
Near Real-Time Simultaneous Range and Velocity
Processing in a Random Noise Radar

T. Joel Thorson and Geoffrey A. Akers
Graduate School of Engineering and Management

Air Force Institute of Technology
Dayton, OH 45433-7765

Email: timothy.thorson@afit.edu and geoffrey.akers@afit.edu

Abstract— The Air Force Institute of Technology (AFIT) has
developed an ultrawideband (UWB) random noise radar (RNR)
that operates in the UHF band. The large fractional bandwidth
and lack of phase coherency within the AFIT RNR necessitate
an alternative to classical Doppler processing for velocity es-
timation. A time-domain approach to simultaneous range and
velocity processing has been implemented in the AFIT RNR
but results in significant memory requirements and impractical
processing times. This paper presents a method to reduce the two-
dimensional (2D) processing time by over an order of magnitude
by segmenting the signal processing algorithm in order to
parallelize on a graphics processing unit (GPU).

I. INTRODUCTION

Multi core processing has found its way into all segments
of the computer industry [1]. Two- to eight-cores are no
longer used just for the server market but are now com-
monplace in personal desktop computers. The trend continues
to signal processing where graphics processing units (GPUs)
with hundreds of processing cores are now widely used for
applications other than graphics processing. With the release
of the NVIDIA CUDA (Compute Unified Device Architecture)
software interface in 2007, the GPU has become more openly
exploited in signal processing [2]. No longer solely used for
a specific graphical application, the general purpose GPU
(GPGPU) is made up of hundreds of individual processing
cores that typically share memory resources making it favor-
able for many parallel systems.

The most recent simultaneous range-velocity processing
research at AFIT began the effort of parallelizing the signal
processing algorithm [3]. The idea was to reduce the memory
required to process the algorithm in order to implement in
a GPU. The memory was reduced by replacing an eight-
bit analog-to-digital converter (ADC) with a binary ADC.
Although the memory was reduced significantly, the signals
were too long and still required too much memory to be
processed in parallel on a GPU. However, recent strides have
been taken to evolve the algorithm for further parallelization.

This paper presents the ongoing research effort conducted at
AFIT to reduce the simultaneous range and velocity processing
time of the RNR to near real-time. The paper begins with
a description of the AFIT RNR and its velocity estimation
technique. It continues with the fast Fourier transform (FFT)
segmentation method used to parallelize the correlation algo-
rithm used in the AFIT RNR. Finally, it discusses the test,

Fig. 1. The functional building blocks of the AFIT RNR.

methodology, and results used to prove the technique.

II. SYSTEM/EQUIPMENT DESCRIPTION

The AFIT RNR was first constructed by Schmitt [4] and
was demonstrated in near-monostatic and networked configu-
rations. The bistatic/near-monostatic configuration, broken into
its functional blocks, can be seen in Figure 1, and is the focus
of this research effort.

A. Transmitter

To generate a random noise transmit signal, the AFIT RNR
uses a thermal, white Gaussian noise (WGN) generator that
provides a flat frequency response at -82 dBm/Hz up to 1.6
GHz. The source is then filtered using a low-pass filter (LPF)
and a high-pass filter (HPF) to generate the band-limited,
ultrawideband (UWB), continuous wave signal from 400 to
800 MHz. After filtering, the noise signal is split to the
transmit antenna as well as to the direct conversion receiver
(DCR), where it is used as a reference signal for correlation
processing. The transmit path of the AFIT RNR can be seen
in Figure 2.

B. Receiver Front End

After the transmit signal interacts with the environment
and is received by the antenna, the received signal is passed
through a LPF and HPF combination, identical to the transmit
path filters, before being amplified by two, 20-dB low noise
amplifiers (LNAs). The LNAs are used to bring the receive

0585US Government work not protected by U.S. copyright



Fig. 2. This figure highlights each component in the AFIT RNR transmit
path.

Fig. 3. This figure highlights each component in the AFIT RNR receiver
front end (prior to ADC).

signal amplitude within the dynamic range of the ADC. The
receive path of the AFIT RNR can be seen in Figure 3, and a
detailed description of each hardware component in the AFIT
RNR can be found in [4].

C. Direct Conversion Receiver

The direct conversion receiver (DCR) performs the transmit
and receive signal analog-to-digital conversion as well as
the correlation processing required for range and velocity
estimation. The DCR consists of a two-channel ADC, with
a maximum of 1 �s acquisition time, connected to a laptop
via a Peripheral Component Interconnect Express (PCIe) card.
The laptop hosts the MATLAB R⃝ routine developed to provide
target range and velocity estimates using digital correlation
processing.

