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Abstract—This paper describes a major effort to collect smart-
phone data useful for indoor localization. Data has been collected
with four Android phones according to numerous scenarios in
each of four large buildings. The data includes time-stamped
traces of various environmental, position, and motion sensors
available on a smartphone, Wi-Fi and cellular signal strengths,
and GPS fixes, whenever available. Quantitative evidence is
presented to validate the collected data and attest to its quality.
This unique, extensive data repository is made available to the
R&D community through the PerfLoc web portal to facilitate
development of smartphone indoor localization apps and to
enable performance evaluation of such apps according to the
ISO/IEC 18305 international standard in the near future.

I. INTRODUCTION

The Global Positioning System (GPS) has been a phenom-
enal success with applications in a wide range of domains,
but it does not work inside buildings / structures and in
urban canyons. The next frontier is to provide localization
and tracking capability indoor as a key technology enabler for
Location Based Services (LBS), which is anticipated to be a
multi-billion dollar market. Indoor localization and tracking
has applications in many areas, including emergency response
for better coordination of operations and to save lives of
first responders and civilians; E-911; military operations, such
as search and clear operations and prevention of friendly
fire; tracking in underground coal mines, particularly in the
aftermath of explosions and roof collapses; asset and personnel
tracking in warehouse, hospitals, and factories; tracking of
children on school grounds and the elderly; offender tracking;
navigation in museums, shopping malls, and large office build-
ings; urban search and rescue in the aftermath of natural / man-
made disasters; and many applications related to the Internet
of Things (IoT).

Yet, lack of standardized testing has been an impediment
to the wide adoption and deployment of indoor Localization
and Tracking Systems (LTSs). It is not possible to compare the
performance of various systems presented in academic confer-
ences or developed by industry, because they are evaluated in
different environments and according to different and typically
inadequate testing criteria and methodologies. This has made
it difficult to set minimum performance requirements1 for
indoor LTSs. Consequently, the user community has often

The work of the first author has been supported by the Public Safety
Communications Research (PSCR) Division at NIST.

1For example, fire departments may wish to have an indoor localization
capability in burning buildings with 3 m average accuracy. Similarly, the
Federal Communications Commission (FCC) in the US requires the average
indoor location accuracy for E-911 calls to be x meters y% of the time.

been unable to ascertain whether a given indoor LTS meets
its requirements. There has been a strong demand by the user
community for development of standardized testing procedures
for indoor LTSs, which would also help the industry to
improve the performance and effectiveness of their indoor LTS
products.

In response to this demand, NIST led the development of
the international standard ISO/IEC 18305, Test and evaluation
of localization and tracking systems [1]. The primary focus
of ISO/IEC 18305 is on indoor localization, which is a much
harder problem than its outdoor counterpart, for which GPS
and to a lesser extent the use of terrestrial cellular technology
are the dominant solutions. The standard deals with a challeng-
ing test and measurement problem, because the performance of
such systems is affected by a wide range of factors, including
construction material, size and floor plans of buildings; mobil-
ity mode of the entity to be localized and tracked (stationary,
walking, running, sidestepping, walking backwards, crawling
on the floor, transportation on a cart or forklift, transportation
in elevators, etc.); availability of coordinates of the boundary
(footprint) of buildings; availability of floor plans and heights
of different floors of buildings. While it might be possible to
test the “components” of an LTS in a laboratory setting, the
proper way to test the “system” is to do so in several large
buildings, including high rises and subterranean structures,
according to a variety of mobility scenarios. In addition, it
is important to determine how many entities the system can
localize and track. LTSs can vary significantly in terms of
the assumptions under which they can operate, cost, size,
weight, battery life, electromagnetic compatibility, intrinsic
safety, etc. Therefore, one has to be careful when comparing
the performance of different LTSs to ensure fairness. Tailoring
the testing procedure to the LTS is not scalable, because there
are many LTSs available. ISO/IEC 18305 treats the LTS under
test as a black box and yet it provides a comprehensive testing
methodology that adequately tests LTSs.

This paper focuses on smartphone indoor localization apps,
which can use only the sensors available on a smartphone
and the Radio Frequency (RF) signals that a smartphone can
receive. In contrast, a general LTS can use other sensors and
RF technologies, such as Ultra Wideband (UWB) ranging,
angle of arrival estimation, and LiDAR. However, with billions
of smartphones in use around the world, the smartphone
platform is very important. The main objective of this effort
is to create a level playing field for comparison of indoor
localization apps. We are doing this by (i) making available to
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the R&D community a rich repository of smartphone sensor
data, RF signal strength data, and GPS fixes collected based on
the guidance provided by ISO/IEC 18305 and (ii) developing a
web portal that uses ISO/IEC 18305 to automatically evaluate
the performance of indoor localization apps developed based
on the data repository and publish the results.

