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We present a new treatment of optical forces, revealing that the forces in virtually all optomechanically variable
systems can be computed exactly and simply from only the optical phase and amplitude response of the system.
This treatment, termed the response theory of optical forces (or RTOF), provides conceptual clarity to the
essential physics of optomechanical systems, which computationally intensive Maxwell stress-tensor analyses
leave obscured, enabling the construction simple models with which optical forces and trapping potentials can
be synthesized based on the optical response of optomechanical systems.
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With recent advances in nanophotonics, the mass and
the dimensions of optical devices have been miniatur-
ized to the degree that device tuning through optical
actuation is possible at micro- to milli-watt power lev-
els through use of greatly enhanced optical forces at
the nano-scale [1–7]. Given the technological relevance
of optomechanical interactions, a general analytical for-
malism capable of handling such complex optical sys-
tems is essential to tailoring optical forces in nanoscales
for use in technologies based on optomechanical actua-
tion/transduction. In this paper, we present a new treat-
ment of optical forces, revealing that the forces in virtu-
ally all optomechanically variable systems can be com-
puted exactly and simply from only the optical phase
and amplitude response of the system. This treatment,
termed the response theory of optical forces (or RTOF),
provides conceptual clarity to the essential physics of
optomechanical systems, which computationally inten-
sive Maxwell stress-tensor analyses leave obscured. We
show that this formalism enables the construction of sim-
ple models with which optical forces and potentials can
be synthesized based on the optical response of optome-
chanical systems.

Conservation of energy and photon number form the
basis for RTOF, the theory of which is completely de-
scribed in Ref [2]. The simplest statement which cap-
tures the essential physics of the response theory of op-
tical forces is: “If work is performed against an optically
induced force, the energy of the electromagnetic wave
(responsible for the optical force) must change by an
amount equivalent to the work done”. Therefore, from
knowledge of the change in electromagnetic energy of the
system (which we will show, can be related to the me-
chanically variable optical response of the system), and
the change in a mechanical degree of freedom through
which the work is performed, one can compute the opti-
cal forces generated in the system.

RTOF applies to lossless single port and multiport sys-

tems. We begin summarizing the results of RTOF in the
special case of a lossless system (seen in Fig 1(a)) with
one input and one output, whose effect on the trans-
mitted light is purely dispersive. The optical response
of this device is assumed to be variable through motion
of the generalized spatial coordinate, q. We assume that
monochromatic light carrying power Pi, of frequency, ω,
excites the system. For this special (lossless) case, the in-
cident wave simply experiences a coordinate dependent
phase-shift, φ(q), in traversing the device. In the limit
of adiabatic (or gradual) motion of the coordinate, the
change in electromagnetic energy of the system (∆UEM ),
due to a change in coordinate of ∆q, can be shown to be
a [2]

∆UEM (q) = −Pi

ω

∫ qo+∆q

qo

dφ

dq′
· dq′ = −Pi

ω
·φ(q)+α. (1)

Here, qo is an arbitrary point of origin. Since the change
in energy of the system corresponds to mechanical work
performed through motion the generalized coordinate, q,
∆UEM (q) can be interpreted as the optomechanical po-
tential Ueff (q) of the system. Dropping the superfluous
constant term, α, the potential is simply

Ueff (q) = −Pi

ω
· h̄φ(q). (2)

Thus, in the special case of a purely dispersive system,
we see that the optomechanical potential is given by the
phase-change imparted on the transmitted wave as the
generalized coordinate varies. It is important to note that
this expression is valid provided that the coordinate q is
static, or quasi-static (i.e. under very gradual motion
with respect to the photon-lifetime of the system). Di-
viding both sides of Eqn. 2 by ∆q and taking the limit
as ∆q → 0, the optical forces acting on the coordinate,
q, are found to be

Fq = −dUeff/dq. (3)
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Fig. 1. (a) Generic reflectionless one-port optomechanically vari-
able system. (b) A system of this form is Gires-Tournois interfer-
ometer. Here, q is taken to be mirror separation.

This result is valid for any reflectionless one-port system
provided that it is lossless. Furthermore, through numer-
ous examples, we have shown that this expression yields
identical results to those found through exact Maxwell
stress tensor and closed-system analysis [1, 2, 4].

Generalization of this theory can also be made for the
treatment of systems with multiple input and output
ports. For example see Fig. 2. In this case, the response
of the system can be naturally treated through a coordi-
nated dependent scattering matrix of the form S̃(ω, q).
For simplicity, the multi-port system is schematically il-
lustrated in Fig. 2(b), showing spatially separated in-
put and output ports to the device (however, in reality
they needn’t be). We assume that N monochromatic in-
put signals, of frequency ω, enter the multi-port system
from the left with powers specified by Pi,k. Again as-
suming that the system is lossless, one can show that in
the limit where q is static, the analogous effective optical
potential of the coordinate q is,

Ueff (q) = − h̄
ω
·
∫ [∑

k

Po,k(q)· dφt,k
dq

]
· dq. (4)

Here, Po,k(q) is the power φt,k(q) is the phase of wave
transmitted by the kth output port. Similarly, the optical
force acting on the coordinate, q becomes becomes,

Fq = −dUeff

dq
=
h̄

ω
·
∑
k

Po,k(q)· dφt,k
dq

. (5)

The above is a remarkably general form of the force and
potential for a lossless optomechanically variable circuit
with N inputs and N ouputs. No knowledge of the in-
ternal workings of this system is necessary in order to
compute the optomechanical force and potential that it
will create. For fixed input conditions, we need only know
the amplitude and phase of the transmitted waves as the
generalized optomechanical coordinate, q, is varied.
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Fig. 2. Lossless mech. variable system with N inputs and outputs.

Fig. 3. Microring, photonic crystal and waveguide systems that
will be treated using RTOF.

Through this presentation, we will treat the opti-
cal forces generated in nontrivial multi-port cavity and
waveguide systems (seen in Fig. 3), demonstrating exact
equivalence between RTOF and Maxwell stress tensor
methods. In addition to the examples seen in Fig. 3, we
will discuss the use of RTOF to map the stability dia-
gram of nonlinearly tunable optomechanical cavities and
waveguide systems using through use of the effective op-
tical potential in Eqns 2 and 4.
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