
Evaluation of common
interfaces in a multi-supplier
cloud environment for Helix
Nebula

August 2013

Author:
Artem Tsikiridis

Supervisor:
Mattia Cinquilli

CERN openlab Summer Student Report 2013

CERN openlab Summer Student Report 2013

Acknowledgement

I would like to acknowledge Mattia Cinquilli (CERN, IT-SDC-OL) and
Cristovao Jose Dominguez Cordeiro (CERN, IT-SDC-OL) for their great
help and valuable insights they provided me concerning the structure and
content of this report.

Moreover, I would like to take the opportunity and thank Mattia Cinquilli for
his continuous guidance and support as my CERN supervisor during my stay
as an Openlab Summer Student.

Project Specification

Partner/group IT-SDC-OL

Title Integration of LHC experiments resource and tools with Helix Nebula

Description In the context of the Helix Nebula Science Cloud, ATLAS and CMS
experiments are collaborating to define, evaluate and integrate cloud
standards, services and resources into the existing distributed computing
infrastructure. The final goal of the initiative is to create a European
federated cloud infrastructure for science.

In this project, the student will work on topics related to deployments of
LHC experiments resources in the cloud, focusing in the interfacing between
the Helix Nebula Science Cloud and experiment tools.

Specific work will include some or all of the following:

 * Testing BlueBox solutions (EnStratus, SlipStream) and related interfaces,
against various cloud providers.

 * Work in the dynamic allocation of resources through the BlueBox
solution.

 * Participate in the evaluation of remote cloud facilities through both
production and analysis jobs for ATLAS and CMS experiments.

Supervisor Mattia Cinquilli

CERN openlab Summer Student Report 2013

Abstract

The Helix Nebula initiative is a partnership between leading European IT-intense scientific
research organisations (CERN, EMBL and ESA) and leading IT cloud providers. Its goal is to
form a federated Cloud Computing infrastructure that will satisfy the growing demand of
scientists for computing power. The concept of the federated cloud requires a standard framework
named BlueBox so that current and future cloud providers are able to smoothly interface their
system to the existing multi-cloud infrastructure. Section one acts as an introduction to the reader,
highlighting the importance of cloud computing in general and at CERN specifically, and
provides a brief overview of the Helix Nebula initiative. Section two contains information about
the functionality and performance of SlipStream, an interface that has been evaluated as a
potential BlueBox solution. Section three contains the analysis of a de facto standard in cloud
computing such as the EC2 interface, which is very useful for Helix Nebula and multi-cloud
environments in general. Finally, in section 4, you may find listed the key conclusions about
SlipStream, based on the evaluation that was carried out along with several other remarks about
multi-cloud operations.

CERN openlab Summer Student Report 2013

Table of Contents

Contents

Evaluation of common interfaces in a multi-supplier cloud environment for Helix Nebula 1

August 2013.. 1

Author:.. 1

Artem Tsikiridis.. 1

Supervisor:.. 1

Mattia Cinquilli... 1

CERN openlab Summer Student Report 2013..1

1Introduction..5

1.1Cloud Computing...5

1.2Cloud Computing at CERN..5

1.2.1The present: Worldwide LHC Computing Grid (WLCG).......................................5

1.2.2Further scaling of WLCG with Cloud Computing...5

1.2.3CERN Private Cloud..6

1.3Helix Nebula and the federated cloud..6

1.4 Other Challenges in multi-cloud environments..7

2SlipStream Functionality Report...7

.. 7

2.1Authentication mechanisms...8

2.2Support to perform a VM lifecycle..9

2.3Contextualization Mechanisms...9

2.4Consistency with native provider tools...10

2.5Multi-Cloud Deployments...10

CERN openlab Summer Student Report 2013

2.6Performance Tests...10

3De facto standards and Amazon EC2...11

3.1SlipStream EC2 Bridge..12

3.2EnStratius EC2 Bridge...12

3.3CERN private cloud..12

4A Test Suite for EC2 Interfaces...12

4.1Motivation...12

4.2Example Usage..13

5Conclusions..14

6References...14

7Appendix..14

CERN openlab Summer Student Report 2013

1 Introduction

1.1 Cloud Computing

In recent years, cloud computing has gradually become a dominant technology and business
model for corporate environments and other data-intensive organizations such as governmental
and research institutions. Organizations use cloud computing services on different levels
depending on the intensity of their computing activity, while in the same time taking into account
factors such as cost and organizational policy. These services are accessible to the end-user
through interfaces or clients and may broadly be divided into three categories: Software as a
Service (SaaS), Platform as a Service (PaaS) and Infrastructure as a Service (IaaS).

Software as a Service (SaaS) is a software delivery model in which software and applications are
hosted on the cloud. SaaS is typically accessed by users using a web browser or a thin client
(client that heavily relies on the server to perform any computations). It is becoming a very
common delivery model for business applications. Companies who adopt this model are aiming
to benefit from reduced costs. This comes from the fact that supporting a self-owned
IT-infrastructure is not required [1].