The rest of this paper is organized as follows. Section II
presents an overview of related work. We present different
aspects of our campaign and the properties of the collected
data in Section III. Section IV is on validation of the data we
collected. Concluding remarks are given in Section V.

II. RELATED WORK

This section provides an overview of two relevant directions
in performance evaluation of indoor localization solutions.

A. Indoor Localization Competitions

Lessons learned during the 2014 IPSN / Microsoft Indoor
Localization Competition are reported in [2]. The competi-
tion used one scenario to evaluate a broad set of solutions,
including RF, magnetic, light, and ultrasound-based systems.
EvAAL is another popular series of competitions focused on
indoor localization solutions for assisted living [3]. [4] presents
the results of an indoor localization competition focused on
interference robustness of RF-based localization solutions.
Indoor localization competitions are attractive, because they
provide the possibility of evaluating and objectively comparing
different localization solutions in the same environment and
similar conditions. However, such competitions are rare due
to their labor, time, and cost intensity. Furthermore, although
the evaluation environment is the same, not all solutions can be
evaluated at the same time. Hence, the temporal variability of
environmental conditions reduces the objectivity of the results.

B. Usage of Raw Data Traces

Use of publicly available data traces is a promising solution
for mitigating temporal variability of conditions, which is
hardly avoidable in indoor localization competitions. There
have been a few efforts to virtualize certain aspects of experi-
mental evaluation of localization solutions. VirTIL testbed [5]
is focused on the evaluation of RF range-based indoor lo-
calization algorithms by providing range measurements made
throughout the evaluation area. The EU EVARILOS project’s
efforts [6] yielded unprocessed low-level RF data, such as
Received Signal Strength Indicator (RSSI) and Time of Flight
(ToF) measurements, that are used in a wide range of in-
door localization solutions, including fingerprinting, hybrid
and proximity-based solutions. This paper builds upon that
work and focuses on the extensive set of sensors available in
today’s smartphones, including not only RF-based ones, but
also environmental, position, and motion sensors. Moreover,
we significantly expand the scope of the data traces by using
several evaluation areas and testing scenarios.

III. DATA COLLECTION

This section consists of three parts. First, we describe the
environment and the scenarios, selected based on guidance

from ISO/IEC 18305, we used for data collection. Second, we
provide an overview of the collected data. Third, we provide
a synopsis of the collected data.

A. Environment and Scenarios

We selected four buildings for data collection. One was
an office building, two were industrial shop and warehouse
types of buildings, and the fourth was a subterranean structure.
Unfortunately, we did not have access to a high-rise building
or a single-family house, as recommended by ISO/IEC 18305
in addition to the above types of buildings. The total space
covered by these buildings was about 30,000 m2.

We instrumented these buildings with more than 900 test
points, henceforth called dots, installed on the floors. Each
dot is a disk of diameter about 3 cm with its center marked
for subsequent surveying. The locations of these dots were
precisely determined by a surveying contractor. Therefore, the
ground truth locations of the dots are known to NIST.

In an effort to capture the differences in qualities of the
sensors and RF circuitry in smartphones, we used four An-
droid2 smartphones for data collection. These smartphones
were LG G4 (LG), Motorola Nexus 6 (NX), OnePlus 2 (OP),
and Samsung Galaxy S6 (SG). Since we did not want to
repeat each data collection scenario four times, once for each
smartphone, we devised a mechanism to collect data with all
four phones simultaneously. We used armbands to attach two
phones to each arm of the person collecting data, as shown
in Figure 1. On each arm, one phone faced forward and the
other faced to the side away from the person. We connected
four cables in parallel to a push-button switch. The other side
of the cables were connected to the audio jacks of the four
phones. We used this mechanism to send a signal to the phones
to create a timestamp in each of them whenever the person
collecting data was on top of a dot.

The data that we collected is described in detail in the
next section. We collected two types of data, one for training
and the other for testing purposes. The data in each type is
timestamped, but the training data is also annotated with the
ground truth locations of the dots at which the push-button
switch was pressed. The training data would allow the app
developers to check how well their apps are performing by
comparing the location estimates provided by their apps at
time instances when the push-button switch was pressed with
the ground truth locations at those time instances. In the case
of the test data, we do not provide the ground truth locations at
time instances at which the push-button switch was pressed.
Instead, we ask each app developer to upload the location
estimates provided by the app at those time instances on the
PerfLoc web portal so that the portal can evaluate the app’s
performance. Naturally, a developer would do this step when
he/she is convinced that his/her app is as good as it can be.

