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Abstract—The scintillation detectors commonly used in SPECT
and PET imaging and in Compton cameras require estimation of
the position and energy of each gamma ray interaction. Ideally,
this process would yield images with no spatial distortion and
the best possible spatial resolution. In addition, especially for
Compton cameras, the computation must yield the best possible
estimate of the energy of each interacting gamma ray. These goals
can be achieved by use of maximum-likelihood (ML) estimation
of the event parameters, but in the past the search for an ML
estimate has not been computationally feasible. Now, however,
graphics processing units (GPUs) make it possible to produce
optimal, real-time estimates of position and energy, even from
scintillation cameras with a large number of photodetectors. In
addition, the mathematical properties of ML estimates make
them very attractive for use as list entries in list-mode ML image
reconstruction. This two-step ML process—using ML estimation
once to get the list data and again to reconstruct the object—
allows accurate modeling of the detector blur and, potentially,
considerable improvement in reconstructed spatial resolution.

I. INTRODUCTION

In tomographic imaging of gamma-ray-emitting radiotrac-

ers with scintillation detectors, each gamma-ray photon that

interacts with a detector produces a set of signals on photo-

multipliers (PMTs) or other photodetectors. From these signals

the position and energy of each gamma-ray interaction are

determined by some algorithm, known as the event-estimation

process and then stored, either as a list of position and energy

for each interaction events or as a binned array where each

bin entry represents the number of events with position and

energy within some interval. We refer to the first alternative as

list-mode data storage and the second as binned-mode storage.

In either case, we refer to the estimated position and energy

as attributes of the event. Image reconstruction can then be

performed either directly from the attribute list or from the

binned data.

The current trend towards measuring more and more at-

tributes of each event and building larger and larger 2-D

and 3-D detectors causes the memory requirements for binned

data to grow geometrically, making binned-data approaches

challenging. For example, a Compton camera typically yields

six attributes (coordinates x and y and energy E for each

of two interactions) for every measured coincidence event.

Similarly, a PET system using scintillation cameras with

depth-of-interaction capability can yield up to ten attributes (x,

y, z and E plus time of arrival on each detector) for each event.
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Fortunately, list-mode (LM) maximum-likelihood (ML)

expectation-maximization (EM) image reconstruction algo-

rithms are well developed and often used for PET, Compton

cameras and other applications in nuclear medicine. There are,

however, two problems with LMMLEM algorithms: they are

computationally demanding, and for best performance they

require an accurate probability model for the attributes. It is

the purpose of this paper to show that both of these prob-

lems can be addressed effectively with graphics processing

units (GPUs).

In Sec. II we present the basics of LMMLEM reconstruc-

tion, and in Sec. III we show in detail how to develop the

probability model for a Compton camera based on thick,

monolithic scintillation crystals; a similar model applies to

monolithic-crystal PET systems. In Sec. IV we discuss the

advantages of using ML methods to estimate the attributes

used in the reconstruction algorithm, and we show how an

important asymptotic property of ML estimates can be used to

simplify the probability model. Thus we recommend a dual use

of ML theory, first in the event-estimation step to give values

for the attributes of each event and then in the reconstruction

step to estimate the object distribution from the attribute list.

In Sec. V we discuss the computational requirements of

this approach and present some preliminary results obtained by

running a 3-D ML position estimation algorithm on a GPU su-

percomputer equipped with four NVIDIA GeForce 9800 GX2

computing processors. Our GPU implementation resulted in

a 250× speedup with respect to an implementation of the

same algorithm on a conventional cluster machine. These

promising results show the enormous potential of commodity

GPU hardware for medical image reconstruction.

II. MLEM AND LMMLEM ALGORITHMS

Given the data vector g = {g1, . . . , gM}, where gm rep-

resents the number of events stored in the mth bin, the goal

of an image reconstruction algorithm is to produce a vector

f̂ = {f̂1, . . . , f̂N} approximating the radiotracer distribution

in the object [1], [2].

A popular iterative reconstruction algorithm in the medi-

cal literature is the maximum-likelihood (ML) expectation-

maximization (EM) algorithm [3], [4]. If the data vector g

follows Poisson statistics, the MLEM algorithm takes the

form:

f̂ (k+1)
n = f̂ (k)

n

{
1∑M

m=1 Hmn

M∑
m=1

gmHmn[
Hf̂ (k)

]
m

}
, (1)

where the matrix H (with components Hmn) represents a

discretized version of the system operator [2]. This way of
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organizing the sensitivity data requires such a large amount of

storage and computational capability [5] to make it impossible

to record more than just a few attributes for each event.

Alternatively, the MLEM algorithm is applied to raw event

estimates recorded in list mode [5]–[9], resulting in the list-

mode (LM) MLEM algorithm, which we now detail for spe-

cific configurations of a Compton camera and a PET imager.