III. VELOCITY ESTIMATION

The AFIT RNR was designed to be simple, flexible, and
reliable. This was accomplished by designing a DCR, which
bypasses the well-known heterodyne receiver architecture [5].
The ADC is placed as close to the receive antenna as possible,
providing a digital correlation environment. By implementing
the DCR and limiting the RF front-end hardware, noise is
minimized and the receiver becomes software modifiable much
in the same was a the software defined radio concept. However,

Fig. 4. Illustration of the time domain velocity estimation technique
implemented in the AFIT RNR.

no quadrature channel exists in the AFIT RNR, resulting in a
phase-incoherent system.

In addition to the AFIT RNR phase-incoherency, the UWB
signal implementation consists of a large fractional bandwidth
resulting in errors when estimating velocity using the classi-
cal narrowband Doppler technique, therefore necessitating an
alternative approach to velocity estimation. Lievsay and Ak-
ers [6] implemented an alternative approach to simultaneous
range-velocity estimation in the AFIT RNR using time domain
processing based on Axelsson’s RNR processing theory [7]
and Rihaczek’s general wideband ambiguity function the-
ory [8]. The 2D processing technique implemented by Lievsay
and Akers proved to be successful, but required approximately
Tp ≈ 42 minutes of processing time and 32 GB of RAM [6].

A. Time-Domain Signal Dilation

The continuous wave transmit signal must be split into
measurement windows for processing. This measurement win-
dow, with time extent T , corresponds to the signal processing
integration time. A target’s relative radial velocity, v, will
cause the receive signal to be dilated in time as can be seen in
Figure 4. An inbound target will cause a compression to the
transmit signal and, conversely, an outbound target will cause
the transmit signal to stretch. The measurement window at
receive will be scaled by a factor of �, and will take the form

Trx =
Ttx
�
, (1)

where � is the time scale of the receive signal given by [9]

� =
c− v
c+ v

, (2)

and c is the speed of light.
ΔT = Trx−Ttx represents the overall dilation of the signal

resulting from target motion as illustrated in Figure 5. How-
ever, to generate reference signals based on target velocity, it
is important to understand how each sample is affected in time

0586US Government work not protected by U.S. copyright



Fig. 5. Ingressing radial velocity shortens the measurement window by ΔT .

due to target motion. This relationship is given by

Δt =
2v

(c− v)fs
, (3)

where fs = 2fℎ is the Nyquist sample rate. Not only can
the reference signals be generated using (3), but a target’s
radial velocity can be derived by measuring the time shift at
each sample over the length of the measurement window and
comparing the result to the reference signal bank.

The significant drawback to the time-domain signal dilation
method of velocity estimation is the signal length required for
practical velocity resolution. Velocity resolution Δv, defined
as [10]

Δv =
2c

Tf
, (4)

is dependent on the length of integration time (measurement
window) T and the transmitted frequency f . In the case of
the noise radar, which transmits at a range of frequencies, the
best range resolution results from the highest frequency in the
range, fℎ. By inspection of (4), as T and fℎ increase, velocity
resolution improves.

Signal length is given by N = fsT and is dependent on the
sample frequency fs and measurement window T . In order
to meet the Nyquist minimum, the sampling frequency must
be 2fℎ. So, increasing T and fℎ to improve resolution also
increases the length of the transmit signal. This relationship
highlights the dependence of velocity resolution on signal
length, N , given by

Δv =
4c

N
, (5)

when sampling at Nyquist baseband. For a velocity resolution
of Δv = 6 m/s, the signal length must be N = 200
million samples long. Obviously these long signals require
significant memory and pose a computational burden for signal
processing.

IV. FFT SEGMENTATION

As discussed above and illustrated in Figure 1, the transmit
signal, s(t), is split and passed into the DCR, where a bank
of reference signals is generated based on the transmit signal
and set of pre-defined reference velocities. Based on (3), the
selected reference velocity shifts each of the N samples of the
transmit signal by Δt to give a reference signal in the form
of

sref [k] = s[k − (k − 1)Δt], (6)

where each sample, k, is shifted by Δt which corresponds to
the reference velocity.