2DISCLAIMER- Certain commercial equipment, instruments, or materials
are identified in this paper in order to specify the experimental procedure
adequately. Such identification is not intended to imply recommendation or
endorsement by the National Institute of Standards and Technology, nor is it
intended to imply that the materials or equipment identified are necessarily
the best available for the purpose.
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We collected data using a subset of the 14 Test & Evaluation
(T&E) scenarios described in ISO/IEC 18305. We did not
use all the scenarios, because some did not apply to our data
collection campaign. For example, two scenarios in ISO/IEC
18305 call for multiple people to collect data simultaneously.
This would be useful if the localization device has peer-to-
peer ranging capability or we wish to test the Medium Access
Control (MAC) layer issues and determine how many local-
ization devices can be localized by the system simultaneously.
Smartphones do not have a peer-to-peer ranging capability
and we are focusing on indoor localization apps that passively
listen to RF signals of interest, and hence there are no MAC
layer issues. Including the training data, we collected data
over 38 T&E scenarios in the four buildings. Each scenario
called for the person collecting the data to start at a given
location outside a building before entering the building and
following a predetermined course while pressing the push-
button switch at select dots on the course. The scenarios
involved different modes of mobility: 1) walking to a dot and
stopping for 3 s before moving to the next dot; 2) walking
continuously and without any pause throughout the course; 3)
running / walking backwards / sidestepping / crawling part of
the course; 4) “transporting” the four phones on a pushcart;
5) using elevators, as opposed to stairs, to change floors; 6)
leaving the building a few times during a scenario and then
reentering through the same door or another.

B. Types of Data Collected

For each scenario in each building we collected six types
of data on each smartphone, namely, Wi-Fi, Cellular, GPS,
Dots, Sensors, and Metadata, as described below. This data is
stored as one or more Google Protocol Buffer Messages [7]
in a separate file for each data type

The collected data is composed of:
1) Wi-Fi data: Signal strengths measured from Wi-Fi ac-

cess points (APs) in range and other information provided
by the APs operating at 2.4 and 5 GHz channels. The Wi-
Fi scans were performed back-to-back. The frequency of
the scans depended on the Wi-Fi chip’s firmware and the
Wi-Fi driver implementation on a given smartphone. Since
these implementations are provided by the manufacturers, the
duration of a Wi-Fi scan varied from device to device. Android
platform’s Wi-Fi connectivity API supports passive scanning
only. Scan results were saved as a single protocol buffer
message in repeated fields for each AP.

2) Cellular data: Identity information and signal strengths
measured from cellular towers in range. The Android operating
system continuously scans for cellular signals and a scan
cannot be triggered by a user-level application. Therefore, our
application periodically requests all observed cell information
from the operating system at a 1 Hz update rate and saves the
detected cellular tower related information into the file system
as repeated fields of the relevant protocol buffer message.

3) GPS data: Detected geophysical position using GPS.
During the data collection campaign, whenever the smartphone
got a location fix, the GPS information along with the accuracy

of that fix was saved as a separate protocol buffer message.
We used “fine location” information, which is derived directly
from the GPS signals. Since the measurements were performed
indoors most of the time, it was not possible to receive the
GPS signal the whole time. If the device could not derive a
location from the GPS signals, then no data was stored.

4) Dots: Timestamps at dots visited during a scenario. To
make sense of the collected data, it is important to know where
and when the data was collected. For each dot visited during
a scenario, we store a dot-index and a timestamp. The dot-
indices are simply successive non-negative integers with 0
reserved for the starting point of the scenario, which may not
be a dot, and 1 through n used for the n dots visited during the
scenario after the starting location. For each dot-index, there
is a timestamp that designates the time when that location
was visited. For the scenario that required waiting for three
seconds at each of the dots 1 through n, we stored two dot-
indices and two timestamps. Specifically, for the ith dot, we
used dot-indices 2i−1 and 2i for the time instances we reached
that dot and we left it, respectively. Each dot is represented in a
separate protocol buffer message with its index and timestamp.

5) Sensors: Built-in environmental, position, and motion
sensors that are found in smartphones. The Android platform
defines and supports a number of sensors, which are either
hardware-based or software-based. Hardware-based sensors,
such as accelerometer, magnetometer, or light, are physical
components in the device. Software-based sensors, such as
linear acceleration and gravity, are virtual sensors that derive
their values from one or more hardware-based sensors.

