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Abstract- Since 2001 Directional Autonomous Seaftoor Acous­
tic Recorders (DASARs) have been used to localize and record
bowhead whale (Balaena mysticetus) calls during their annual
migration. In 2007 DASARs were deployed at 35 locations over
a 280 km swath in the Beaufort Sea, during seismic exploration
activities (Fig. 1), in order to monitor potential changes in the
animals' location and/or acoustic activity during the seismic
activities.

The large amount of acoustic data generated (about 50
days per DASAR) motivated the development of computer-aided
methods to assist in detecting and classifying bowhead whale
calls.

Bowhead whale calls can be classified in various ways. Here,
we divide calls into six categories: (1) upsweeps, (2) downsweeps,
(3) constant calls, (4) u-shaped and (5) n-shaped undulated
calls, and (6) complex calls, a catch-all category that covers
both frequency-modulated calls with multiple inOections, and
amplitude-modulated calls such as warbles, growls, and other
such sounds. In addition, walrus and bearded seal calls can
produce similar call features in a spectrogram, yielding a total of
eight classification categories. The frequency range, duration, and
fine structure of individual calls vary considerably even within
each category, creating difficulties when using simple matched­
filtering or spectrogram correlation methods.

A manually reviewed test dataset was assembled, containing
examples from each call category, arranged by signal-to-noise
ratio (SNR) in 5 dB bins, ranging from 5 to 40 dB. The dataset
was then used to test several methods for extracting relevant
parameters from the signal for subsequent classification. Contour
tracing methods that estimate frequency bandwidth, inOection
points, and duration were examined, as well as other boundary
descriptors that utilize standard image segmentation techniques.
An optimization procedure was then used to determine appro­
priate decision boundaries for optimum statistical classifiers.

I. INTRODUCTION

The bowhead whale, Balaena mysticetus, is the only baleen
whale endemic to the Arctic. The Bering-Chukchi-Beaufort
stock, often called the western Arctic stock, annually migrates
between the northern Bering Sea (where they primarily feed
in the summer) and the Canadian Beaufort Sea during the
spring, and returns to the Bering Sea in the fall. [2] During
their westward migration across the Alaskan Beaufort and
Chukchi seas between August and October, whales encounter
oil industry exploration and extraction activities as they swim
over the continental shelf in shallow depth (between 20m and
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50m) and relatively close to the shore (20-60 km offshore)
[3] [4] .

The acoustic repertoire of bowhead whales is quite com­
plex and includes frequency-modulated (FM) calls, amplitude­
modulated (AM) calls, pulsed calls, songs and sequences of
repeated identical calls [5] [6]. The biological function of these
calls remains unknown.

Both matched-filter [7] and spectrogram correlation [8]
techniques have been used to detect and classify bowhead
calls. The high variance in call duration, frequency range,
and FM modulation structure of bowhead calls limits the
practicality of these analysis techniques, which assume little
variability in call parameters between calls. Tracing frequency
contours in the spectrogram domain has been studied for
both dolphins [9] and blue whales [10], but both suffer from
difficulties in tracing steep FM upsweeps and downsweeps,
and connecting momentary "breaks" in calls.

Since 2001, Directional Autonomous Seafloor Acoustic
Recorders (DASARs) [1] have been deployed in the Alaskan
Beaufort Sea to record bowhead whale calls and monitor
potential changes in the animals' locations and/or acoustic
activity during the seismic activities. This paper discusses
a computer-aided method, based on morphological and op­
timization processes, that assists in detecting and classifying
the large amount of bowhead whale calls.