Platform as a Service (PaaS) is the level of cloud computing service that allows the end-user to
use tools and libraries that are provided by the infrastructure in order to develop his own software
and applications. Development environments and Database Management Systems are common
examples [2].

Infrastructure as a Service (IaaS) providers offer the end-user the physical or virtual machines
which are called instances. Usually, IaaS providers supplement their service with APIs to handle
images (collections of operating systems with appropriate additional software packages), load-
balancers, firewalls and file-based storages [3]. In the scope of this report, we are going to focus
on this level of service for reasons that are going to be stated below.

6 | P a g e

CERN openlab Summer Student Report 2013

Figure 1 Layers of service in cloud computing (source: Wikipedia)

1.2 Cloud Computing at CERN

1.2.1 The present: Worldwide LHC Computing Grid (WLCG)

CERN is a research institution that has extensive needs in the analysis of vast amounts of data in
order to support the LHC-based and other experiments and achieve stability in the daily IT life of
the organization. Due to that, a computing model dictating that all data are being processed solely
on-site (CERN data centre) is unrealistic in terms of computing infrastructure and organisational
constraints. Therefore, since 2002 the Worldwide LHC Computing Grid has been deployed to
cope with the approximately 15 petabytes that are generated per year by the LHC. WLCG is
collaboration between more than 150 computer centres across the globe which are separated into
tiers: Tier 0, Tier 1 and Tier 2. It has been noted for achieving excellent performance during the
first phase of LHC execution (2010-2013) by offering high throughput to operations while on the
same time being highly available and transparent to users.

7 | P a g e

CERN openlab Summer Student Report 2013

Figure 2 Worldwide LHC Computing Grid (WLCG) (source: wlcg.cern.ch)

1.2.2 Further scaling of WLCG with Cloud Computing

In recent years, the computing requirements of CERN experiments have increased due to the
increasing amount of data produced and shall increase further in the future. Therefore, new
technologies are being evaluated by the WLCG as extensions for the Grid to ensure that
scalability is achieved. Cloud computing is one of the most prominent technologies that are being
evaluated. We are specifically interested in Infrastructure as a Service solution, due to the
flexibility that IaaS offers and due to the fact that IaaS is a more immediately attainable option
than building other PaaS or SaaS services for the end users.

The main reasons why cloud computing is important at the level of IaaS for WLCG are the
following:

1. Transparency (the user is agnostic on all cloud operations apart from the provided
interface).

2. Usage optimization and dynamic resource provisioning.

3. Optimisation of data centre operations through virtualization technologies (radically

speeds up data centers operations).

4. Μany candidate standard tools and protocols supported by industry. For example, most
cloud providers rely on the HTTP protocol for operations while many provide an
interface usually considered a de facto standard such as the Amazon EC2 interface
(more in section 3).

8 | P a g e

CERN openlab Summer Student Report 2013

1.2.3 CERN Private Cloud

The various WLCG sites are evaluating the possibility of exploring these new technological
opportunities. The first data facility migrating to cloud computing is Tier 0 hosted at the CERN
computing center. CERN computing center has decided to gradually migrate its data center and
operation toolsets, to a cloud model collectively referred to the CERN agile infrastructure.
Therefore, since July 25 2013, the CERN private Cloud is fully operational and available for
users requiring cloud-based data analysis or jobs in a distributed computing environment
(https://openstack.cern.ch/dashboard). It is based on Openstack Cloud Computing software and
offers its users two APIs (EC2 and Nova) and a dashboard. Generally, it is possible to deploy
fully functional virtual machines in the cloud with multiple operating systems being supported.
These features allow the CERN private cloud to interact seamlessly with the rest of the
infrastructure of WLCG and in some scenarios in multi-cloud environments.

Figure 3 CERN private Cloud is based on Openstack Cloud Computing software

9 | P a g e

https://openstack.cern.ch/dashboard

CERN openlab Summer Student Report 2013

The last observation about multi-cloud environments leads us to some other use cases that have to
be examined. Occasionally, exceptional tasks that require a large amount of resources in an
on-demand basis may have to be dealt with. Limitations may be reached regarding the usage of
the CERN private cloud (user quotas, actual resources limits, peaks of load etc.) and the demand
for resources may still not be fully satisfied. In such a case, direct access to additional resources is
necessary and in order to achieve this in an on-demand basis, CERN has to collaborate with other
Cloud providers (commercial, private clouds and hybrid clouds). However, this statement by
itself is incomplete as interfacing of specific experiment-related tools (for instance) as well as the
support for several important functions such as contextualization and authentication are integral
features for such a system. Moreover, the transition between providers should be as transparent as
possible to the user to ensure maximum efficiency. Thus, a framework must be implemented to
allow cloud providers to smoothly interface their systems while on the same time it should not
compromise end-user usability and ease of use. For example, the use-case in which an end-user
requires a virtual machine in a specific cloud provider should not be more complicated than
picking the desired provider from a list of cloud providers.