The receive signal is then correlated with each of the
reference signals. The cross correlation function, r(�), is
defined as [10]

r(�) =

∫ T

t=0

sR(t)sref (t− �)dt, (7)

where sR(t) is the receive signal and � = 2R/c represents the
range to the target in terms of the time delay. However, in the
DCR, the correlation is performed digitally in the form of

r[m] =
N−1∑
k=0

sR[k]sref [k −m], (8)

where m = fs� corresponds to the number of samples for
delay � .

Correlation is similar to convolution, and that similarity
can be exploited to take advantage of the FFT efficiencies.
The receive signal sR[k] can be multiplied by the conjugated
reference signal sref [k] in the Fourier domain, leading to the
equation for correlation

r[m] =
1

N
ℱ−1 [ℱ{sR[k]}ℱ{sref [k −m]}∗] , (9)

where ℱ represents the Fourier transform, ℱ−1 represents the
inverse Fourier transform, and * represents conjugation.

Although the FFT is efficient, the lengthy signals required
for sufficient velocity resolution, and hence the lengthy FFTs,
are too long to allow for parallel implementation in a GPU.
The signals must be broken into small segments, thus reducing
the FFT sizes to allow for parallelization over hundreds of
processors.

Meller published a method in [11] to segment lengthy
FFTs in a noise radar correlator for range processing. More
commonly known as the overlap-save method [12], the FFTs
are broken into overlapping segments of length 2M , where
M is equivalent to the number of samples in the time delay
corresponding to the range extent Rmax. The receive signal
segments have M samples from sR[k] and are padded with M
zeros to have a segment length of 2M samples. The reference
signal segments, on the other hand, are a concatenation of M
samples from the “previous” segment and M samples from
the “current” segment, thus overlapping the FFT segments.

Once the signals have been segmented, the FFTs of the re-
ceive signal and reference signal segments are computed. The

0587US Government work not protected by U.S. copyright



(a)

(b)

Fig. 6. Comparison of (a) the traditional cross correlation implementation
and (b) the segmented cross correlation method proposed by Meller [11].

conjugated reference signal FFT segment is then multiplied
with the receive signal FFT segment, and the inverse FFT
(IFFT) of the result is computed. The segmented IFFTs are
then accumulated (the vectors are added), resulting in the cross
correlation of the reference and receive signal. A comparison
of the the traditional cross correlation implementation with
the segmented method proposed by Meller [11] can be seen
in Figure 6.

The benefit of this FFT segmentation method is its potential
for parallelization. The cross-correlation of each segment can
be computed individually and in parallel before accumulation.
Instead of a single cross correlation that has FFTs of length
NFFT = 200 million, there can be many (thousands) of
cross correlation operations that take the place of the single
operation. These fast operations can be distributed to hundreds
of processing cores operating in parallel, thus significantly
reducing the overall processing time.

V. GPU IMPLEMENTATION

Two computers, equipped with NVIDIA R⃝ GPUs, were used
to process the collected data. The specifications for each of the
computers along with the GPUs are presented in Table I.

The data set used for this element of the test effort was
generated by Lievsay [6] and used in the most recent effort
to replace the eight-bit ADC with a binary ADC [3]. The
original data was collected by Lievsay using the AFIT RNR
with a Tektronix R⃝ Digital Phosphor Oscilloscope (DPO) 7254
as the eight-bit ADC. The data set that is used for the test is
of a target at 10 m from the monostatic radar moving directly
toward the RNR at 5 m/s. The measurement window was 160
ms and sampled at fs = 1.25 Gsamp/s. In the most recent
effort at AFIT, the signal processing time for the same data set
was minimized to roughly 5 minutes. Obviously 5 minutes is
not a practical processing time. By parallelizing the correlation
algorithm on a GPU, the goal is to bring the processing time
to a near real-time application.

TABLE I
PROCESSING HARDWARE

Computer 1 Computer 2

Make Dell HP
Model Precision T7500 Z8000 Workstation
Operating System Windows 7 Pro Windows 7 Pro
Processor Make Intel Intel
Processor Model Xeon W5590 Xeon X5667
Number of Processing Cores 8 8
Processor Speed 3.33 GHz 3.07 GHz
Installed Memory 48 GB 48 GB
GPU Make NVIDIA R⃝ NVIDIA R⃝

GPU Model Tesla 1060 Tesla C2070
GPU Processing Cores 240 448
GPU Shared Memory 4 GB 6 GB

As discussed in [3], single precision computing is acceptable
for AFIT RNR processing. There is no loss of target estimation
capability using single precision versus double precision. All
computations and results discussed in this paper are based on
single precision to take advantage of the memory and process-
ing time savings afforded by single precision processing.