The Android platform does not specify a standard sensor
configuration. Hence, the manufacturers can choose any set
of sensors to install in their devices. In our measurements we
collected data from all of the sensors that were available on
any given device. The list of Android-defined sensors, their
descriptions, and whether they are hardware- or software-
based are given in Table I. Some sensors are “uncalibrated”
versions of others with the same name. These sensors provide
additional raw values along with some bias. These types of
sensors can be useful when an application conducts its own
sensor fusion. More information on uncalibrated sensors can
be found in [9]. A smartphone may contain device-specific,
non-standard sensors that are not defined in the above list.
The information collected by any of the sensors, including the
non-standard ones, is saved as protocol buffer messages. Some
devices also implement software-based one-shot composite
sensors, such as glance gesture, pick up gesture, significant
motion, and wake up gesture. These sensors, also called trigger
sensors, are used for end-user convenience, such as to briefly
turn the screen on or to mimic press of the power button. Since
these convenience features do not provide any clear benefits to
LTSs, we did not implement support for them, but they may
appear in the collected data if they are triggered. Android’s
sensor framework uses a standard 3-axis coordinate system
depicted in Figure 2. It is important to note that the axes of this
coordinate system do not change or swap if the orientation of
the device changes. For example, the z-axis remains pointing
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TABLE I: List of Android sensors [8]
Sensor Description Type Sensor Description Type
AMBIENT
TEMPERATURE

Ambient air temperature Hardware LIGHT Luminance Hardware

PRESSURE Ambient air pressure Hardware RELATIVE
HUMIDITY

Ambient relative humidity Hardware

ACCELEROMETER Acceleration force along the x,y,z axes Hardware GRAVITY Force of gravity along the x,y,z axes Hardware or
Software

GYROSCOPE Rate of rotation around the x,y,z axes Hardware GYROSCOPE
UNCALIBRATED

Rate of rotation (without drift compensation)
around the x,y,z axes

Software

LINEAR
ACCELERATION

Acceleration force along the x,y,z axes (excluding
gravity)

Hardware or
Software

ROTATION VECTOR Rotation vector component along the x,y,z axes
and Scalar component of the rotation vector

Hardware or
Software

STEP COUNTER Number of steps taken by the user since the last
reboot when the sensor was activated.

Software GAME ROTATION
VECTOR

Rotation vector component along the x,y,z axes Software

GEOMAGNETIC
ROTATION VECTOR

Rotation vector component along the x,y,z axes Software MAGNETIC FIELD Geomagnetic field strength along the x,y,z axes. Hardware

MAGNETIC FIELD
UNCALIBRATED

Geomagnetic field strength (without hard iron cali-
bration) and Iron bias estimations along the x,y,z
axes

Software ORIENTATION Azimuth, Pitch and Roll Software

PROXIMITY Distance from object Hardware

outwards of the screen even when the person collecting data
is crawling on the floor instead of walking. Each sensor
component has a different reporting frequency. When the app
registers to a sensor at the fastest rate, the reporting frequency
can be as fast as 250 Hz. Unfortunately, asking for the fastest
possible rate sometimes causes individual sensors to be depri-
oritized and starved. For example, the Samsung smartphone
reported far fewer readings from the pressure sensor when
all the sensors were registered at the fastest rate. To avoid
loss of important data, we programmatically registered to the
sensors at a 100 Hz rate, which is commonly selected in
research on human motion recognition using motion sensors
like accelerometers. This gave all sensors enough time to
report their values. Temperature, light, proximity, and humidity
sensors, and the step counter generate values only if their last
measured values have changed.

NX	

SG	

OP	

LG	

Figure 1: Positioning of the
devices on the test subject’s body

Figure 2: Device-relative
coordinate system used by the

Sensor API [9]

6) Metadata: The metadata includes the building ID, sce-
nario ID, and measurement device’s manufacturer, model, ID,
brand, etc. It also includes the initial barometer value, if
the smartphone has one, by averaging the first 5 pressure
sensor measurements at the beginning of a data collection
scenario. Knowing the initial pressure value can help the
indoor localization app to detect elevation changes due to
movement from one floor of the building to another. The list
of sensors that a particular smartphone is equipped with along
with their properties is also included in the metadata. For data
collection in each building one protocol buffer message for
the metadata in each smartphone is generated.

C. A Synopsis of the Collected Data

The number of scenarios used (the time it took to collect the
data) in Buildings 1-4 were 11 (∼4.1 hours), 10 (∼5.3 hours),
9 (∼4.4 hours), and 8 (∼1.8 hours), respectively, resulting in
a total of 38 scenarios and roughly 15.6 hours of raw data
traces for each device. Tables II-V provide an overview of
Wi-Fi, cellular, GPS, and sensor data traces, respectively, in
two scenarios for each of the four buildings.