The above concept is a description of a multi-cloud environment that is also known as a federated
cloud.

1.3 Helix Nebula and the federated cloud

Figure 4 Helix Nebula logo

Helix Nebula is a federated cloud (as described in 1.2) and is the collaboration between several
European scientific organisations and commercial cloud service suppliers to create a cloud for
Science. Helix Nebula aspires to support a framework to transparently deploy and manage
instances of multiple cloud providers to achieve further scalability. In order to achieve this
functionality, a common interface must be established to seamlessly interface providers in the
present and in the future. This common interface may be described in what is called the BlueBox
interface. Several solutions have been shortlisted, such as:

• Bonfire
• Computenext
• enStratus
• Nephos
• OpenNebula
• SlipStream

Generally, we are interested in evaluating the following topics:

1. Authentication mechanisms

10 | P a g e

CERN openlab Summer Student Report 2013

2. Full support to perform a VM lifecycle (that is to run VMs, list VMs and terminate VMs)
3. Contextualization mechanisms
4. Consistency with native provider tools
5. Multi-Cloud deployments
6. Transparency of dashboard

During my stay as an Openlab Summer student at CERN in the summer of 2013 I was involved
in the evaluation of SlipStream in terms of functionality and performance. You may find the
results along with quantified performance results in section two.

1.4 Other Challenges in multi-cloud environments

Cases may be presented when all providers participating in a multi-cloud environment support
common de facto interfaces such as the Amazon EC2. In those cases, deployment in multi-cloud
environments may become possible without many drawbacks. However, one must understand and
always take into account several mismatches that may occur due to alterations in the
implementation of this common interface. For example, error messages and code numbers may
vary between the Amazon EC2 implementation and the EC2 interface of an Openstack cloud.
Moreover, several Amazon-specific functionalities may not be supported. With these in mind, it is
useful to identify these mismatches and develop an automated and extendable suite that shall test
whether an EC2 interface at an arbitrary cloud endpoint is compliant to a specific EC2
implementation. More about EC2 interfaces and a developed test-suite may be found in sections 5
and 6.

2 SlipStream Functionality Report

SlipStream is a web interface developed by Sixsq that is currently evaluated by the Helix Nebula
initiative as a potential Blue Box solution. The SlipStream application has two main workflows:
Image Creation and Deployment.

The Deployment workflow allows the deployment of several virtual machines together, as part of
a consistent system. For example, a 3-tier system can be deployed, composed of a client, a server
and a database, all running on different machines. The number of machines running clients,
servers and databases can easily be altered, since they are parameterised. A deployment may be
performed via a deployment module. In the following graphic are all the phases of a deployment
in SlipStream:

Figure 5 Deployment phases of SlipStream (reference:
https://bb.sixsq.com/html/reference-manual.html)

The building blocks of a deployment are machine images (i.e. virtual images), which can also
include disk images (i.e. mountable persistent storage for machine images). The creation of these
building blocks is performed using the Image Creation workflow. The specification of how a
node (Instance) will be configured and which image it will get are specified in a Project. An
important aspect of Projects is the property of inheritance that is supported. For example a Project

11 | P a g e

CERN openlab Summer Student Report 2013

may get several properties from another Project and modify other parameters on the current
Project. These relationships make the manipulation of images highly customizable.

Figure 6 SlipStream image inheritance (source: https://bb.sixsq.com/html/reference-manual.html)

For a more in depth overview of SlipStream, refer to
https://bb.sixsq.com/html/reference-manual.html. In this section results of the functionality
evaluation will be presented, according to the specifications set by the Helix Nebula initiative.

Figure 7: The main page of SlipStream

In the current prototype, apart from the interface itself we have three cloud providers that
complete the current picture. These are: Atos, CloudSigma and Interoute. When applicable, the
native tools (APIs, Web GUIs) of these interfaces are used to perform comparisons and get
familiar to native operations. Ideally, however, the BlueBox should be completely independent to
these tools because only then it is transparent and provider-independent.

2.1 Authentication mechanisms

A BlueBox, as defined by Helix Nebula, must grant the end-user the appropriate access every
time. Thus, in a federated cloud, all authentication parameters must be passed to many service
providers. In this sub-section, the authentication parameters offered by SlipStream are described.

Authentication of end-user to SlipStream interface

The end-user logs in with a unique log-in username to the SlipStream interface after registering
for the service. After this procedure, he is able to build Deployment modules and Projects (handle

12 | P a g e

https://bb.sixsq.com/html/reference-manual.html

CERN openlab Summer Student Report 2013

images). However, it is not possible for him to actually run a deployment yet as he has not
provided any authentication mechanisms on how should SlipStream or the user himself access the
virtual machines, which are also mandatory.