The test procedure for this element of the test effort is as
follows:

1) Update the algorithm to include FFT segmentation. De-
termine processing time on both multi-core PCs without
GPU computing.

2) Modify the algorithm for GPU computing using
MATLAB R⃝’s GPU interface. Determine processing
time on both GPU equipped multi-core PCs.

3) Modify the algorithm for GPU computing using
Jacket R⃝’s GPU interface. Determine processing time on
both GPU equipped multi-core PCs.

MATLAB R⃝ has developed a GPU interface as part of
the parallel computing toolbox. A number of GPU specific
commands have been created to pass CPU variables to the
GPU to perform computations on the GPU and then gather
the results back to the CPU.

Another company, AccelerEyes R⃝, has developed a prod-
uct called Jacket R⃝ that claims to be better than the par-
allel computing toolbox in MATLAB R⃝. Jacket R⃝ allows
MATLAB R⃝ users to interface with the GPU without getting
into the low-level programming details. Jacket R⃝ supports
many MATLAB R⃝ functions to make modifying existing al-
gorithms for GPU computing fairly seamless. Both Jacket R⃝

and MATLAB R⃝’s parallel computing toolbox will be used
to find the best solution to simultaneous range and velocity
processing in the AFIT RNR.

VI. RESULTS

After configuring the AFIT RNR 2D processing algorithm
for implementation on the GPU, the algorithm was applied
to the sample transmit and receive data according to the test
procedure. As can be seen in Table I, the two computers used
for the 2D processing share similar specifications. The first
computer, however, has a faster processor leading to faster

0588US Government work not protected by U.S. copyright



TABLE II
SUMMARY OF COMPUTER 1 PROCESSING TIMES PER REFERENCE

VELOCITY

Reference Signal Correlation Total
Step Description Time (s) Time (s) Time (s)

1 No GPU 1.49 8.27 9.76
2 MATLAB R⃝ 1.55 3.72 5.27
3 Jacket R⃝ 1.92 9.42 11.34

TABLE III
SUMMARY OF COMPUTER 2 PROCESSING TIMES PER REFERENCE

VELOCITY

Reference Signal Correlation Total
Step Description Time (s) Time (s) Time (s)

1 No GPU 1.78 10.23 12.01
2 MATLAB R⃝ 1.70 2.61 4.31
3 Jacket R⃝ 1.98 8.73 10.71

TABLE IV
SUMMARY OF 2D PROCESSING TIMES FOR 25 REFERENCE VELOCITIES

Computer 1 Computer 2
Step Description Time (minutes) Time (minutes)

1 No GPU 4.07 5.00
2 MATLAB R⃝ 2.20 1.80
3 Jacket R⃝ 4.75 4.46

CPU operations. The second computer is outfitted with a
higher-end GPU model and resulted in faster GPU operations.
This explains why, when comparing Table II to Table III, the
first computer performs the 2D processing faster when only
the local CPUs are used. Conversely, the second computer
performs the 2D processing faster when the GPU is tasked
with the majority of the signal processing.

Another factor affecting the speed of the 2D processing is
the GPU interface used. Table IV reveals that the MATLAB R⃝

GPU implementation is faster than Jacket R⃝ for this 2D pro-
cessing algorithm. MATLAB R⃝ is performs faster because of
its inherent speed in matrix math. The FFT segments were
placed in matrix format to process many FFTs simultaneously,
thus reducing the number of loops required to process all
FFT segments for correlation. Jacket R⃝, on the other hand,
has a very efficient gfor loop not available on the MATLAB R⃝

interface, but memory allocation challenges did not allow for
efficient matrix FFT calculations using Jacket R⃝.

Tables II and III also reveal the fact that reference signal
generation accounts for approximately 25 to 30% of the
overall 2D processing time. This signal generation time can be
eliminated by using a template playback in place of the thermal
noise source [13]. A template playback strategy involves build-
ing a digital noise transmit signal and using a digital-to-analog
converter (DAC) in place of the thermal noise generator.
This template playback approach introduces periodicity and
signal randomness, but the desired low probability of intercept

attribute can be preserved using strategies as discussed in [14].
Generating the reference signal bank a priori would signifi-

cantly reduce the 2D processing time of the AFIT RNR, but it
would require a significant amount of memory to store all the
reference signals. The current algorithm steps through a vector
of reference velocities. For each reference velocity, it builds
a single reference signal and performs the cross-correlation
with the receive signal. Once the cross correlation is complete
and stored, the algorithm clears the reference signal from
memory and generates a new reference signal based on the
next reference velocity. This iterative process takes time but
minimizes the number of lengthy signals that must be stored
in memory.

