
Instructions of DAN's Artifact
Introduction
DAN (Dependency-aware Naturalness) is a novel method for measuring code naturalness by incorporating
the rich dependency information present in the code. DAN extracts multiple sequences of code lines by
traversing the program dependency graph, where different code lines are connected by dependencies in
each sequence. The naturalness of the code is then measured by taking each sequence as a whole,
effectively capturing the dependency information.

An extensive study was conducted to evaluate the influence of code dependencies on measuring code
naturalness using DAN, comparing it with state-of-the-art methods (Ngram-NT and CodeBERT-NT) across
three emerging application scenarios. This overview will introduce the guidelines for using DAN and
replicating the experiments.

Artifact components

The artifact is provided as a docker image. The artifact comprises two main components: the
dependency analysis tool and the experiment scripts. The dependency analysis tool extracts code
dependencies and connects multiple code lines based on these dependencies. It is provided as a jar
library, ensuring ease of transfer and use. The experiment scripts leverage the extracted code lines to
enhance the naturalness measure and evaluate its effectiveness on downstream tasks. These scripts are
provided as source code along with the benchmarks used:

Distinguishing Natural and Unnatural Code (RQ1): First, we investigated DAN's ability to distinguish
between natural and unnatural code. The results demonstrate that DAN outperforms Ngram-NT and
CodeBERT-NT in this task.

All experiment scripts and benchmarks needed to replicate this evaluation are included in the artifact. The
benchmarks are in the folder /artifacts/dependency-aware-code-naturalness-main/data/rq1_sources ,
the script is /artifacts/dependency-aware-code-naturalness-main/rq1-unnatural.py . The execution
results will be stored in /artifacts/dependency-aware-code-naturalness-main/data/results/RQ1-
unnatural .

Distinguishing Buggy and Non-Buggy Code Lines (RQ2): To evaluate DAN in distinguishing buggy and
non-buggy code lines, we used benchmarks such as Defects4J, GrowingBugs, and SmartSHARK. The results
show that DAN consistently outperformed the compared techniques.

All experiment scripts, including data preprocessing, naturalness measurement, and buggy line
prioritization, are provided in the artifact. Due to the large size of the benchmarks (hundreds of GBs), only
projects from Defects4J are included as the representative benchmark. Since running through Defects4j also
requires significant time, we further provide parallel execution scripts to accelerate the process and small-
scale representative examples for scenarios where parallel execution is not feasible.

The benchmarks are in the folder /artifacts/dependency-aware-code-naturalness-
main/data/rq2_sources , the script for data processing and naturalness measure is
/artifacts/dependency-aware-code-naturalness-main/rq2-step1-d4j , the script for processing the
results is rq2-step2-result.py . The execution results will be stored in /artifacts/dependency-aware-
code-naturalness-main/data/results/RQ2-buggy .

Cleansing Training Data for Building Better Code Generation Models (RQ3): For cleansing training data
to build better code generation models, we used benchmarks such as APPS and HumanEval. The results
indicate that DAN consistently outperformed the compared techniques.

All the benchmarks are provided. The artifact also includes experimental scripts for data preprocessing,
naturalness measurement, training data sampling, and fine-tuning code models.

The benchmarks are in the folder /artifacts/dependency-aware-code-naturalness-
main/data/rq3_sources , the script for data processing and naturalness measure is
/artifacts/dependency-aware-code-naturalness-main/rq3-step1-count , the script for sampling
training data is rq3-step2-*.py . The execution results will be stored in /artifacts/dependency-aware-
code-naturalness-main/data/results/RQ3-buggy .

Specifically, we built DAN using two underlying models: Ngram and CodeBERT. In our artifact, we provide
the DAN vs. Ngram-NT version and omit the DAN vs. CodeBERT-NT comparison. This omission
is due to two reasons: (1) executing the latter requires significant time and computing resources because of
the complexity of CodeBERT-NT; and (2) the underlying models are orthogonal to DAN and not the main
focus of this artifact.

Hardware Dependencies
The artifact is tested on a server with Intel(R) Xeon(R) Silver 4214 @ 2.20GHz CPU, 256GB memory, and
Ubuntu 18.04 operating system. The artifact requires linux operating system and at least 64GB memory to
exercise.

Getting Started Guide
Download the whole package from the URL, there should be three files: dan_artifact.tar ,
source_code.tar and d4j_projects.tar . The first one is a docker image, the second one is the source
code, the third one is the benchmark needed.

Unzip the source code, this should result in a folder named artifacts in current dir:

Then unzip the data in the ./artifacts/dependency-aware-code-naturalness-
main/data/rq2_sources/dataset_sources/d4j folder:

This should result in a folder named d4j_projects in ./artifacts/dependency-aware-code-naturalness-
main/data/rq2_sources/dataset_sources/d4j dir.

Import the docker image:

tar -xvf source_code.tar

tar -xvf d4j_projects.tar

docker import dan_artifact.tar dan_artifact_image

Then run the docker container and put the data in the docker:

In the docker container activate the reqiured environment:

Then the setup is finished. The artifact is in the folder /artifacts .