Figure 6: Logging in to the interface

Cloud Provider Credential

SlipStream requires the user, after logging in, to provide appropriate credentials for the Cloud
providers that are taking part in the deployment. These credentials are usually in the form of
username and password. It is also very important that the correct cloud endpoint is specified.
After completing this level of authentication it is possible to perform a deployment in one or
multiple cloud providers.

13 | P a g e

CERN openlab Summer Student Report 2013

Figure 7: Providing Cloud providers Credentials

Virtual Machines Credentials

In order to have full control of the virtual machines deployed by SlipStream, it is important to be
able to log-in to the VMs via SSH. SlipStream offers public/private key authentication and also a
predefined root password for deployments. The public key must be passed to the specific text area
box in the user properties page. Once an instance is deployed, the public key is automatically
passed by SlipStream’s mechanisms. After that, it is immediately possible to perform an SSH
authentication by providing the secure private key. This feature is fully functional with all three
currently supported providers.

14 | P a g e

CERN openlab Summer Student Report 2013

Figure 6: User screen in SlipStream. SSH Public Key is passed here.

The root password may also be passed as a parameter for each node. However, it will be utilized
only by deployment modules to perform orchestrations of virtual machines (one orchestrator per
provider). This functionality is not available for Atos Cloud, but only for CloudSigma and
Interoute.

Figure 7: Root Password may be set for each Node.

2.2 Support to perform a VM lifecycle

A BlueBox solution must be totally independent regarding all the matters that concern the
management of a virtual machine. Thus, the concepts of booting VMs, listing the available VMs
with consistent states and terminating VMs without requiring any interactions with any tool (GUI
or other API) apart from BlueBox.

Running an instance

SlipStream allows us to run deployment modules and Projects of images directly (only one VM
will be booted in this case). This can happen by clicking the Run button either on a Project or a
deployment module. Notice that the VM in question will be booted in the default provider that the

15 | P a g e

CERN openlab Summer Student Report 2013

user sets at his Account Parameters page. However, if this is a deployment module the user can
specify which cloud provider he would want to use overriding the default provider setting.

Figure 8: Choosing cloud provider in a deployment module

Describing the currently running VMs

It is possible to list all currently running machines by viewing the Running Virtual Machines page
of the dashboard screen. Notice that the listed VMs are not only the VMs that have been booted
via SlipStream, but the currently running VMs that are affiliated to the respective cloud provider
account. The first column of the page indicates unique Instance IDs of the VMs. The second
column contains a value that is generated by SlipStream and acts as a unique ID for each discrete
run. However, this column gets the value “unknown” when the run of the instance is a
single-Project run and not a deployment. Finally, the third column indicates the status of the VM.
The values obtained are from the respective native cloud provider (e.g. ON, running, Running).

16 | P a g e

CERN openlab Summer Student Report 2013

Note: In order to make the dashboard appear more homogeneous in next versions of SlipStream
the values in the latter column should be replaced with a single word that will reflect the current
situation of each provider.

Figure 9: Running VMs as described by SlipStream

Terminating VMs

In order to terminate a VM or an already running deployment of VMs one must click on the
Terminate button. Alternatively, it is possible to use the ss-abort (Boolean) command to
programmatically order an instance to terminate during execution (contextualization) and
reporting phase.

Figure 10: Terminating VMs with SlipStream

17 | P a g e

CERN openlab Summer Student Report 2013

2.3 Contextualization Mechanisms

Contextualization of Virtual Machines in the cloud is a common practice that allows instances to
learn about their cloud environment and obtain an early configuration in order to run properly and
in an automated way. Contextualization is useful as it can minimize user interventions to the
Virtual Machines (for example SSH log-in).

SlipStream offers an area where deployment scripts may be specified at the “Deployment” page
of a Project. For example, for a Linux system, bash scripts that will be run as soon as the instance
is booted on the provider can be defined. The deployment page is split into two parts: Execute and
Report. Scripts of the Execute field will run as soon as the deployment is in a Running phase,
while scripts located in Report when run when deployment is in Reporting phase. Notice
however, that these mechanisms are only applicable to deployment modules and not to single runs
of instances.

Finally, the SlipStream python client (ss-* commands) is one more tool that SlipStream offers us
and may be used for the better utilization of the interface. At this point it must be clarified that the
ss-* python clients are not an alternative to the Web GUI. This means that it cannot be used to
administrate cloud operations in a way that is performed by Nova or EC2 (administrator outside
the cloud orchestrates all the VMs). However, it is very useful for managing VM-VM interactions
and making use of Parameters. In the example below, the apache web server below will use the
port we specify in the Parameters screen.

Figure 11: Performing Contextualization via SlipStream. In the example, the VM will act as a
web-server as Apache Web server is being installed.

2.4 Consistency with native provider tools

An important aspect of a Cloud Computing interface that handles many providers is the
consistency between the actual state of the instances (as provided from the native clients) and the
information displayed by the interface. Therefore, it is important to understand what is displayed
during the different phases of the deployment.