II. METHODS

A. Data Sets

In 2006, four DASARs were deployed in pairs at two sites
in the Beaufort Sea between late August and the beginning of
October near Deadhorse, Alaska. The DASARs were placed
on the seafloor, at depths of 18 m and 37 m. The DASARs
recorded at 1kHz sampling rate between September 12 and
October 1. One year later, between August and October 2007,
DASARs were deployed at 35 locations between Harrison Bay
and Kaktovic over a 280 km swath, divided into five sites,
each site arranged as a set of equilateral triangles with 7 km
sides. (Fig. 1). In the results that follow, most call samples
were culled from the 2006 data set, with supplements from
the 2007 data for rarer types of calls.
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Fig. 2. Spectrograms of calls of type 1 "upsweep" (a), type 2 "downsweep"
(b), type 3 "constant" (c), type 4.1 "U-shaped" (d), and type 4.2 "n-shaped"
(e).
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Fig. 1. Location of the 35 DASARs deployed in 2007 in the Beaufort Sea,
grouped by site.

B. Manual Analysis

A group of analysts manually analyzed the 2006 dataset by
listening to recordings and examining spectrograms. A call
detected by more than one DASAR was logged as a single
call. Calls were assigned into 10 categories :
(1) Upcall, an FM (frequency modulated) up-sweep;
(2) Downcall, an FM down-sweep;
(3) Constant call, small FM tolerated, but generally no
change;
(4.1) Inflected call, FM undulation down, then up ("U"­
shaped);
(4.2) Inflected call, PM undulation up, then down ("n"­
shaped);
(5) High call, an PM sweep with most energy higher than
200 Hz;
(6) Complex call, a mixture of FM and/or AM (amplitude
modulation), often with some broadband energy;
(7) Slap: either breach or fluke slap, or sharp report;
(8) Seal call;
(9) Ping;
(10) Other;

A test dataset was then assembled, containing examples of
the most common call types (Le. call types 1, 2, 3, 4.1, and
4.2), and arranged by signal to noise ratio (SNR) in 5 dB bins,
ranging from 5 dB to 40 dB (Fig. 2). The SNR was estimated
by computing the root-mean-square (rms) level of the call
over the frequency band visible on the spectrogram, and
then dividing by the rms level of background noise measured
one second before the call, and filtered to cover the same
bandwidth as the call. A second manual review by a single
person was performed to ensure consistency of the original

manual analysis.
The time series for each test call begins 1s before the call

begins, to permit background noise levels to be measured
via spectrogram equalization techniques (aka "clutter map
constant false-alarm rate" methods [11]).

A test dataset containing 1000 calls (265 upsweep, 271
downsweep, 202 constant, 161 u-shaped, and 61 n-shaped)
were collected. Half of the test dataset was used as a "training"
dataset while the second half was used to test the performance
of the classification method (Le. as a "validating" dataset).
Fig.2 shows spectrograms of calls of type 1,2,3,4.1, and 4.2.

C. Morphological processing and contour extraction

The first stage of the classification process consists in
constructing spectrograms of each call and extracting the call
contours. The following sequence was applied to every call
sequence of the test dataset :

(1) A spectrogram representing the power spectral density as
a function of time and frequency is plotted (Fig. 3a).
(2) The spectrogram is equalized using the median value of
the background noise spectrum, using the first second of the
time series.
(3) The image is converted into a grayscale, and then
binary image, (Fig. 3b), using Otsu's method to estimate
the threshold of the on/off pixels. Otsu's method is a global
thresholding method that minimizes the variances in intensity
within the "on" and "off' class, thus maximizing the variance
between the classes [12].
(4) Pixels corresponding to frequencies below 50 Hz and
above 350 Hz are set to 0 (background value). This is done
to diminish the risk of tracing background noises or seal calls
(Fig. 3c).
(5) A morphological processing method called "opening"
[13] is used to clear out small time-bandwidth product objects
(Fig. 3d).
(6) A morphological dilation of the image is used to fill in



Fig. 3. (a): original spectrogram of a U-shape call; (b) : after conversion
to a binary image ; (c): pixels corresponding to frequencies below 50 Hz and
above 350 Hz are set to 0; (d): after opening, (e) after dilatation, (f) after
erosion, (g) final line contour.
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method is to split each call into three sections, and estimate
the slope for each section. For call types 1-3, the average
of these slopes is taken to be the evaluation parameter. For
call types 4.1 and 4.2, thresholds for slope are set for each
section. The final method is to perform a second-order fit to
the entire contour, yielding two parameters per call: the first
and second-order derivatives. We show preliminary results for
this final method.