Step by Step Instructions
Enter the folder /artifacts/dependency-aware-code-naturalness-main first.

Distinguishing natural and unnatural code

To replicate RQ1, run:

The process should take about seven minutes, and the output should look like this:

docker run --name dan_artifacts -v /path/to/artifacts:/artifacts -it {image_id} /bin/bash

source ~/.bashrc
conda activate dan

python rq1-unnatural.py

/artifacts/dependency-aware-code-naturalness-main
[2024-07-06 16:20:52,069 - rq1-unnatural.py - <module>] - The running process begins.
[2024-07-06 16:20:52,070 - rq1-unnatural.py - <module>] - Loading the underlying models.
[2024-07-06 16:23:44,758 - rq1-unnatural.py - <module>] - Finished loading the underlying
models.
[2024-07-06 16:23:44,759 - rq1-unnatural.py - run] - Begin processing the corpus with the
extracted sub-paths.
[2024-07-06 16:24:48,644 - rq1-unnatural.py - run] - Finished processing the corpus with
the extracted sub-paths.
[2024-07-06 16:24:48,644 - rq1-unnatural.py - run] - Begin processing the corpus without
the sub-path extraction.
[2024-07-06 16:24:50,634 - rq1-unnatural.py - run] - Finished processing the corpus
without the sub-path extraction.
[2024-07-06 16:25:10,936 - rq1-unnatural.py - run] - Begin the naturalness measurement.
100%|
███
██| 2142/2142 [00:00<00:00,
4483.95it/s]
100%|
███
███| 2142/2142 [00:09<00:00,
236.76it/s]
[2024-07-06 16:25:20,490 - rq1-unnatural.py - run] - Saving the naturalness results.
[2024-07-06 16:25:20,563 - rq1-unnatural.py - <module>] - The running process finishes!
[2024-07-06 16:25:20,563 - rq1-unnatural.py - <module>] - Begin processing the results!

The unprocessed row results will be stored in /artifacts/dependency-aware-code-naturalness-
main/data/results/RQ1-unnatural/rq1_test.pkl , which is used for further analysis.

The analysed results will be stored in /artifacts/dependency-aware-code-naturalness-
main/data/results/RQ1-unnatural/table1.csv , the main conclusion should be consistent with the paper:
DAN outperforms all compared techqniues.

To reproduce the results in Table 5, follow these steps:

1. Navigate to the directory:

2. Install the required dependencies:

3. Download the CodeLlama-7b-Instruct model from Hugging Face. Assume the model is saved to
/path/to/the/model .

4. Update the path to the model in llm_entropy.py at Line 200:

5. Run the script to print the results to the console:

Distinguishing buggy nonbuggy lines

First check line 439 and line 440 of rq2-step1-d4j.py to set the parallel execution and the benchmarks.

Then run the following command to measure the naturalness for all lines in the benchmark:

[2024-07-06 16:25:53,299 - rq1-unnatural.py - <module>] - Finished processing the results!

cd /artifacts/dependency-aware-code-naturalness-main/table_5

pip install torch transformers

200 model_name = "/path/to/the/model"
201 tokenizer = AutoTokenizer.from_pretrained(model_name)
202 model = AutoModelForCausalLM.from_pretrained(model_name)

python llm_entropy.py

used for parallel execution, n_process represents the available number of processes
n_process = 40
run the whole benchmark by default, set example_cnt to 10 to run small-scale examples
example_cnt = 'all'

python rq2-step1-d4j.py

https://huggingface.co/meta-llama/CodeLlama-7b-Instruct-hf

Then you can check the log file artifacts/logs/RQ2-buggy.log , it should look like this (if running the
whole benchmark):

The row results will be in /artifacts/dependency-aware-code-naturalness-main/data/results/RQ2-
buggy/d4j-done .

Then run the following command to perform buggy line prioritization:

The processed result will be /artifacts/dependency-aware-code-naturalness-main/data/results/RQ2-
buggy/processed_results/d4j/table2.csv' , which should be consistent with the paper.

Data cleansing

First check line 279 of rq3-step1-count.py to set the benchmark:

Run the following command to measure the naturalness of each code in the benchmark:

The output should be like:

Todo size 702
wait info: 0/702 case(s) have been done! 0/702 case(s) have crashed!
wait info: 19/702 case(s) have been done! 2/702 case(s) have crashed!
Todo size 699
wait info: 0/699 case(s) have been done! 0/699 case(s) have crashed!
wait info: 110/699 case(s) have been done! 37/699 case(s) have crashed!
wait info: 147/699 case(s) have been done! 37/699 case(s) have crashed!
wait info: 177/699 case(s) have been done! 37/699 case(s) have crashed!
wait info: 208/699 case(s) have been done! 37/699 case(s) have crashed!
wait info: 240/699 case(s) have been done! 38/699 case(s) have crashed!
wait info: 316/699 case(s) have been done! 38/699 case(s) have crashed!
wait info: 395/699 case(s) have been done! 38/699 case(s) have crashed!
wait info: 518/699 case(s) have been done! 38/699 case(s) have crashed!
wait info: 638/699 case(s) have been done! 51/699 case(s) have crashed!
wait info: 641/699 case(s) have been done! 58/699 case(s) have crashed!
Success size 641
Fail size 58

python rq2-step2-result.py

dataset = 'APPS'
dataset = 'humaneval'

python rq3-step1-count.py

The row results will be in /artifacts/dependency-aware-code-naturalness-main/data/results/RQ3-
finetune/{dataset}/{dataset}.pkl

The processed results will be in /artifacts/dependency-aware-code-naturalness-
main/data/results/RQ3-finetune/{dataset}/ngram_dataset.json . Each key in the json file is a code in
the benchmark and the corresponding value is the naturalness measured for it, the json items is ranked
according to the naturalness scores.

Then run rq3-step2-process.py to get the training data selected by each method.

First set the dataset at line 40:

then run:

The sampled training data will be stored in /artifacts/dependency-aware-code-naturalness-
main/data/results/RQ3-finetune/{dataset}/{technique}_top.json files. Each item in the json
corresponds to one data point, including the prompt and the ground-truth.

Reusability Guide
Our tool for dependency extraction is a core component that should be evaluated for reusability. You can
find it at:

/artifacts/dependency-aware-code-naturalness-main
[2024-07-06 16:46:47,319 - rq3-step1-count.py - <module>] - Begin running process for
dataset APPS
[2024-07-06 16:46:47,333 - rq3-step1-count.py - <module>] - Loading the underlying models.
[2024-07-06 16:49:27,567 - rq3-step1-count.py - <module>] - Model loaded, begin measuring
naturalness!
100%|
███
███| 4973/4973 [00:16<00:00,
293.79it/s]
[2024-07-06 16:52:15,317 - rq3-step1-count.py - <module>] - Naturalness measured! Find the
detailed results in './data/results/RQ3-finetune/APPS/APPS.pkl'!
[2024-07-06 16:52:15,317 - rq3-step1-count.py - <module>] - Sampling training data
according to code naturalness.
[2024-07-06 16:52:15,497 - rq3-step1-count.py - <module>] - Find the sampled results in
'./data/results/RQ3-finetune/APPS/ngram_dataset.json'!
[2024-07-06 16:52:15,497 - rq3-step1-count.py - <module>] - Running process for dataset
APPS finishes!

dataset = 'APPS'
dataset = 'humaneval'

python rq3-step2-process.py

/artifacts/dependency-aware-code-naturalness-main/tool/dependency-extraction.jar

Usage:

Note: Both the source code and the byte code produced by the compiler should be in the path-to-the-
code (e.g., both .java files and corresponding .class files are needed). The extracted dependency
information will be stored at path-to-result .

Example: For the project located at /artifacts/dependency-aware-code-naturalness-
main/data/rq1_sources/mutant_0728_nosub , the source code is in the src folder and the byte code is in
the target folder.

Navigate to /artifacts/dependency-aware-code-naturalness-main/tool and run:

This process takes about five minutes and produces output like:

The result file test.json will be created in the same folder, where each key represents a file, and the value
represents connected lines (sequences with dependencies).

De-Naturalization Tool

Our de-naturalization tool is provided as a JAR file, located at:

/artifacts/dependency-aware-code-naturalness-main/tool/denaturalize.jar

Usage:

path-to-the-code should be a directory containing a batch of compilable Java files, such as:

This tool can handle any syntactically correct and compilable Java files.

Example: If the Java files are in /artifacts/dependency-aware-code-naturalness-
main/data/rq1_sources/mutant_0728_nosub/src/main/java , the command should be:

java -cp ../data/javassist-3.28.0-GA.jar:dependency-extraction.jar Main path-to-the-code
path-to-result

java -cp ../data/javassist-3.28.0-GA.jar:dependency-extraction.jar Main
../data/rq1_sources/mutant_0728_nosub test.json

1
2174

java -jar denaturalize.jar path-to-the-code path-to-result

- path-to-the-code
 - 1.java
 - 2.java
 - ...

The mutants will be stored in path-to-result .

The source code for de-naturalization is located in the folder ./tool/de-naturalization . Please refer to
the README file in that directory for more details about compiling it from sources.

The jar format ensures our tool can be easily transferred to other projects or used independently.

java -jar denaturalize.jar /artifacts/dependency-aware-code-naturalness-
main/data/rq1_sources/mutant_0728_nosub/src/main/java path-to-result

	Instructions of DAN's Artifact
	Introduction
	Artifact components

	Hardware Dependencies
	Getting Started Guide
	Step by Step Instructions
	Distinguishing natural and unnatural code
	Distinguishing buggy nonbuggy lines
	Data cleansing

	Reusability Guide