SlipStream offers us two statuses for a VM when it is deployed: the "State" of a VM and the
"cloud state".

18 | P a g e

CERN openlab Summer Student Report 2013

States of VM phases are defined by SlipStream and are the following:

Inactive -> Initializing -> Running -> Sending -> Report -> Finalizing -> Terminal

If the deployment is successfully completed the run ends specifying "Done". If "Terminate"
button is pressed they are heading to "Aborting" phase. Notice that “VM State” messages are only
applicable to deployment modules (orchestrations). Otherwise, they are always Inactive.

The "cloud state" field gets its values from the provider's API or web GUI. If this is not possible
the cloud state is "unknown".

Here are some remarks about client consistency for each one of the providers:

• Atos Cloud: Atos Cloud Instances are generally very consistent to the native Stratus lab
Client. Orchestrations are carried out smoothly and VM States are progressing
accordingly to the phases specified above. When single VMs are booted (no orchestrator)
the Cloud States are synchronized with the Stratus Client.

• CloudSigma: Deployments are generally progressing well. However, when virtual
machines are deployed solely, the cloud states remain unknown and are not updated as
they should be.

• Interoute: Cloud states are always unknown despite the fact that IP addresses and other
vital information are displayed properly.

a

Figure 12: An Interoute single VM launch always has unknown VM (cloud) state, meaning it does
not get data from the Interoute cloud provider properly.

2.5 Multi-Cloud Deployments

A multi-cloud deployment is a functionality that allows the user to orchestrate in one single
deployment resources from different cloud providers. This is a concept which would be very
desirable to the Helix Nebula initiative for potential BlueBox solutions. SlipStream offers this
functionality by allowing the user to create a deployment module that uses nodes where at least
one virtual machine is not in the default cloud provider. For example, below is a deployment of
two Centos Instances where one is in Atos Cloud and other is in Interoute.

19 | P a g e

CERN openlab Summer Student Report 2013

Figure 10: Interoute and Atos deployment.

Notice that when we request 2 instances we also get one orchestrator instance per Cloud provider.
Therefore, with such a query, 4 instances are running. The orchestrator acts as the instance
responsible to pass all necessary data that the user has on SlipStream (authentication tokens,
contextualization scripts) and some necessary SlipStream software (ss-client).

2.6 Performance Tests

In this section you may find the results of performance tests. These tests indicate operations
delays between various use cases of the interface and (in some cases) measure monitoring
unreliability. Comparisons have been made when applicable with native clients and GUIs.

It is important to examine for each provider both single Project runs and Deployment runs.

The following tables are an overview of the results that were gathered:

Tests Cases / Cloud Providers Atos Atos
(depl.)

CS CS
(depl)

IR IR
(depl)

Start BB – Booting Provider 7s 7s,
92s

68s 100s,
255s

21s 21s,
200s

Start BB – Runs Provider 80s 7s,
92s

70s 100s,
270s

23s 25s,200
s

Start BB – Runs BB 80s 7s,
92s

70s 100s,
285

40s 40s,205
s

Start Provider – Runs on provider 80s - - - 20s -

Start provider – runs on BB 82s - - - 30s -

20 | P a g e

CERN openlab Summer Student Report 2013

Tests / Cloud Providers Atos Atos
(depl.)

CS CS
(depl)

IR IR
(depl)

Delete on BB – Deleting on Provider 0 0 - - - -

Delete on BB – Delete on Provider 2s 2s 1s 1s 15s 20s

Delete on BB – Deleted on BB 2s 2s 1s 2s Never Never

Run and Delete on BlueBox – Deleting
on Provider

2s 2s 5s 5s - -

Run and Delete on Provider – Deleted
in BB

4s 4s 4s 4s - -

Notes:

• For deployment runs two numbers are specified: time of booting an orchestrator and time
of booting the actual instances.

• At the time of testing, it has not been possible to terminate Interoute instances via
SlipStream.

3 De facto standards and Amazon EC2

3.1 SlipStream EC2 Bridge

A prototype of an EC2 bridge is currently being implemented at:
https://github.com/SlipStream/SlipStreamEC2. Currently, this prototype supports the following
EC2 Actions:

• RunInstances: Starts an instance. Multiplicity not supported yet.

• DescribeInstances: Lists the instances that are currently deployed (very basic, mapping
of UUIDs and Images).

• TerminateInstances: Terminates an instance. Multiplicity not supported yet.

However, two minor changes had to be made in order to make the SlipStream-EC2 Bridge fully
functional. One issue that was resolved involved modifications to the build system (Maven
dependencies) while the other change ensured that the final HTTP request was functional for
DescribeInstances command.

Pull request here: https://github.com/SlipStream/SlipStreamEC2/pull/1

Or clone: https://github.com/atsikiridis/SlipStreamEC2

Please view the README file for installation instructions.