Although the reference signal generation time is a major
factor in the overall processing time, the correlation processing
time holds the majority and is still prohibitively long. Improve-
ments to the correlation algorithm need to be made for this
algorithm to be applied in a practical radar application.

VII. CONCLUSION

Decreasing the simultaneous range-velocity processing time
of the AFIT RNR by more than an order of magnitude
from Tp ≈ 42 minutes to Tp < 2 minutes is a significant
improvement. Unfortunately, considerable effort remains to
bring the processing time to near real-time. Simultaneous
range and velocity processing has its advantage in that it can
separate two targets traveling at different velocities within the
same range bin. This characteristic is highly desired in many
RNR niche applications. Future research efforts in the AFIT
RNR will continue to set near-real time 2D processing as a
primary objective.

ACKNOWLEDGMENT

The authors would like to thank Dr. Meller from the
Telecommunications Research Institute in Poland for his con-
tributions and support to our implementation of FFT segmen-
tation.

The views expressed in this article are those of the authors
and do not reflect the official policy or position of the U.S.
Air Force, Department of Defense, or the U.S. Government.

REFERENCES

[1] A. Gonzalez, J. A. Belloch, F. J. Martinez, P. Alonso, V. M. Garcia,
E. S. Quintana-Orti, A. Remon, and A. M. Vidal, “The impact of the
multi-core revolution on signal processing,” Waves, vol. 2, pp. 74–74–85,
2010.

[2] A. Fasih and T. Hartley, “GPU-accelerated synthetic aperture radar
backprojection in CUDA,” in Radar Conference, 2010 IEEE, 2010, pp.
1408–1413.

[3] T. J. Thorson and G. A. Akers, “Investigating the use of a binary ADC
for simultaneous range and velocity processing in a random noise radar,”
2011.

[4] A. Schmitt, “Radar imaging with a network of digital noise radar
systems,” Master’s Thesis, Air Force Institute of Technology, 2009.

[5] R. M. Narayanan and M. Dawood, “Doppler estimation using a coherent
ultrawide-band random noise radar,” Antennas and Propagation, IEEE
Transactions on, vol. 48, no. 6, pp. 868–878, 2000.

[6] J. Lievsay and G. Akers, “Moving target detection via digital time
domain correlation of random noise radar signals,” in Radar Conference
(RADAR), 2011 IEEE, May 2011, pp. 784 –788.

0589US Government work not protected by U.S. copyright



[7] S. R. J. Axelsson, “Generalized ambiguity functions for ultra wide band
random waveforms,” in Radar Symposium, 2006. IRS 2006. Interna-
tional, 2006, pp. 1–4.

[8] A. W. Rihaczek, “Delay-Doppler ambiguity function for wideband
signals,” Aerospace and Electronic Systems, IEEE Transactions on, vol.
AES-3, no. 4, pp. 705–711, 1967.

[9] J. R. Lievsay, “Simultaneous range/velocity detection with an ultra-
wideband random noise radar through fully digital cross-correlation in
the time domain,” Master’s Thesis, Air Force Institute of Technology,
2011.

[10] K. Kulpa, Continuous Wave Radars, Monostatic, Multistatic and Net-
work, ser. Advances in Sensing with Security Applications. Springer
Netherlands, 2006, vol. 2, pp. 215–242.

[11] M. Meller, “Some aspects of designing real-time digital correlators for
noise radars,” in Radar Conference, 2010 IEEE, 2010, pp. 821–825.

[12] A. Oppenheim and R. Schafer, Discrete-time Signal Processing, 3rd ed.
Upper Saddle River, NJ: Prentice Hall, 2009.

[13] P. J. Collins and I. John A. Priestly, “Trading spectral efficiency for
system latency in true-random noise radar network through template-
replacy diversity,” Waveform Diversity and Design Conference, 2012.

[14] J. A. Priestly, “AFIT NoNET enhancements: Software model devel-
opment and optimization of signal processing architecture,” Master’s
Thesis, Air Force Institute of Technology, 2011.

0590US Government work not protected by U.S. copyright


