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Abstract—In this paper we introduce a novel non-parametric
depth-based method for the target detection problem in noisy
environments under nominal signal-to-noise ratios. Specifically,
a distributed sensor network comprised of multiple transceivers
is considered. Each sensor is able to transmit and receive a single
tone; which is passed to a super sensor where the data is formed
into a multistatic response matrix via a pre-detection fusion
algorithm. An algorithm is introduced for the determination of
the presence of a target in the background medium. The detection
performance versus signal-to-noise ratio is developed for a given
false alarm rate and compared to a typical monostatic sensor. The
depth-based method is shown to improve upon the performance
of a single sensor by a considerable margin.

I. INTRODUCTION

One challenge in formulating predicted detection perfor-
mance for a multi-sensor system, especially one utilizing
waveform diversity, is that the traditional assumptions of Gaus-
sianity are no longer valid. British mathematicians were able
to show in the 1940’s with one of the first operational radar
continuous wave systems that measurements followed normal
distributions; Rayleigh in the case of a magnitude detector.
However, many different waveforms have been developed
since the days of early radar systems, and not all of these
waveforms have been shown to obey the Gaussian distribu-
tion when used for measurements-i.e. mathematically shown
that the measurements obey a Gaussian distribution; when
coupled with the desire to make use of multiple sensors for
measurements-in which not every sensor may be transmitting
the same waveform-there is a strong desire to look towards
nonparametric methods for common sensor processing tasks-
such as object detection.

In this paper we present a non-parametric depth-based
method for the detection of an object in a background
medium comprised of Gaussian noise; there is no need to
limit ourselves to Gaussian noise, however for this initial
introductory paper, Gaussian noise was chosen so that the
detection performance can be readily compared to that of a
monostatic radar sensor; which has been well documented,
see [5], [7], [8] for examples. Specifically, a distributed sensor
network comprised of multiple transceivers is considered.
Each sensor is able to transmit and receive a single tone;

which is passed to a super sensor where the data is formed
into a multistatic response matrix via a pre-detection fusion
algorithm. An algorithm is introduced for the determination of
the presence of a bounded rank perturbation of the resultant
multistatic response matrix. The detection performance versus
signal-to-noise ratio is developed and compared to that of a
typical monostatic sensor.

II. SENSOR NETWORKS

One major challenge for distributed sensing networks is the
issue of data fusion. Put simply, what is the best method of
taking all of the data generated by the network of sensors,
and assembling the data deluge into a meaningful quantity
that is able to be processed? One method would be to have
each sensor transmit, receive and process data from the sensor
network-in essence, each sensor is an active agent in the
network, but processes data independently of its neighbors. An
advantage to this system would be the redundancy built into
the network, and the ability to parallelize tasks, and process the
data more quickly. One disadvantage, would be the extreme
cost of outfitting each sensor with its own transmitter, receiver,
and processor.

Another sensor fusion concept could be that of a netted
radar. In this system design, several radar are linked together
to improve the coverage or accuracy of the radar net. This im-
provement comes from the union of individual coverage areas
[12]. We could simplify the architecture of the radar net by
using range-only data, which would result in a multilateration

radar system.
If we assume the distributed network of sensors is com-

prised of two sensors, a transmitter and a receiver, then we
have a bistatic radar system; where the transmitter and receiver
are separated by a considerable distance in order to achieve
some benefit: technical, operational, or cost [12]. Further, if
the sensor network was comprised of a number of bistatic
systems with multiple transmitters and receivers, then we have
a multistatic radar network.

In our case, we assume each sensor has a transmitter
and receiver. Additionally, the sensors are relatively simple,
and only transmit and receiver a single tone (which can
change from pulse-to-pulse, or cpi-to-cpi if required). Each
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sensor collects the received signal from each transmitter and
sends this data to a super-sensor. This super-sensor takes the
accumulated big data and formats and/or stores the data for
real-time or near real-time processing. The super-sensor has
only a communications system that is capable of transmitting
and receiving information from each sensor in the network, but
does not participate in the sensing activities of the network. In
this manner, the sensor network is actually a layered system
of systems, comprising a separate processing platform from
the relatively simple and low-cost sensing systems.

