted antenna manifold vectors used both for
external noise and target response representation.

2) How significant are SENR mismatch losses in the op-
timal (adaptive) beamformer designed for plane-wave
target response instead of the accurate EM model pre-
diction?

3) How sensitive are EM manifold predictions with respect
to minor variations of the EM parameters, such as for
example the ground conductivity (results of rain, snow,
etc.)?

4) How accurate is the traditional N x [N-variate coupling
matrix model with respect to the ground and ground
screen contribution to the EM model?

5) How accurate could the antenna calibration procedures
be that exploit ground-wave propagated test signals?

These issues are critically important for practical applications
of 2D oversampled antenna arrays. In this paper we address
some of these issues, while their full analysis will be presented
in the subsequent full paper.

In this paper we compute some very basic array perfor-
mance metrics to evaluate the behavior of specific array con-
figurations, external noise models, and array manifold models.
First let us define the standard plane wave manifold vector

ay(0,¢) = exp(—j2r/AXu(6, ¢)) 2)

where X is the IV x 3 matrix of array element positions and
u(f, ¢) is the unit vector in the direction (6, ¢). In the case
of the numerical electromagnetic modeled vector, the array
manifold is denoted as a., (6, ¢). The array spatial covariance
matrix due to external noise can be obtained by integration
of the external noise model with the array manifold model.
We consider three methods for computing the external noise
covariance.

/2 p27m
Rp—int—mod—emt = /0 0 f(ﬂ, ¢)bel—mod(97 ¢)X €)]
a,(0, ¢)ay’ (6, ¢) sin(6)d0dg

N; Nj

Ry fomod—cxt = P O F (05, 6)bet—moa(0i, d;)x (4)

i=1 j=1

a,(0;,0;)all (6;, ¢;) sin(6;)

N; Nj

N
Remffsfemt - ZZf(ala¢])X (5)

i=1 j=1
acm (0:, 5)all, (0;, ¢;) sin(6;)

The overall array spatial noise covariance is computed as the
sum of external and internal noise, weighted appropriately to
achieve a specific per-element external-to-internal noise ratio.

R=cRes:+1 (6)
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For simplicity we denote the external plus internal noise
covariance for the planar and EM manifold models as R,
and R.,, respectively. The planar manifold covariance model
used the integral calculation in (3), however in the simulations
is is shown to be equivalent to the finite sum model (4). Our
calculations of array gain and mismatch utilize two types of
beamforming solutions, the conventional beamformer and the
optimal beamformer. These are computed as follows.

ap(e, ®)

Wp,conv(97 ¢) = m ?
R 'a,(0,9)

. 0’ _ D P 8
Wp, pt( ¢) aﬁ(9,¢)R;13p(0a¢) ( )
_ aem(07 QS)

Wem,conv (0,¢) = agfm (0, 9)acm (0, ) ®
R_1acm (0, ) (10)

Wem,opt(oa ¢) = ol
em

—1
(97 ¢)R maem (97 ¢)
These beamforming solutions are used to compute both array
signal-to-external noise ratio gains and mismatch losses.

2

_ [wHacm(8,9)] 1,
SENRgain(ea ¢) - WHRemW SNRelm(97 ¢)\1 1)
|af(0, ¢)ae7rL(07 (ZS) |2
MLone(6,6) = .
’t( ¢) aﬁ{ (97 ¢)ap(9, ¢)a£1m (97 (b)aem(ea ¢) ( )
2l (0, 9 Rpacm (6,0

MLclr(97 (b) = — — T

all(6.0)Ramay (0, 0)all, (0, o) Remac (6,9
Note, in (11) the SENR 4, is defined with respect to the
signal-to-external noise ratio of the median element in the
array.

III. SIMULATIONS

The EM modeling used in this paper uses the electromag-
netic code Numerical Electromagnetic Code (NEC) [11] which
is a method-of-moments based computational electromagnetic
code. It requires the specification of the following design
parameters: antenna array geometry, antenna element, antenna
element height, type of ground screen, ground conductivity,
frequency, far-field azimuth angles and elevation angles of
point sources. For this study we consider a specific antenna
array design consisting of a 17x7 2D rectangular antenna
array with hexagonal element spacing having inter-element
spacing d = 11.7856m. An h = 5.5m tall vertical monopole
with diameter ¢ = 38mm was directly connected to a 502
receiver input (no transformer or matching network used).
Every element has been provided with 16 equispaced wire
radials of length [ = 32ft and diameter ¢ = 1.6mm. For the
dry ground conditions considered the antenna array response
has been calculated on a grid with angular spacing of 0.5° for
elevation angles 0° — 90° and azimuth angles from 0° — 360°.
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Given this set of antenna array responses, the external noise
covariance matrix has been calculated via discrete numerical
integration over the upper hemisphere space, weighted in
accordance with a specifically considered external noise spatial
distribution. These results have been compared with similar
results derived using the plane-wave array manifold model
and the same external noise distribution. An example of this
comparison is shown in figure (1) and (2). Here the antenna
array SENR gain with respect to a single (median) antenna
element are introduced both for conventional and optimal
beamformers for the frequency f. = 8.4849M Hz, noise
distribution

f(0,9) = csin'(¢), (14)

and EINR = 30dB.