21 | P a g e

https://github.com/slipstream/SlipStreamEC2/pull/1
https://github.com/slipstream/SlipStreamEC2

CERN openlab Summer Student Report 2013

3.2 EnStratius EC2 Bridge

Enstratius is another potential BlueBox solution that is being evaluated by the partners of the
Helix Nebula initiative. Although, the evaluation of Enstratius is out of the scope of this report
and project, here are some remarks about the EC2 interface which were briefly examined:

• The interface has one endpoint per cloud provider and not one endpoint for the whole
interface. Two cloud providers are currently supported by EnStratius: T-Systems Cloud
and CloudSigma. The EC2 endpoints are: ts.ess.helix-nebula.eu and
cs.ess.helix-nebula.eu. This is different from the SlipStream EC2 prototype that is
described in 3.1 mainly because the EC2 endpoint is pointing to the provider(s) and not
the interface.

• The EC2 credentials are generated by the interface by providing a name for each pair.
• Generally, this interface requires a more specific configuration in order to run and the

queries created are not compatible with the EC2 de facto standard. For example, the
standard authentication parameters for an EC2 interface are the access key
(EC2_ACCESS_KEY) and the secret key (EC2_SECRET_KEY). After testing the
T-Systems Cloud endpoint the required value of the secret key for a valid cloud operation
is “NotSet” (hard-coded value). This means that the secret key (EC2_SECRET_KEY) is
not really utilized. In the same time, the access key has an accesskey:secretkey format,
thus including both necessary credentials. While this approach does not compromise the
functionality of the EC2 Bridge, it is not standard for EC2 interfaces, as the structure of
an http query may be significantly different (see the appendix for more information about
HTTP queries to EC2 interfaces). An example is the use non usage of the Secret key with
a predefined not set value.

3.3 CERN private cloud

The CERN private cloud based on Openstack supports an EC2 interface. However, several
commands are not supported when using known EC2 APIs such as Eucalyptus euca2ools (you
may find the commands supported by euca2ools here:
http://docs.openstack.org/developer/nova/runnova/euca2ools.html). In this section you may find
a functionality evaluation of direct HTTP queries against the CERN private cloud. The reason
that the HTTP query API was preferred is in order to understand all interactions and error
messages that the endpoint issues.

Please view the Appendix for a complete reference of the commands:
https://its.cern.ch/jira/browse/CSCLOUD-92

Note: All tests were performed against: http://ibex.cern.ch

22 | P a g e

http://ibex.cern.ch/
https://its.cern.ch/jira/browse/CSCLOUD-92
http://docs.openstack.org/developer/nova/runnova/euca2ools.html

CERN openlab Summer Student Report 2013

4 A Test Suite for EC2 Interfaces

4.1 Motivation

In this section you may find details about the implementation of a test-suite that performs
black-box testing to a Cloud Endpoint. The test results reflect whether the cloud endpoint is
compliant against specific implementations of EC2 interfaces (AWS, Openstack, OpenNebula).

Currently, our team has developed a prototype that ensures that basic commands can be
performed against the Openstack standard EC2 API. However, the test-suite is extensible and can
easily support other flavours. The test suite is developed in Python and may be found here:

https://github.com/atsikiridis/EC2TestSuite

4.2 Example Usage

1) Source into your system the variables EC2_ACCESS_KEY, EC2_SECRET_KEY and
EC2_URL.

2) $ sudo python setup.py install
3) Install prettytable in your preferred way.
4) 4) $ec2test -f openstack -i yourimage

The last command has two required arguments: the EC2 implementation standard (flavor) against
which we test the cloud endpoint and a valid imageId. The result is a functionality report of the
endpoint. A –debug flag enables debugging information.

INFO:Ec2TestSuite:

+-------------------------+--------------+

| Configuration parameter | Value |

+-------------------------+--------------+

| debug | False |

| flavor | openstack |

| imageId | ami-00000181 |

+--------------------+--------------------+---------------+

| Action | Parameters used | Is Functional |

+--------------------+--------------------+---------------+

| DescribeImages | | Yes |

| DescribeInstances | | Yes |

23 | P a g e

https://github.com/atsikiridis/EC2TestSuite

CERN openlab Summer Student Report 2013

| RunInstances | | Yes |

| TerminateInstances | | No |

+--------------------+--------------------+---------------+

5 Conclusions

SlipStream is a potential BlueBox solution that generally abides with the specifications set by the
Helix Nebula initiative. Although some parts are not always consistent or fully functional, it is a
result of the fact that the interface is still a prototype. Moreover, the performance measurements
heavily rely on parameters regarding cloud computing providers’ functionalities and are thus
outside the scope of SlipStream.

The EC2 interface is an important functionality for a BlueBox and despite the fact that
SlipStream is not yet totally EC2 compatible, the prototype provided by sixsq is now in a working
state. Our needs to evaluate EC2 interfaces (Helix Nebula, Openstack, Amazon, OpenNebula,
Enstratius) underlines the importance of an automated testing mechanisms for EC2 interface
compliance and has led us to develop a prototype testsuite which is described in section 4.