III. RESPONSE MATRIX FORMULATION

Having defined the sensor network utilized for this scenario,
we now turn our attention to the pre-detection fusion process
that will result in a multistatic response matrix, which is
processed by our super-sensor. To limit the number of variables
feeding into our simulation, we constrain the operations of
the sensor network to that of two-dimensions. The sensor
network is comprised of a total of m transmitters and n

receivers, located at positions yn = (n = 1, 2, . . . , N) and
zm (m = 1, 2, . . . ,M), respectively.

Each of the transmitters sends out a wave, which impinges
upon an object; this object, in turn, re-radiates a portion of
the incident wave energy isotropically. The field received by
the n

th receiving element yn when the wave is emitted from
the m

th transmitter element zm is û (yn, zm). If we remove
the incident field then we obtain the (n,m)th entry of the
corresponding multistatic response matrix [9]

Anm = û (yn, zm)− Ĝ (ω,yn, zm) (1)

The incident field is the homogeneous Green’s function given
by G (ω,x,y), which for two-dimensions is of the form

Ĝ (ω,x,y) =
i

4
H

(1)
0

�
ω

c0
| y − x |

�
(2)

with H
(1)
0 representing a Hankel function of the first-kind,

zeroth-order, and the vector x is the location of the object to
be detected.

In the Born approximation, the volume for Ωj , j = 1, . . . , r
goes to zero, and the measured field is approximated by the
expression

û (yn, zm) = Ĝ (ω,yn, zm)+
r�

j=1

ρjĜ (ω,yn,xj) Ĝ (ω,xj , zm)

(3)
for all transmitter and receiver locations n and m. The
coefficient ρj is the reflection coefficient and is defined by
the quantity

ρj =
ω
2

c
2
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ηj l
2
j

(4)

We determine the singular value from the expression [9]

σj := ρj
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where Ĝ (ω,xj ,yn) is the general form of the receiver array
Green’s functions and Ĝ (ω,xj , zm) is the general form of
the transmitter array Green’s functions. To formulate the
multistatic response matrix, it is also necessary to calculate
the normalized vector of Green’s functions for the transmitter
and receiver array. The normalized vector of Green’s functions
for the receiver array to the reflector point specified by x is
given by

u (x) :=
1

��
N

l=1 | Ĝ (ω,x,yl |)2
� 1

2

�
Ĝ (ω,x,yn)

�

n=1,...,N

(6)
The normalized vector of Green’s functions for the transmitter
array from the reflector point specified by x is given by

v (x) :=
1

��
M

l=1 | Ĝ (ω,x, zl |)2
� 1

2

�
Ĝ (ω,x, zn)

�

m=1,...,M

(7)
Having solved for the target singular value and the normalized
vector of Green’s functions for the transmitter and receiver
array, the response matrix is determined from the following
[10]

A =
r�

j=1

σju (xj)v (xj)
∗ (8)

We note that (8) is of bounded rank, r, and positive semidef-
inite.

A. Measurement Noise

We can assume the measurements will contain additive
noise, represented by an N × M matrix, W, which is con-
sidered a matrix of independent and identically distributed
complex entries with arbitrary statistics. This noise is an
additive mixture of environmental and receiver system noise.
The resultant measured response matrix is then

B = A+
1√
M

W (9)

(9) is valid for the non-trivial asymptotic regimes in the limit
M → ∞; so the scaling factor 1√

M
is appropriate [10].

IV. INTRODUCTION TO DEPTH-BASED METHODS

A. Introduction to Half-Space Depth and Associated Proper-

ties

Give k multivariate populations πi = π (Pi) on Rd, d > 1,
with absolutely continuous distributions Pi, defined on random
variables Xi for i = 1, . . . , k we propose a procedure
for selecting the ”most dispersed” member from a group k

populations. We define our measure of dispersion in terms
of the depth-based scale curve introduced by Liu, et al. in
[3]. The scale curves if P is the collection of probability
distributions, we may consider a depth function to be any
bounded, nonnegative mapping D (·; ·) : Rd × P → R that
provides a probability based center-outward ordering of points



in Rd. For the center-outward ranking, we will make use of
Tukey’s Half-Space Depth [1], [2]

D (x;P ) = inf {P (H) |x ∈ H,His a closed half-space}
(10)

where x ∈ R. This half-space depth has four primary
properties that provide insight into the power and utility of
depth-based measures, these properties were proposed in [6]

1) D (Ax+ b; PAx+b) = D (x; PX) for any random
vector X ∈ Rd, and d × x nonsingular matrix A, and
any d× 1vector b.