Object

Detector 1 Detector 2

α

Fig. 1. Setup for a Compton camera system

Object

Detector 1 Detector 2

π

Fig. 2. Setup for a PET system

In the Compton camera of Fig. 1, two position-and-energy-

sensitive thick detectors image the radiotracer distribution.

The two detectors allow high sensitivity because collimation

is accomplished in software rather than by placing physical

collimators in front of the detectors. For the jth event (with

j = 1, . . . , J), we can consider two 3-D positions of interac-

tion estimates, r̂j1 and r̂j2 along with the estimate β̂j of the

cosine of the scatter angle α̂j (calculated from estimates Êj1

and Êj2 of the deposited energies). Given r̂j1, r̂j2, and β̂j we

define the jth attribute vector as Aj = (r̂j1, β̂j , r̂j2).
In the PET setup shown in Fig. 2, two detectors are placed

on opposite sides of the object. For the jth event, two 3-D

positions of interaction estimates are computed. Thus, the

jth attribute vector is Aj = (r̂j1, r̂j2). We will assume that

coincidence windowing is used to pair events occurring in

different detectors. We will also assume that, for each event,

both photons have been collected. Energy estimation is not

used as the vast majority of electron-positron decays result in

two 511 keV gamma photons being emitted at an angle α ≈ π.

For the sake of simplicity, we will assume α = π.

In both cases, we can define the list A = {A1, . . . , AJ} of

the J attribute vectors. Assume we subdivide the field of view

in N voxels, centered at 3-D locations rn, for n = 1, . . . , N .

Let f = {f1, . . . , fN} be the radiotracer distribution we want

to estimate, where fn is the number of photons emitted from

voxel centered at rn. Furthermore, let Sn be the probability

that a photon emitted from voxel at rn is detected. Thus,

Sn is referred to as the sensitivity for the nth voxel [7]. The

probability that a detected photon was emitted from voxel at

rn is then written as:

Pr(rn|f) =
Snfn∑N

n′=1 Sn′fn′

.

If we denote with pr(Aj |rn) the probability density func-

tion (PDF) for measuring the attribute vector Aj given that

a photon is emitted from the nth voxel, then:

pr(Aj |f) =

N∑
n=1

pr(Aj |rn)Pr(rn|f).

The likelihood of f given the list A of J statistically inde-

pendent attribute events is:

L(f ;A) =

J∏
j=1

pr(Aj |f).

As [3] and [7] show, the iterative expression for LMMLEM

reconstruction is [cf. (1)]:

f̂ (k+1)
n = f̂ (k)

n

⎧⎨
⎩ 1

T

J∑
j=1

pr(Aj |rn)∑N
n′=1 pr(Aj |rn′)Sn′ f̂

(k)
n′

⎫⎬
⎭ , (2)

in which T is the total exposure time. The expression above

emphasizes that the quantity pr(Aj |rn) plays a central role in

the implementation of LMMLEM reconstruction algorithms.

It can be shown [7] that if the first estimate, f̂ (0), satis-

fies positivity constraints, then all the subsequent estimates

obtained using (2) satisfy positivity constraints as well and,

under reasonable conditions [7], the algorithm has the desired

property of converging to the global maximum of the like-

lihood function L(f ;A). Global convergence is proved by

showing that the Hessian (with respect to f ) of logL(f ; A)
is negative definite [7].

III. DERIVATION OF THE PDF pr(Aj |rn)

In this section, we provide a derivation of the expression for

the probability density function pr(Aj |rn) for the Compton

camera setup of Fig. 1. The same expression can easily be

modified to accommodate the PET setup shown in Fig. 2.

Recall that Aj = (r̂j1, β̂j , r̂j2). By Bayes’ theorem,

pr(Aj |rn) =

∫
det. 1

∫ 1

−1

∫
det. 2

pr(rj1, βj , rj2|rn)

× pr(r̂j1, β̂j , r̂j2|rj1, βj , rj2, rn) d3rj1 dβj d3rj2, (3)

where vectors rj1 and rj2 denote actual (i.e. not esti-

mates) 3-D interaction within the detector. Similarly, βj is

the cosine of the actual scattering angle. Notations
∫
det. 1

and∫
det. 2

denote integration over detectors 1 and 2, respectively.

Notice first that in pr(r̂j1, β̂j , r̂j2|rj1, βj , rj2, rn) there is

no need to condition on rn because estimates depend only on

the interaction locations and the scattering angle. Furthermore,
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estimates of r̂j1 and r̂j2 are statistically independent because

they use two different sets of detector outputs. Thus:

pr(r̂j1, β̂j , r̂j2|rj1, βj , rj2, rn)

= pr(r̂j1, β̂j |rj1, βj)pr(r̂j2|rj2).