6 References

[1] http://cloudtaxonomy.opencrowd.com/taxonomy/software-as-a-service/

[2] "The NIST Definition of Cloud Computing". National Institute of Science and Technology.
Retrieved 24 July 2011.

[3] Amies, Alex; Sluiman, Harm; Tong, Qiang Guo; Liu, Guo Ning (July 2012). "Infrastructure
as a Service Cloud Concepts". Developing and Hosting Applications on the Cloud. IBM Press.
ISBN 978-0-13-306684-5.

[4] SlipStream Reference manual: https://bb.sixsq.com/html/reference-manual.html

[5] J. de la Mar, P. Evans, M. Symonds, R. Jenkins, M. E. Begin, J. Graham, P. Parsons :Helix
Nebula – The Science Cloud: Blue Box Approach , version 1.6p

7 Appendix

EC2 OpenStack Complete Command Reference

24 | P a g e

https://bb.sixsq.com/html/reference-manual.html
http://en.wikipedia.org/wiki/Special:BookSources/978-0-13-306684-5
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://www.ibmpressbooks.com/bookstore/product.asp?isbn=9780133066845
http://www.ibmpressbooks.com/bookstore/product.asp?isbn=9780133066845
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://cloudtaxonomy.opencrowd.com/taxonomy/software-as-a-service/

CERN openlab Summer Student Report 2013

In this summary you can find all possible API calls that can be performed on
AgileInfrastructure (http://ibex-cloud-controller.cern.ch:8773/services/Cloud). All calls
were tested using http requests on the endpoint of AI following the format indicated
here:
http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/using-query-a
pi.html.

Signing Process and valid HTTP requests

Note: The boto library, euca2ools and other APIs use this method to interact with the
cloud's endpoint. The purpose of this summary is to replicate these requests manually
with none of these APIs in order to understand the functionalities supported by an EC2
interface, an openstack cloud and AI specifically.

In order to prepare a valid http request for AI, several authentication parameters
(AUTHPARAMS) must be set to the following values:

• URL=http://ibex-cloud-controller.cern.ch:8773/services/Cloud

• AWSAccessKeyId=**yourEC2accesskey**

• SignatureVersion=2

• SignatureMethod=HmacSHA256

• Version=2010-08-31 (or newer)

• Timestamp=**current** (Format: %Y-%m-%dT%H:%M:%S.000Z)

• Signature=**computed**

In order to compute the signature follow this guide:
http://docs.aws.amazon.com/general/latest/gr/signature-version-2.html

Very useful scripts available in python and perl that work perfectly to produce valid http
requests and signatures and issue them to the Cloud's endpoint are in this github project:
https://github.com/jeffk/ec2_signer.

GET is used by default. The request method may by altered in the code.

Actions and Parameters supported

The list of actions supported by AI is a subset of Actions supported by AWS (found here:
http://docs.aws.amazon.com/AWSEC2/latest/APIReference/query-apis.html).

25 | P a g e

http://docs.aws.amazon.com/AWSEC2/latest/APIReference/query-apis.html
https://github.com/jeffk/ec2_signer
http://docs.aws.amazon.com/general/latest/gr/signature-version-2.html
http://ibex-cloud-controller.cern.ch:8773/services/Cloud
http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/using-query-api.html
http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/using-query-api.html
http://ibex-cloud-controller.cern.ch:8773/services/Cloud

CERN openlab Summer Student Report 2013

Each of the actions has several associated parameters. Here are all valid Actions to be
performed on AI:

Action
Parameters (r= required,

nr= not required,
c=conditional)

Description

AllocateAddress Domain=vpc(r) Allocate a floating IP from a given floating ip pool.

AssociateAddres
s

PublicIp(r), InstanceId(r),
PrivateIpAddress(nr),
AllowReassociation(nr)

Associate floating IP to instance.

AttachVolume VolumeId(r), InstanceId(r),
Device(r)

Attach Volume to running instance with the name of
device.

AuthorizeSecurit
yGroupIngress

GroupName(r),
IpPermissions.n.IpProtocol(r
),
IpPermissions.n.FromPort(r),
IpPermissions.n.ToPort(r),
IpPermissions.n.Groups.m.G
roupName(c),
IpPermissions.n.IpRanges.m.
CidrIp(c)

Adds one or more ingress rules to a security group.

CreateImage InstanceId(r), Name(r),
Description(nr),
NoReboot(nr),
BlockDeviceMapping
params(nr)

Creates an image.

CreateKeyPair KeyName(r) Creates a new 2048-bit RSA key pair with the specified
name.

CreateSecurityG
roup

GroupName(r),
GroupDescription(r)

Creates a security group.

CreateSnapshot VolumeId(r), Description(nr) Creates a snapshot of a volume.

CreateVolume AvailabilityZone(r),
SnapshotId(c), Size(nr),
VolumeType(nr), Iops(c)

Creates a volume that can be attached to an instance.