The reader can extract similar information for the remaining
30 scenarios by downloading data traces from the PerfLoc
web portal. Certain observations can be made about the data
in Table II. First, the average durations of a Wi-Fi scan over
the 8 scenarios for the LG G4, Motorola Nexus 6, OnePlus 2,
and Samsung Galaxy S6 devices (ordered alphabetically) are
3238, 916, 2351, and 3351 ms, respectively. Second, the LG
G4 device detects far fewer Wi-Fi APs than the other three
devices that detect similar numbers of APs. This is due to
the fact that the default configuration of the Wi-Fi scanning
procedure in the LG G4 device does not report hidden Wi-Fi
APs, i.e. those without the SSID parameter defined. Indeed, if
we filter the hidden APs for the other devices for Scenario 1 in
Building 1, the number of unique Wi-Fi APs detected would
be 56 (unchanged), 61, 59, and 61, respectively. The same
observation is made when hidden APs are filtered out in the
other scenarios. Additional small variability in the number of
detected APs is due to slight differences in the locations and
movement patterns of devices, as worn by the person collecting
the data, which results in different levels of signal attenuation
and shadowing. This is consistent with a previous report of
RSSI not being a fully stable feature of Wi-Fi signals [10].

As can be seen from Table III, the number of cellular
scans is roughly the same as the duration of a scenario in
seconds, except for Building 1, where cellular coverage was
far worse than the other three buildings. This is consistent
with the 1 Hz cellular scan rate mentioned in Subsection
III.B. Note that we did not log empty cellular readings, which
explains the slight differences in the duration of scenarios.
In addition, the LG G4 and Samsung Galaxy S6 devices had
SIM cards and subscriptions to CDMA (C) and LTE (L) data
services. Consequently, the data traces for these devices consist
of CDMA and LTE signal strengths, although WCDMA (W)
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TABLE II: Selected features of the Wi-Fi data traces
Building/
Scenario

Number of Wi-Fi scans Number of unique Wi-Fi APs Duration [s]
LG NX OP SG LG NX OP SG LG NX OP SG

B1/S1 245 953 356 248 56 150 143 158 836 843 835 837
B1/S2 370 1397 524 358 24 70 70 67 1212 1219 1212 1212
B2/S1 741 2442 983 707 237 516 611 625 2349 2348 2352 2347
B2/S2 792 2667 1057 759 222 515 574 630 2518 2527 2519 2522
B3/S1 696 2545 985 677 70 166 178 190 2288 2298 2288 2291
B3/S2 460 1710 650 447 64 144 141 164 1515 1514 1518 1511
B4/S1 360 1283 496 347 39 104 118 105 1158 1164 1156 1159
B4/S2 207 731 285 198 30 80 77 96 660 661 664 658

TABLE III: Selected features of the cellular data traces
Building/
Scenario

Number of cellular scans Number of unique cellular BSs Duration [s]
LG NX OP SG LG NX OP SG LG NX OP SG

B1/S1 130 132 166 119 C:3,G:1,L:6 G:1,W:7 G:1,W:6 C:2,L:6 623 136 637 121
B1/S2 47 199 208 201 C:2,L:5 G:1,W:5 G:1,W:7 C:3,G:1,L:5 1216 1221 1215 1219
B2/S1 2311 2273 2327 2301 C:5 W:5 W:6 C:9,L:9 2352 2349 2354 2352
B2/S2 2455 2443 2491 2468 C:6 G:1,W:7 G:1,W:7 C:9,L:8 2523 2528 2522 2528
B3/S1 2108 2215 2263 2043 C:6,W:2 G:1,W:10 G:1,W:13 C:7,L:13,W:1 2293 2299 2292 2294
B3/S2 1413 1469 1505 1463 C:8,G:1,W:3 W:2 W:3 C:7,L:6 1518 1515 1521 1517
B4/S1 1149 1121 1146 1141 C:4,L:22 W:12 W:11 C:5,L:13 1161 1166 1159 1163
B4/S2 658 641 657 651 C:4,L:13 W:4 G:1,W:7 C:4,L:10 664 662 666 663

and GSM (G) readings occur also. For the other two devices,
the stored signal strength data are of the WCDMA and GSM
types only.

TABLE IV: Selected features of the GPS data traces
Building/
Scenario

Number of GPS readings Duration [s]
LG NX OP SG LG NX OP SG

B1 / S1 20 12 25 10 18 85 23 13
B1 / S2 54 4 13 7 76 2 11 7
B2 / S1 619 65 179 242 1784 2076 2090 2335
B2 / S2 669 217 269 350 1915 1804 1843 2175
B3 / S1 585 187 180 345 2197 2077 928 2133
B3 / S2 33 76 219 140 31 191 228 195
B4 / S1 890 583 889 790 1150 841 1111 1158
B4 / S2 568 448 561 434 599 520 601 548
Table IV shows that the GPS signal was not always available

during a scenario. Just as in the case of the cellular signal, the
availability of the GPS signal was far sparser in Building 1
compared to the other 3 buildings. The data shows significant
variability across the four devices in both the duration of time
the GPS signal was available and the number of GPS readings.
In addition, this variability appears to be random, and hence
one cannot say that the GPS receiver in any device was better
than those in the other devices.