2) For any P ∈ P with center Θ, then D (Θ; P ) =
sup

x
D (x; P ).

3) If Θ is the deepest point for any P ∈ P , then
D (x; P ) ≤ D (Θ+ α (x−Θ) ; P ) for α ∈ [0, 1].

4) D (x; P ) → 0 as �x� → ∞ for any P ∈ P .

B. Depth-Regions and Measures of Dispersion

Application of property (1) allows for the definition of α-
trimmed depth-regions of P ,

D
α (P ) =

�
x ∈ Rd|D (x;P ) ≥ α

�
(11)

If we solve for the volume of a particular α-trimmed depth-

region, we have de facto solved for the dispersion of that same
region. In order to compare the dispersion of one population
with that of a second population, we introduce the concept of
a scale curve. The scale curve is the volume, or dispersion,
and is defined as

V
p = inf {Volume (Dα (P )) |P (Dα (P )) ≥ p, 0 < α < α

∗}
(12)

with p ∈ (0, 1) and where α
∗ = sup

x∈RdD (x; P ).

Definition 1. For p ∈ (0, 1), we say that πi is more

dispersed, or more concentrated, than πj (at level p), if

V
p

i
≥ V

p

j
is the volume from population πi.

If P is absolutely continuous, according to [6], the col-
lections of D

α (P ) based on the half-space depth are affine
equivariant, nested, connected, and compact for p ∈ (0, 1).

C. Empirical Distribution

For any given set of data, let Xi,1, Xi,2, . . . , Xi,n be a
random sample from Pi for a random variable Xi, and B

be a Borel set, the empirical distribution is defined as

Pi,n (B) =
1

n

n�

j=1

IB (Xi,j) (13)

with IB (x) being an indicator function for B.

D. Depth-Based Detection

In order to formulate the hypothesis test, we need to
first define the two populations that will be compared.
The first population considered is that of a general class
of arbitrary distribution, representative of the background
medium-i.e. noise. The second population is a measured

multistatic response matrix consisting of a bounded rank
signal perturbation with additive noise; in which the noise
is scaled to simulate a set of signal-to-noise sample values.
From these two populations, we define a new depth-based
detection statistic, but first let us revisit the binary hypothesis
test utilized for our example.

H0 := n (t)

H1 := s (t) + n (t)
(14)

Typically, we measure a component of the received signal and
compare this value to a pre-determined, or adaptive, threshold
that allows us to transform equation (14) into

δthreshold �H0
H1

(15)

with the null hypothesis indicating the absence of a signal.
The depth-based detection method is also based on a threshold
statistic, determined from a ratio of two dispersion values,

V̂[i]

V̂[threshold]
= δ (16)

in which V̂[i] and V̂[threshold] are the differential dispersion
values for the populations of the measured multistatic re-
sponse matrix and noise matrix with arbitrary distribution,
respectively. Differential dispersion values are derived from
the difference of two dispersion values, as shown below

V̂[threshold] = V̂
β

threshold − V̂
p

threshold (17)

The differential dispersion is the difference between the vol-
ume defined by the contour β, and that of the volume of
a second contour p. Typically, we define β � 1, to ensure
we incorporate all of the population values in our depth
functional; the second dispersion is found from a smaller
contour defined by p ∈ (0, 1). In this instance, we have
defined p = [0.5, 0.75, 0.9]. The difference between these two
contours defines the volume of an annular region, V̂[threshold];
with an increase in the annular region being attributed to the
presence of a signal. We compare the differential dispersion
of the assume noise threshold, with that of the measured data.
In this manner, the second differential dispersion value in the
threshold statistic is given as

V̂[i] = V̂
β

i
− V̂

p

i
(18)

The depth-based detection binary hypothesis test is now akin
to

δ �H0
H1

δthreshold (19)

where the δthreshold is determined for a given class of mea-
surement noise. For the purpose of this paper, the threshold is
found empirically through a Monte Carlo simulation; a large
number of noise realizations were created, for two population
groups of white Gaussian noise comprised of 124 singular
values, to determine the empirical volume of the annular
region bounded by the contour Dp and D

β ; this Monte Carlo
simulation was repeated several times to ensure a consistent
estimator for the empirical mean µ and standard deviation σ.