E. Optimization procedure

The optimization computation uses the Matlab Genetic
Algorithm and Direct Search Toolbox. The direct search
algorithm searches the parameter space, looking for a point
where the value of an objective function is lower than the value
at the current parameter values. The parameter space here is a
set of slope thresholds that are used to divide upslopes from
downslopes and constant calls.

The objective function uses here is defined as follows:
E(weighti * (max([bad_classi f ication-fractioni
goal; 0]))2

gaps of the contour (Fig. 3e).
(7) A morphological erosion mitigates the effects of dilation
by removing perimeter pixels from larger image objects (Fig.
30.
(8) The largest time-bandwidth product object in the image is
selected.
(9) For every time bin (vertical slice) of the image, the
median frequency of the 'on' pixels is estimated, reducing
the object to a line (Fig. 3g).

Finally, a polynomial fit is performed on the curve to
extract parameters describing the contour slope and curvature.
Each contour line is divided into N sections (where N =1
or 3), and the coefficients of a polynomial pet) of degree D
(D=1 or 2) that fits each section of the contour are computed.
The slope and the 2nd order derivative of each section fit is
then stored.

The slope and 2nd order derivatives are derived using these
formulas :
P(t) == ao + al * t + a2 * t2

slope == al + 2 *a2* < t >[Hz/sec]
curvature == 2 *a2 [Hz/sec2]

where < t > is the average time of the curve fit, or
Tduration/2, with Tduration the duration of the call portion
subjected to the polynomial fit.

The following figures display the normalized slope, Le. the
slope divided by the maximum slope encountered across all
call types.

D. Classification of contours under call types

In this work we explore the efficacy of three different types
of polynomial fit. The first, and simplest method, is to estimate
a mean slope to the contour (e.g. fit a straight line). The second

where i represents a call type, bad_classification-fractioni
is the number of misclassified type i calls divided by the total
number of type i calls tested, and goal represents a minimum
performance level (missed fraction) desired by the system. The
quantity weightirepresents the weighting attributed to each
call type. For instance if weight =[1 1 1 10 1], it would mean
that it is 10 times more important to classify well call types
4.1 compared to other call types. In the preliminary results
shown here each weight value has been set to unity, and the
goal has been set to 20%. Eventually the weight vector will
be set to the probability of occurrence of each call type [6].

The optimization procedure was applied to half the dataset,
chosen randomly from the complete data set (the training
dataset). Then the optimized parameters are then used to
classify the second half of the test dataset (the validating
dataset).

III. RESULTS

A. Morphological processes and contour tracing

Using the detections procedure described in Sec. II.C, a
certain fraction of calls failed to be detected. 9.8% of the
upsweep calls (call type 1), 15.5% of the downsweep calls
(cal type 2), 13.3% of the constant calls (call type 3), 7.6%
of the U-shape calls (call type 4.2) and 9.8% of the "n"-shape
calls (call type 4.2) were missed.

B. Optimization results

1) Classification of the "simple" call types : upsweep calls,
downsweep calls, constant calls based on mean value:

Fig. 4 shows the distribution of mean slope values for call
types 1,2,3, derived from a first-order polynomial fit . Only 2
optimization parameters are needed in this case-the threshold
values separating a downsweep from a constant value, and a
constant value from an upsweep. The initial parameters (before
optimization) are shown as dashed vertical lines in Figure 4.
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Fig. 4. Distribution of average slope values for N=I for call types 1,2, and
3. Initial threshold guesses are drawn with vertical black lines.

Fig. 5. Optimization: Classification of the call types 1,2,3 using mean slope,
N=l.

Fig. 5 shows the classification results for the training dataset
and Fig. 6 show the classification results for the validating
dataset. The "simple" classification procedure achieves the
goal of 80% good classification percentage for the three
call types considered. When the optimized parameters are
applied to the validating dataset, the 80% good classification
percentage for the three call types is still attained. Note that
the upsweeps (call type 1) and downsweeps (call type 2)
bad classification mostly fall in the constant call class, as
expected. The constant call bad classifications mostly fall in
the downsweep class. Our general experience suggests that
human analysts are inconsistent in applying the "constant"
label to calls.