Finally, the numbers of readings from select sensors deemed
to be more useful for indoor localization purposes are provided
in Table V. These sensors are light, pressure, accelerome-
ter / gyroscope, magnetometer, and step detector (see [2] and
the references therein). We have grouped the accelerometer
and gyroscope together, because the numbers of readings from
these sensors were always within one of each other. Note
that the numbers of magnetometer readings for the OnePlus
2 and Samsung Galaxy S6 devices are always within one
of the numbers of readings from the respective accelerome-
ter / gyroscope. In addition, these numbers and the numbers
of accelerometer / gyroscope readings for the LG G4 and
Motoroal Nexus 6 devices are roughly hundred times the
duration of the respective scenarios in seconds, which is
consistent with the 100 Hz sensor sampling rate mentioned
in Subsection III.B. The variation in the numbers of readings
from a given sensor across the devices is primarily due to
the differences in susceptibility thresholds of the sensors. The

numbers of readings from the light and pressure sensors and
the step detector are far fewer. Note that OnePlus 2 does not
have a pressure sensor. Peculiarly, this device did not detect
any steps in Scenarios 1 and 2 in Building 4!

IV. DATA VALIDATION

We took certain measures prior to the start of our extensive
data collection campaign to ensure the data we were getting
from the phones was sound and made sense. For example,
we walked in a building following a predetermined course
while holding a phone in hand horizontally and pointing to
the direction of movement. We accelerated and decelerated
in certain places, made turns, went up and down the stairs,
violently shook the phone at certain times, turned the lights
off and on in one corridor, and pressed the push-button
switch whenever we went over a dot. We knew on which
accelerometer and gyroscope axes to expect activity at what
times, and we verified that that was indeed the case. The
data from the pressure and light sensors made sense, and the
number of timestamps generated by the switch was the same
as the number of dots we visited. Due to lack of space, we do
not present the details of that experiment.

However, the problem of validating the extensive data we
collected with multiple devices is a lot more involved than
that. A major challenge is to figure out what questions to ask
and which tests to perform before even deciding whether the
questions are adequately answered or the data passed the tests.
We suspect more can be done than what is presented next in
this section, but at least we address two issues. One is how
periodic different sensor and RF signal strength data is. We
did not have any influence on how the OS delivers the sensor
data to the application level, and we could only suggest a
delivery rate without any guarantee on the inter-sample time
of individual sensors. This resulted in potentially irregularly
sampled time series. This issue is important, because dealing
with periodic data would be much easier for the researchers
who would use our data to develop indoor localization apps
than dealing with asynchronous data. Another question is
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TABLE V: Number of sensor readings for selected sensors
Building/
Scenario

Light Pressure Accelerometer / gyroscope Magnetometer Step detector
LG NX OP SG LG NX OP SG LG NX OP SG LG NX OP SG LG NX OP SG

B1/S1 3691 2285 3215 4708 64252 27276 0 4708 85294 83911 83284 84748 77467 63648 83285 84748 996 979 949 911
B1/S2 4760 2302 4198 6812 93371 39362 0 6812 123678 121265 120811 122620 112771 91821 120810 122620 788 712 714 196
B2/S1 14673 9318 14491 13135 181186 75854 0 13135 239020 233363 233834 236483 217952 176991 233835 236483 1915 2019 1660 1750
B2/S2 14957 9358 15277 14117 194411 81388 0 14117 256346 251116 250536 254168 234384 189892 250536 254168 1451 1349 1262 802
B3/S1 15515 9780 15966 12823 175718 74232 0 12823 232945 228348 227674 230841 211903 173211 227674 230841 2722 2841 2544 2711
B3/S2 9463 4826 9736 8478 116748 48902 0 8478 154316 150562 151077 152636 140812 114088 151078 152636 1030 1004 974 506
B4/S1 8493 4963 8654 6503 89041 37620 0 6503 118022 115789 115266 117063 107381 87780 115266 117063 1231 1155 0 988
B4/S2 4225 2473 5105 3710 51027 21362 0 3710 67613 65751 66230 66772 61696 49848 66229 66772 527 529 0 330

TABLE VI: Summary of inter-sample times [mean value±standard deviation]
Building/
Scenario