For each instance, the empirical volume is calculated for the
annulus by subtracting the volume of the p = [0.5, 0.75, 0.9]
contours from the pmax = 1 contour. The mean and variance
for the volume of the annular region is listed in table I

V olpth Annulus µ σ Vempirical
90% 0.0016 3.2e−4 µ+ kσ
75% 0.0011 3.2e−4 µ+ kσ
50% 4.3e−4 2.3e−4 µ+ kσ

TABLE I: Empirical Thresholds

From Chebyshev’s Inequatlity, we know that for any distri-
bution in which the standard deviation is defined, the variables
that fall within a certain number of standard deviations from
the defined mean, kσ, is at least as much as [4]

Minimum Population Number of
from the Mean Standard Deviations (k)

50%
√
2

75% 2
89% 3
94% 4
96% 5
97% 6

1− 1
k2 % k

TABLE II: Empirical Threshold Table

From II, we see that for an empirical false alarm rate of
6%, we would require the V̂threshold, µ + kσ, to be equivalent
to µ + 4σ; likewise for an empirical false alarm rate of 4%
and 3%, we require the V̂threshold to be µ + 5σ and µ + 6σ,
respectively. Further, the dispersion resulting from the addition
of a signal in the measured noise is manifest from the outlying
nature of the signal singular values, when compared to the
body of the measured noise plus a priori noise distribution
data depth functional [11]; which is true for nominal signal-
to-noise ratios (SNR). This is due to the fact that the singular
values associated with the signal exhibit a level of eigenvalue
repulsion, allowing them to be separate from the body of the
data depth functional, see figure 1; which is further manifest
from an application of Newton’s Third Law to the eigenvalues
of the singular value decomposition of the multistatic response
matrix. As the SNR decreases, this ’eigenvalue’ repulsive
force becomes weaker and the signal singular values become
distributed on the outer contour of the data depth functional.
From this vantage point, we are not seeking the point of
deepest depth for signal detection, but the values for which the
singular values are most outlying, and result in an increase in
volume for a given annular contour bounded by p

th ∈ (p, 1).
Since we have defined the metric as the ratio of scale curves,
and the false alarm rate is controlled by the empirical V̂threshold,
in this manner the threshold is actually equivalent to unity,
δthreshold = 1. The Chebyshev Inequality represents a more
severe constraint on the detection statistic, and should be more
robust, though may result in lower PD versus SNR for a given
PFA.

Having determined the empirical threshold statistic for the
hypothesis testing, the remainder of this paper is dedicated to

a demonstration of the depth-based detection algorithm for a
three objects corrupted by measurement noise.

V. EXAMPLE

A. Problem Formulation

In this example, there three isotropic reflectors that are
within the scene under illumination by the distributed sensing
network. Since the Born approximation was utilized in order
to develop the multistatic response matrix, the reflectivity of
the target is fixed, with an associated volume of zero. The
surrounding background medium is assumed to be that of
free-space, with the manifestation of noise resulting from the
receiver thermal noise and receiver system components. We
further approximate the form of the noise to be white Gaussian
noise, N (0,σ), with the variance fixed at a value of unity. The
signal-to-noise ratio is varied from −3dB to 10dB in order to
capture a broad range of conditions resulting from the sensor
network pre-detection fusion process. The resulting signal
subspace rank is then three, with all other rank components
being associated with the random noise process. As the noise
is increased, the eigenvalue repulsion between the noise and
signal begins to weakens; this weakening results in missed
detections and the potential for false alarms.

Again, It is worth repeating that there is no set constraint

on the underlying statistics for either the signal or the noise;

white Gaussian noise was chosen so that the results of this

novel depth-based detection method could be better compared

against well known monostatic receiver operating character-

istics.