2) Classification of all call types based three-part segmen­
tation of contours: N=3:

Fig. 7 shows the distribution of mean slope values for N=3
for call types 1,2,3, where each row represents a different
section of the call. Fig. 8 shows the distribution of slopes for
the three sections of types 4.1 and 4.2, which are expected
to vary for each section. Eleven thresholds are needed to
distinguish the five call types; four for type 4.1, four for type
4.2, one for type 1, one for type 2, and one for type 3. All
thresholds are shown as vertical black lines in the figures.

A test call is first subjected to the type 4.1 and 4.2 threshold

Fig. 6. Validation: Classification of the call types 1,2,3 using mean slope,
N=l.

Call Type1 (upsweeps) Call Type2 (downsweeps) Call Type3 (constant calls)
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Fig. 7. Distribution of slope values for N=3 for call types 1,2,3. The three
optimization thresholds are drawn with vertical black lines.

tests indicated in Figure 8. If it fails both tests, it is then
subjected to the less stringent threshold tests shown in Figure
7. In principle a call can fail all tests and thus be classified as
"other".

Fig. 9 shows the classification results for the training
dataset, and Fig. 10 show the classification results for the
validating dataset. When adding call types 4.1 and 4.2 in
the optimization procedure, the overall good classification
percentage decreases to 70%. When applying the optimized
parameters to the validating dataset, the good classification
percentage decreases for call types 1 and 4.2, remains stable
for call type 2 and increases for call types 3 and 4. The average
good classification percentage is now 63%.
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Fig. 8. Distribution of slope values for N=3 for call types 4.1 and 4.2. The
eight optimization thresholds are drawn with vertical black lines.
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Fig. 12. 2nd order derivative versus slope for N=I for call types I (red),2
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Fig. 10. Validation: Classification of all call types using N=3.

3) Classification of all call types based on slopes and 2nd
order derivative values - N=]:

The final polynomial fit applies a second-order polynomial
to the entire contour and estimates the slope and second-order
derivative from the expressions in Section II.C. Figure 11
shows the distribution of all call types in this two-dimensional
parameter space, while Figure 12 shows an initial attempt to
divide the parameter space into the appropriate call types. One
can draw a circle around the origin to define the "constant"
type 3 call type, and then 4 lines can be drawn to separate call
type classes. One can see that the U and n-shaped calls tend
to have a larger second-order derivative for a given slope than
the simpler call types, permitting this distinction. Optimization
is a work in progress.



IV. DISCUSSION

The morphological processes used in this study miss only
11 % of the test data, even though the test dataset included calls
with SNR as low as 5 dB. So far we have been able to classify
the call types 1,2,3 with a good classification fraction of 80%.
However, when we add the more complex call types (4.1
and 4.2) in the optimization procedure, the good classification
percentage falls to 63%. Three possibilities to improve those
results emerge from this analysis.

First, due to the variability within each call type, the
manual classification can be very subjective. Indeed, the results
suggests that human analysts are inconsistent in applying the
"constant" label to calls. For instance, the combination of
a constant section ended by a small upsweep tail could be
classified as a constant call by one manual analyst and as
a upsweep call by somebody else. So one step would be to
review the incorrect classifications and determine whether the
manual classifications are appropriate.

Second, the test dataset contains different numbers of calls
for each call type. Changing the weight in the optimization fit
function according to the frequency of occurrence of each call
type could help improve the classification results. In particular,
call types 4.1 and 4.2 are giving the lowest classification
percentage, but are also the call types the least represented
in field data.

Finally, as mentioned in Sec. III.B.3, adding the 2nd order
derivative in the optimization parameters could also help
separating calls types 4.1 and 4.2 from call types 1,2 and
3. Figure 11 supports this conclusion, so work continues on
optimizing this approach.
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