26 | P a g e

CERN openlab Summer Student Report 2013

DeleteKeypair KeyName(r) Deletes a keypair.

DeleteSecurityG
roup

GroupName(r) Deletes a security group.

DeleteSnapshot SnapshotId(r) Deletes a Snapshot.

DeleteVolume VolumeId(r) Deletes a volume.

DeregisterImage ImageId(r) Deregisters an AMI.

DescribeAddress
es

PublicIp.n(nr),AllocationId.n
(nr), filter params(nr)

http://ibex-cloud-controller.cern.ch:8773/services/Cloud/?
Action=DescribeAddresses&AUTHPARAMS

DescribeAvailabi
lityZones

ZoneName.n(nr), filter
params(nr)

http://ibex-cloud-controller.cern.ch:8773/services/Cloud/?
Action=DescribeAvailabilityZones&AUTHPARAMS

DescribeImageA
ttribute

ImageId(r), Attribute(r) Describes an attribute of an image.

DescribeImages ImageId.n(nr),
ExecutableBy.n(nr),
Owner.n(nr), filter
params(nr)

Describes Images.

DescribeInstance
Attribute

InstanceId(r), Attribute(r) Describes an attribute of an image.

DescribeInstance
s

InstanceId.n(nr), filter
params(nr)

Describes images.

DescribeKeyPair
s

KeyName.n(nr), filter
params(nr)

Describes keypairs.

DescribeRegions RegionName.n(nr), filter
params(nr)

Describes Regions.

DescribeSecurity
Groups

GroupName.n(nr), filter
params(nr)

Describes security Groups.

DescribeSnapsho
ts

SnapshotId.n(nr),
Owner.n(nr),

Describes snapshots.

27 | P a g e

CERN openlab Summer Student Report 2013

RestorableBy(nr), filter
params(nr)

DescribeVolume
s

VolumeId.n(nr), filter
params(nr)

Describes Volumes.

DetachVolume VolumeId(r),InstanceId(nr),
Device(nr), Force(nr)

Detaches Volume from running instance.

DisassociateAdd
ress

PublicIp(r) Disassociates IP from instance.

GetConsoleOutp
ut

InstanceId(r) Retrieves console output for the specified instance.

ImportKeyPair KeyName(r),
PublicKeyMaterial(r)

http://ibex-cloud-controller.cern.ch:8773/services/Cloud/?
Action=ImportKeyPair&InstanceId=someInstance&AUT
HPARAMS

RebootInstances InstanceId.n(r) Reboots one or more instances.

RegisterImage ImageLocation(c),
Name(r),Description(nr),Arc
hitecture(nr),KernelId(nr),
RamdiskId(nr),
RootDeviceName(nr, Block
Device params(nr)

Registers an Image.

ReleaseAddress PublicIp(r) Releases Adddress from available floating IPs.

RunInstances ImageId(r), MinCount(r),
MaxCount(r), KeyName(r),
SecurityGroup.n(nr),
UserData(nr),
InstanceType(nr),
Placement.AvailabilityZone(
nr),
Placement.GroupName(nr),
Placement.Tenancy(nr),
KernelId(nr), RamdiskId(nr),
Blocking params(nr),
Monitoring.Enabled(nr),
DisableApiTermination(nr),
InstanceInitiatedShutdownB
ehavior(nr)

Runs instances.

28 | P a g e

CERN openlab Summer Student Report 2013

StartInstances InstanceId.n(r) Starts one or more instances.

StopInstances InstanceId.n(r) Stops one or more instances.

TerminateInstanc
es

InstanceId.n(r) Shuts down one or more instances.

29 | P a g e

	Evaluation of common interfaces in a multi-supplier cloud environment for Helix Nebula
	August 2013
	Author:
	Artem Tsikiridis
	Supervisor:
	Mattia Cinquilli
	CERN openlab Summer Student Report 2013

	1 Introduction
	1.1 Cloud Computing
	1.2 Cloud Computing at CERN
	1.2.1 The present: Worldwide LHC Computing Grid (WLCG)
	1.2.2 Further scaling of WLCG with Cloud Computing
	1.2.3 CERN Private Cloud

	1.3 Helix Nebula and the federated cloud
	1.4 Other Challenges in multi-cloud environments

	2 SlipStream Functionality Report
	
	2.1 Authentication mechanisms
	2.2 Support to perform a VM lifecycle
	2.3 Contextualization Mechanisms
	2.4 Consistency with native provider tools
	2.5 Multi-Cloud Deployments
	2.6 Performance Tests

	3 De facto standards and Amazon EC2
	3.1 SlipStream EC2 Bridge
	3.2 EnStratius EC2 Bridge
	3.3 CERN private cloud

	4 A Test Suite for EC2 Interfaces
	4.1 Motivation
	4.2 Example Usage

	5 Conclusions
	6 References
	7 Appendix