In the case where the plane-wave array manifold model
is combined with the analytic antenna element model
(sin?(¢) cos®7(¢)) and the analytic noise distribution model
given by equation (14), the array external noise covariance has
been calculated analytically in [4]. This allows us to asses the
accuracy of the finite-sum covariance model approximation
applied in the EM manifold model.

To simplify the presentation of the results we specifically
examine two extreme azimuthal directions (boresight and
endfire). In these directions we examine the antenna array
gains as a function of elevation angle. In the first set of
figures, (1) and (2), we observe SENR gains calculated for
the EM model external noise covariance matrix and antenna
manifold, for both the optimum and conventional beamformers
calculated for the accurate (EM model) and erroneous (plane-
wave model) target response model. One can see that the
conventional beamformer is practically insensitive to antenna
manifold mismatch. On the contrary, the optimum beamformer
operating in a superdirective mode (¢ < 30°), is quite sensitive
to the manifold mismatch. Indeed, while the proper (EM
model) steering vector used for the optimum beamforming
mismatch results in very significant SENR gains, reaching
6-8dB at ¢ < 59, and being superior to the conventional
beamformer for any steering elevation angle, if the plane-wave
model is used we can actually significantly degrade the SENR
performance of the “optimal” (adaptive) beamformer com-
pared with even the conventional beamformer. For reference
we show the case for the plane-wave based noise covariance
in figures (3) and (4).

Another comparison that can be made involves the com-
parison of the analytic array covariance matrix model versus
the finite sum approximation in the case of the plane-wave
model (applied to both the noise and target). We observe
that granularity of the spatial sampling grid is fine enough
to accurately approximate the true covariance with a finite-
sum approximation. In figures (3) and (4) this approximation
accuracy is evident by the SENR line plots (denoted by the
suffixes “intcov” and “fscov”) that practically overlap. We
can then compare how the finite sum plane-wave covariance
model compares to the EM based finite sum covariance model.
The predicted array SENR gains are very similar in both
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cases, which indicates that the plane-wave model is useful
enough to be used in array performance prediction analysis.
This is shown in figures (3) and (4). Another comparison
we can make is to adopt a slightly altered element pattern
in the plane-wave array model based on the EM model
median element pattern, shown in figure (5). This accounts
for slight modeling differences between our analytic element
model (sin?(¢)cos’7(¢)) and the actual embedded element
pattern. Little difference (< 0.5dB) in SENR results with this
modification.

The detailed analysis demonstrated that the plane-wave
model is adequate for a potential SENR performance assess-
ment, but may lead to significant SENR loss if applied directly
to an actual antenna array adaptive beamforming scenario.
Figures (6), (7), and (8) show the planewave-mismatch loss.

IV. CONCLUSION

This paper demonstrated how a 2D planar oversampled
HF receive array manifold can be modeled by NEC and
utilized to asses the performance of conventional and optimal
beamforming techniques. It is shown that the full EM array
model behaves similar to a planewave manifold model in the
presence of strong non-isotropic external noise. Furthermore
it is demonstrated that the optimal beamformer solutions
computed with a manifold not calibrated to the true EM
manifold will exhibit some amount of mismatch loss in
directions of strong external noise. In a subsequent full paper,
we will comment further on the robustness of the EM model
antenna manifold predication to small model perturbations (i.e.
changes in ground conditions, element errors, etc.) and on the
efficiency of a number antenna calibration techniques that can
be used to avoid the SENR losses associated with antenna
manifold mismatch.
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Fig. 1. Boresight SENR gains using an EM model based array spatial noise
covariance. Several beamformer techniques shown.
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Fig. 2. Endfire SENR gains using an EM model based array spatial noise
covariance. Several beamformer techniques shown.
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Planar Cov. Array Gain/Med Element at Az = 0° from Boresite
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Fig. 3.  Boresight SENR gains using a plane-wave model based array
spatial noise covariance. Several beamformer schemes and covariance matrix
calculation techniques shown.
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Fig. 4. Endfire SENR gains using a plane-wave model based array
spatial noise covariance. Several beamformer schemes and covariance matrix
calculation techniques shown.
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Fig. 5. Median element model derived from EM array manifold model.
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Fig. 6. Mismatch loss incurred by using plane-wave model in the place of
true EM model.
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Plane Wave Mismatch Loss at Az = 0° from Baresite
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Fig. 7. Mismatch loss (at boresight azimuth) incurred by using plane-wave
model in the place of true EM model.
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Fig. 8. Mismatch loss (at endfire azimuth) incurred by using plane-wave
model in the place of true EM model.
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