Wi-Fi [s] Accelerometer / Gyroscope [ms] Magnetometer [ms] Cellular [s]
LG NX OP SG LG NX OP SG LG NX LG NX OP SG

B1 / S1 3.3±0.2 0.9±0.0 2.4±0.5 3.4±0.1 9.8±3.7 10.1±6.1 10.1±3.8 9.9±4.5 10.8±4.6 13.3±6.2 4.8±43.2 1.0±0.0 3.9±36.5 1.0±0.0
B1 / S2 3.3±0.1 0.9±0.0 2.3±0.0 3.4±0.1 9.8±3.5 10.1±5.8 10.1±3.7 9.9±4.6 10.8±4.4 13.3±5.9 26.5±170.6 6.1±59.4 5.9±57.0 6.1±49.0
B2 / S1 3.2±0.1 1.0±0.1 2.4±0.4 3.3±0.1 9.8±3.6 10.1±7.3 10.1±4.2 9.9±5.4 10.8±4.5 13.3±7.7 1.0±0.1 1.0±0.0 1.0±0.0 1.0±0.0
B2 / S2 3.2±0.1 0.9±0.1 2.4±0.4 3.3±0.1 9.8±3.8 10.1±7.4 10.1±4.1 9.9±5.6 10.8±4.7 13.2±7.9 1.0±0.2 1.0±0.0 1.0±0.0 1.0±0.0
B3 / S1 3.3±0.1 0.9±0.1 2.3±0.0 3.4±0.1 9.8±4.1 10.1±6.1 10.1±4.0 9.9±5.1 10.8±4.9 13.3±6.2 1.1±1.3 1.0±0.0 1.0±0.0 1.1±1.6
B3 / S2 3.3±0.1 0.9±0.0 2.3±0.4 3.4±0.0 9.8±4.8 10.1±5.7 10.1±4.0 9.9±4.9 10.8±5.6 13.3±5.8 1.1±1.1 1.0±0.0 1.0±0.0 1.0±0.0
B4 / S1 3.2±0.0 0.9±0.0 2.3±0.0 3.4±0.0 9.8±3.6 10.1±6.3 10.1±4.1 9.9±4.6 10.8±4.5 13.3±6.1 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0
B4 / S2 3.2±0.0 0.9±0.0 2.3±0.0 3.3±0.0 9.8±3.4 10.1±5.9 10.1±4.1 9.9±4.6 10.8±4.3 13.3±6.2 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0

TABLE VII: Summary of Spearman’s correlation coefficient ρ for selected sensor types
Building/
Scenario

Wi-Fi Accelerometer
LG-NX LG-OP LG-SG NX-OP NX-SG OP-SG LG-NX LG-OP LG-SG NX-OP NX-SG OP-SG

B1 / S1 0.876 0.883 0.884 0.834 0.904 0.835 0.854 0.875 0.845 0.834 0.836 0.804
B1 / S2 0.879 0.876 0.874 0.834 0.902 0.884 0.786 0.832 0.821 0.883 0.856 0.832
B2 / S1 0.856 0.885 0.898 0.874 0.901 0.834 0.864 0.823 0.882 0.843 0.884 0.832
B2 / S2 0.867 0.902 0.829 0.871 0.890 0.897 0.864 0.812 0.845 0.812 0.850 0.842
B3 / S1 0.902 0.875 0.908 0.843 0.876 0.865 0.874 0.831 0.810 0.831 0.845 0.791
B3 / S2 0.896 0.880 0.879 0.800 0.891 0.841 0.831 0.829 0.871 0.811 0.851 0.803
B4 / S1 0.852 0.847 0.902 0.886 0.904 0.906 0.811 0.832 0.814 0.824 0.823 0.841
B4 / S2 0.863 0.912 0.901 0.876 0.901 0.877 0.822 0.851 0.812 0.767 0.855 0.842

whether the data collected with the four devices is “similar”,
with the caveat that for certain sensors one should not expect
similarity due to the differences in where the devices were
worn on the person who collected the data and the devices’
movements. If we knew the ground truth for all the sensor
and RF signal strength data, then we could check whether the
data collected with any given device was sufficiently close to
the ground truth. In the absence of such ground truth data, all
we can do is to decide, for each sensor or RF signal strength,
which devices generated similar data. Such tests would reveal,
for example, whether three devices generated similar data but
the fourth one was stuck at a value due to sensor malfunction
or it generated unrealistic erratic or random data because it
was not properly calibrated. There can also be programmatic
errors in the code that collects and stores data. Even if none of
these problems exists, the data collected by the four devices
may not be as similar as desired due to the quality of the
components used in the phones. For example, the price range
for Inertial Measurement Units (IMUs) is from tens of dollars
to thousands of dollars. While the more expensive IMUs make
more precise measurements, there is much greater variation
and uncertainty in the performance of low-end IMUs. These
issues would certainly affect the performance of the indoor
localization apps to be developed.

