Artifact for the paper AUTOMAP: Inferring
Rank-Polymorphic Function Applications with
Integer Linear Programming

Introduction

This artifact reproduces the quantitative evaluation discussed in Section 9 of the
paper, in particular reproducing Fig. 12 and Fig. 13.

We perform a comparative study on a set of pairs of similar benchmark programs.
For each pair, one of the programs is the “original”, and the other has been
rewritten to take advantage of the “AUTOMAP?” feature discussed in the paper.

Hardware dependencies

None, although the Docker image uses x86-64 binaries, and so the system must
be capable of running such an image. The memory requirements are modest
(less than 1GiB).

Getting started

The artifact takes the form of a Docker image 607 .tar.gz. You can load it into
Docker with this command:

$ docker load -i 607.tar.gz

(Depending on your system configuration, this may or may not require root
access. )

You can then run the Docker image with this command:

$ docker run -it 607:latest

Step-by-Step instructions

Running make will reproduce the quantitative evaluation discussed in Section 9
of the paper. This takes about 20 minutes on a modern computer. The results
are printed on the terminal as they come in, and are also stored as files in the
results/ directory. A data/ directory containing raw (unprocessed) data is
also constructed, but can be ignored. Its contents are described further down
for the benefit of future users who want to more deeply investigate the results.
Finally, the artifact reproduces Fig. 12 and Fig. 13 from the paper.

o Fig. 12 is available as reports/figl2.pdf and reports/figl2.txt, with
the latter also printed to the terminal.

o Fig. 13 is available as reports/figl3.txt, and is also printed to the
terminal. The reported slowdown can vary from machine to machine, but
the other metrics should match the paper exactly.



This completes the evaluation of the functionality as far as concerns reproducing
the quantitative claims in the paper.

Retrieving the figures from the Docker container

To copy a figure from the container for viewing, first obtain the container ID by
running

$ docker ps
You can then copy the figure using docker cp:

$ docker cp <container ID>:<path to figure in the container> <destination>

Interactive use

If desired, AUTOMAP can be tried by starting a REPL with
$ futhark-automap repl

and entering valid expressions. Examples:

> [1,2,3] + 2

(3, 4, 5]

> [1,2,3] * transpose (rep [4,5,6])
[[4, 8, 121,

[5, 10, 15],

[6, 12, 18]]

Reusability Guide

The artifact is reasonably straightforward to modify in two ways: modifying
which benchmark programs are considered, and performing analysis on the raw
data.

Changing benchmark programs

In data.sh, modify the shell function programs. This function produces paths to
.fut programs that are relative to the directory futhark-benchmarks-original
or futhark-benchmarks-automap. It is important that a version of the program
exists in both of these directory trees (corresponding to a version of the program
without and with use of AUTOMAP).

Raw data files

After running the artifact, the data/ directory contains raw data. This data is
processed to reproduce Fig. 12 and Fig. 13, but can also be subjected to other
investigation. The following data is produced.



e data/ilps: contains a pair of files for each benchmark program foo.fut:
an .ilps file (containing a table of the ILP size for each function in
the program), and a .log file containing the raw (unprocessed) compiler
logging output.

e data/ilp_table: a table of the sizes of all ILP problems, keyed by the
(internal) name of the function that gave rise to them.

e data/ilp_sizes: a sorted list of the sizes of all ILP problems produced
during type checking the benchmark programs.

e data/ilp_stats: various statistical measures derived from data/ilp_sizes,
including mean and median.

e data/ilp_largest: the size (in number of constraints) of the largest ILP
problem encountered.

¢ data/maps_automap: the total number of maps used in the AUTOMAP-
enabled benchmark programs.

e data/maps_original: the total number of maps used in the original bench-
mark programs.

e data/maps.txt: contains a line for each benchmark program, comprising
the name of the program, the number of maps in the original program, and
the number of maps in the AUTOMAPped program.

Running outside Docker

The following system requirements are satisfied by the Docker image, and are
only listed for the sake of completeness, in particular if you want to run it outside
of Docker.

PATH must contain two compiler binaries futhark-original and
futhark-automap, corresponding to the unmodified and AUTOMAP-enabled
Futhark compiler.

The following tools must also be available:
e ScC
e hyperfine
e gnuplot
e bc
o awk

e A handful of standard command like tools like grep, find, wc, etc.


https://github.com/boyter/scc
https://github.com/sharkdp/hyperfine
http://gnuplot.info/
https://www.gnu.org/software/bc/
https://www.gnu.org/software/gawk/manual/gawk.html

Manifest

This section describes every top-level file and directory in the artifact and its
purpose.

e data.sh: The main data analysis script, invoked by Makefile.

e findilps.awk: An Awk script that extracts ILP programs from compiler
logs.

e futhark-benchmarks-automap: The Futhark benchmark suite modified
to take advantage of automap.

e futhark-benchmarks-original: The unmodified Futhark benchmark
suite.

e Makefile: A simplistic Makefile that simply runs data. sh.

More files and directories are created as part of the artifact as discussed above.



	Artifact for the paper AUTOMAP: Inferring Rank-Polymorphic Function Applications with Integer Linear Programming
	Introduction
	Hardware dependencies
	Getting started
	Step-by-Step instructions
	Retrieving the figures from the Docker container
	Interactive use

	Reusability Guide
	Changing benchmark programs
	Raw data files

	Running outside Docker
	Manifest