Fig. 1: Data Depth Functional Annular Volume Comparison
for Noise Only versus Signal+Noise

B. Depth-Based Detector Performance: Nonparametric Case

In order to develop an adequate probability of detection
curve, a Monte Carlo simulation was performed at each signal-
to-noise ratio (SNR) sample . The number of Monte Carlo runs
per SNR increment was large enough to ensure a representative
sample point was captured that would be free from spurious
statistical anomalies arising from the random noise process.
A detection was recorded if, and only if, the annular volume
increased sufficiently to exceed the detection threshold. For
each p

th = 0.5 contour, the probability of detection was
recorded for false alarm rates of 6% through 10−4.
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Fig. 2: PD versus SNR for Depth-Based Detection Statistic

For comparison, if we assume a standard form of a radar
detector, as found in [7], a performance comparison is possible
for a single-pulse detector (no integration within the receiver
for noise corruption described by a normal Gaussian distribu-
tion. The form of the detector is shown below

PD =
1

2
− Φ

�
x−

√
2× SNR

�
(20)

where x is the detection threshold (such as 3 times the noise
power) and Φ is the error function. The performance of the
depth-based detector does indeed outperform the classical
single-pulse detector, as shown in table III; for which the
values of PD = 0.8 are compared against the same PFA.

Required SNR Required SNR Improvement Factor
PFA x for Classical for Depth-Based of Depth-Based

Detector Detector Detector
6% 1.88 3.2 dB 2.8 dB +0.4 dB
4% 2.05 4.2 dB 2.8 dB +1.4 dB
3% 2.17 4.5 dB 3.2 dB +1.3 dB
10−2 2.33 5.1 dB 3.8 dB +2.3 dB
10−3 3.08 7.7 dB 5.8 dB +1.9 dB
10−4 3.62 10.0 dB 9.8 dB +0.2 dB

TABLE III: Probability of Detection Comparison with Cheby-
shev Inequality

C. Knowledge-Aided Depth-Based Detector

However, the Chebyshev Inequality is a more restrictive
detection criterion; which was chosen to ensure the depth-
based detection algorithm is general for any given class of
distribution-both known and unknown. We would expect the
PD would be less than that of equation (20), in which
the function is derived on a normal Gaussian noise process
assumption. In our example, the corruptive noise distribution is
also assumed to be normal Gaussian; so, if we choose to re-run
the same simulation by assuming our depth-function has com-
plete a priori knowledge of the corruptive noise distribution,
then the following false-alarm rates are more appropriate and
are found from the error function, see table IV. We note, that
owing to the conservative nature of the Chebyshev Inequality,

the equivalent false-alarm rate-assuming Gaussian noise-for
values greater than PFA > 10−2 are significantly better
than those shown in table IV, but are purposefully kept to�
PFA = 10−9

�
and (x = 6.23) for more relative comparisons

of performance.

Chebyshev’s kσ x Equivalent PFA
Inequality, PFA for Gaussian Noise

6% 4σ 3.62 10−4

4% 5σ 4.75 10−6

3% 6σ 5.61 10−8

10−2 10σ x �6.23 PFA � 10−9

10−3 32σ x �6.23 PFA � 10−9

10−4 100σ x �6.23 PFA � 10−9

TABLE IV: Probability of False Alarm for Knowledge-Aided
Depth-Based Detector versus Classical Detector

For reliable detection performance, the probability of detec-
tion was set to PD = 0.8. The Knowledge-Aided Depth-Based
(KA-DB) detector in comparison with the classical single-
pulse detector of equation (20) is given in table V; which
does show significantly better performance; especially when
the false alarm rate is low-ie PFA ≤ 10−4.

Required SNR Required SNR Improvement Factor
kσ for Classical for Depth-Based of Depth-Based

Detector Detector Detector
3σ 10.0 dB 2.8 dB +7.2 dB
4σ 15.6 dB 2.8 dB +12.8 dB
6σ 20.8 dB 3.2 dB +17.6 dB
10σ SNR�25 dB 3.8 dB SNR�+21.2 dB
32σ SNR�25 dB 5.8 dB SNR�+19.2 dB
100σ SNR�25 dB 9.8 dB SNR�+15.2 dB

TABLE V: Probability of Detection Comparison for
Knowledge-Aided Depth-Based Detector versus Classical De-
tector

D. Depth-Based and Knowledge-Aided Depth-Based Detector

Performance versus Envelop Detector

More realistically, a radar will utilize the envelope of the
received signal to perform the binary hypothesis test. If we
assume a general form of the envelop detector [7]