Table VI presents the statistics of inter-sample times for
select sensor and RF signal strength data that were sampled
at vastly different frequencies for various devices and two
scenarios in each of the four buildings. Sensors such as light
or step detector, which provide readings only when an event
occurs, were not included in the table. We observed greater

variation in Wi-Fi inter-sample times for the OnePlus 2 device,
mostly due to outliers with scan durations of roughly 12
seconds that consistently occur for this device in all scenarios.
Figure 3 depicts the relationship between Wi-Fi inter-sample
times and the number of APs detected for Scenario 1 in
Building 1. There is correlation between the number of APs
detected and inter-sample time for the Nexus 6 and OnePlus 2
devices. Similar patterns are observed for other buildings and
scenarios. Note that OnePlus 2 outliers are not shown in the
figure.

Figure 3: Number of detected Wi-Fi APs vs. scan duration

Table VI shows significant variation in inter-sample times
for accelerometer / gyroscope and magnetometers. There are
two reasons for this behavior. First, the intended sampling
frequency of 100 Hz is not a hard requirement for devices’
Operating Systems (OSs). Hence, certain variation in inter-
sample time is tolerated by the OS. Second, the time to log
the sensor readings, and hence the inter-sample time, is larger
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when many sensors report readings. Conversely, those times
are shorter when fewer sensors need to report readings. The
OS balances these times so that the 100 Hz sampling frequency
is roughly realized. Anyone who uses our data to develop
an indoor localization app should regard the sensor readings
as averages over variable-length intervals of time. Except for
most scenarios in Building 1 and some scenarios in Building 3,
where cellular coverage was non-existent or weak, the inter-
sample times for cellular readings show little deviation from
the 1 s target.

To study the similarity of readings from sensors of the
same type, e.g. pressure sensor readings from the four devices,
we compute Spearman’s correlation coefficient ρ and corre-
sponding p-values for all six possible pairs of devices. Due
to lack of space, we show only the results for Wi-Fi signal
strength and accelerometer data in Table VII. As visible in
the table, all correlation coefficients are fairly high, i.e. close
to the maximum value of 1. That means the data from pairs
of devices are strongly correlated. The p-value indicates the
significance of the Spearman’s correlation coefficient. We did
not explicitly report the p-values in the table, since they tend
to zero, meaning that the null hypothesis of the combination
of datasets not being correlated is negligibly small.

(a) Wi-Fi data trace

(b) Accelerometer data trace

Figure 4: Example data traces for all four devices

We had to deal with the problems of having slightly different
start and end times for data collection in a scenario and
different numbers of data samples for a given sensor or RF
signal strength from various devices before we could compute
any correlation coefficient. For both the RF signal strength and

accelerometer readings we solved this problem by merging
the sampling times from all phones to a full set of time
instances. We then interpolated the missing values and used
these newly generated time series for calculating correlation
coefficients. Additionally, for the accelerometer, in order to
reduce the impact of transients spikes, before the interpolation
step, we averaged the data over a sliding window with duration
of 100 ms and a sliding step of 20 ms. Example Wi-Fi and
accelerometer data traces are given in Figure 4 as a pictorial
evidence of data similarity. In the accelerometer case, the
depicted data is the l2-norm of the x, y, and z values of each
reading. In the Wi-Fi case, we focus on the AP with the largest
number of observations in a particular scenario, since such APs
are, in contract to APs with less observations, more relevant
for the majority of localization solutions that leverage Wi-Fi
readings (e.g. [11], [12]).

V. CONCLUSIONS

The data we have collected in this project and are making
available to the R&D community is truly unique in the world.
We doubt many organizations would have the resources to
instrument four large buildings, covering about 30,000 m2 of
space, with 900+ test points, have the locations of the test
points professionally surveyed, and spend about 200 man-
hours on data collection using four Android phones after
months of preparation. We presented some analysis that speaks
to the validity of the collected data. Researchers across the
world will be able to use our annotated data to develop
Android indoor localization apps. Our future plans include
development and launch of a web portal for comprehensive
performance evaluation of indoor localization apps based on
the ISO/IEC 18305 standard. In addition, lessons learned from
this and other planned indoor localization “system testing”
activities will result in improvements to ISO/IEC 18305.
Future part(s) of the paper will describe the performance
evaluation web portal and present the results of evaluating
a number of smartphone indoor localization apps through the
portal.
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