SNR = A+ 0.12AB + 1.7B (21)

with A = ln
0.62
PFA

and B = ln
PD

1−PD
, then the depth-based and

knowledge-aided depth-based detector performance is found
in table VI

VI. SUMMARY

In this paper we have introduced a depth-based method for
target detection in noisy environments based on a random
matrix theoretic pre-detection fusion algorithm to solve for
the multistatic response matrix. The performance of the de-
tector was determined for differing levels of noise and com-
pared to two classical monostatic radar system detectors: the
single-pulse and envelope detector, respectively. The results
demonstrated the benefits of utilizing a distributed sensing
network and depth-based algorithms for the detection of a



Required SNR Required SNR Improvement Factor
PFA for Envelope for Depth-Based of Depth-Based

Detector Detector Detector
6% 5.1 dB 2.8 dB +2.3 dB
4% 5.6 dB 2.8 dB +2.6 dB
3% 5.9 dB 3.2 dB +2.7 dB
10−2 7.2 dB 3.8 dB +3.4 dB
10−3 9.9 dB 5.8 dB +4.1 dB
10−4 12.5 dB 9.8 dB +2.7 dB

TABLE VI: Probability of Detection Comparison for Depth-
Based Detector versus Envelope Detector

Required SNR Required SNR Improvement Factor
kσ for Envelope for Depth-Based of Depth-Based

Detector Detector Detector
4σ 12.5 dB 2.8 dB +9.7 dB
5σ 17.9 dB 2.8 dB +15.1 dB
6σ 23.3 dB 3.2 dB +20.1 dB
10σ SNR� 26.0 dB 3.8 dB SNR�+22.2 dB
32σ SNR�26.0 dB 5.8 dB SNR�+20.2 dB
100σ SNR�26.0 dB 9.8 dB SNR�+16.2 dB

TABLE VII: Probability of Detection Comparison for
Knowledge-Aided Depth-Based Detector versus Envelope De-
tector

target obfuscated by a noisy measurement environment. When
knowledge of the underlying noise distribution was assumed,
the depth-based methods were shown to nominal improve on
the classical single-pulse magnitude threshold detector by a
factor of up to +15.1dB, and a classical envelope detector by
a factor of upto+ 20.1dB.

However, the depth-based detector is nonparametric in for-
mulation, and does not rely on the underlying corruptive noise
process to conform to a univariate or bivariate distribution;
in fact, the depth-based detector should be more optimal for
cases in which the underlying noise process is multivariate and
not adequately described by a second-order moment method.
Further, while the current depth-based detector is generalized
for the underlying corruptive measurement process, it is also
generalizable to higher dimensions as well. Currently, the
depth-based detector example problem was solved in Rd,
where d = 2; however, the dimensionality of the problem
can be increased to any value of d = [2,∞), opening up a
number of challenge problems for conducting salient signal
processing tasks under both big data and high-dimensionality

scenarios.

Current efforts are focused on the extension of this depth-
based detector to broader classes of corruptive noise distri-
butions; including those distributions that are not adequately
described by second-order moment methods. The authors feel
the innovation behind this depth-based approach is that no
form of the underlying corruptive noise has to be assumed
a priori, and in fact, the algorithm is nonparametric in for-
mulation and applicable to any corruptive noise process-both
known and unknown.

VII. CONCLUSION

Depth-based methods lie at the intersection of mathematical
statistics and computational geometry, and have been emerged
over the past decade as a promising candidate for dealing with
high-dimensionality nonparametric multivariate data. While
there have been many publications detailing depth-based meth-
ods and applications, there are currently no publications that
focus on sensing related challenges that could benefit from
the incorporation of the depth-based algorithms. In this paper,
the authors demonstrated the more salient task of a sensing
system-detection-and the detection improvement afforded by
the tandem use of a distributed sensing network and a depth-
based detection algorithm.

The authors are currently exploring a broad range of sensing
modalities that would benefit from this emerging field of
mathematical statistics and anticipate further examples of
depth-based methodologies to emerge as part of this broader
research effort. Follow-on publications will focus on on in-
corporating statistical ranking and selection into our innovative
depth-based detector and formalizing the empirical distribution
function utilized for the Neyman-Pearson criterion.
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