If the detector is made of homogeneous material, then rj1 and

βj are statistically independent. However, rj2 depends on the

location of the first interaction and the scattering angle. These

observations lead to:

pr(rj1, βj , rj2|rn) = pr(rj1|rn)pr(βj)pr(rj2|rj1, βj , rn).

Thus, the probability density function pr(Aj |rn) in (3) as-

sumes the form:

pr(Aj |rn)

=

∫
det. 1

∫ 1

−1

∫
det. 2

pr(rj1|rn)pr(βj)pr(rj2|rj1, βj , rn)

× pr(r̂j1, β̂j |rj1, βj)pr(r̂j2|rj2) d3rj1 dβj d3rj2. (4)

To compute pr(rj1|rn), consider a small volume element

centered at rj1. It is convenient to take this volume element

as a cube of side ε with one face perpendicular to the line

connecting rn to rj1. Then, the probability that a Compton

interaction occurs in the cube is:

Pr(interaction in cube at rj1|rn) =
ε3μC1

4π|rj1 − rn|2
,

where μC1
is the Compton attenuation coefficient in detector 1.

From the result above, it follows:

pr(rj1|rn) =
μC1

4π|rj1 − rn|2
. (5)

To derive an expression for pr(rj2|rj1, βj , rn), consider a

cube of side ε center at rj2 and having one face perpendicular

to the line connecting point rj2 with rj1. Conditioning on rj1

and rn fixes a direction s
(j)
1n from the origin of the event rn to

the interaction location rj1. Conditioning on βj imposes that

the scattered photon lie on a cone of infinitesimal with around

the direction s
(j)
12 , defined by rj1 and rj2. By passing to the

limit for ε → 0, we get:

pr(rj2|rj1, βj , rn) =
μP2

2π|rj1 − rj2|2
δ
(
s
(j)
1n · s

(j)
12 − βj

)
, (6)

in which μP2
is the photoelectric attenuation coefficient in

detector 2, δ(. . . ) denotes the delta function, and the unit

vectors s
(j)
1n and s

(j)
12 are given by:

s
(j)
1n =

rj1 − rn

|rj1 − rn|
, s

(j)
12 =

rj2 − rj1

|rj2 − rj1|
. (7)

Substituting (5) and (6) into (4) and performing the integra-

tion over βj gives:

pr(Aj |rn) =

∫
det. 1

∫
det. 2

μC1
μP2

8π2|rj1 − rn|2|rj1 − rj2|2

× prβ

(
s
(j)
1n · s

(j)
12

)
pr

(
r̂j1, β̂j |rj1, s

(j)
1n · s

(j)
12

)
× pr(r̂j2|rj2) d3rj1 d3rj2.

So far, no approximations have been made. Assumptions

that might be valid for silicon detectors are that position and

energy estimates in the first detector are statistically indepen-

dent, that spatial resolution does not depend of the amount

of energy deposited, and, finally, that energy resolution is

constant over the whole 3-D detector. With these assumptions:

pr(r̂j1, β̂j |rj1, βj) = pr(r̂j1|rj1)pr(β̂j |βj),

leading to:

pr(Aj |rn) =

∫
det. 1

∫
det. 2

μC1
μP2

8π2|rj1 − rn|2|rj1 − rj2|2

× prβ

(
s
(j)
1n · s

(j)
12

)
pr(r̂j1|rj1)pr

(
β̂j |s

(j)
1n · s

(j)
12

)
× pr(r̂j2|rj2) d3rj1 d3rj2.

If we further assume that pr(r̂j1|rj1), pr(r̂j2|rj2) are sharply

peaked about r̂j1 and r̂j2, respectively, then:

pr(Aj |rn) ≈
μC1

μP2
prβ

(
ŝ
(j)
1n · ŝ

(j)
12

)
8π2|r̂j1 − rn|2|r̂j1 − r̂j2|2

∫
det. 1

∫
det. 2

pr(r̂j1|rj1)pr
(
β̂j |s

(j)
1n · s

(j)
12

)
pr(r̂j2|rj2) d3rj1 d3rj2, (8)

where [cf. (7)]:

ŝ
(j)
1n =

r̂j1 − rn

|r̂j1 − rn|
, ŝ

(j)
12 =

r̂j2 − r̂j1

|r̂j2 − r̂j1|
.

If instead of a Compton camera we have the PET system

of Fig. 2, then (8) becomes:

pr(Aj |rn) ≈
μP δ

(
ŝ
(j)
1n · ŝ

(j)
12 + 1

)
8π2|r̂j1 − rn|2|r̂j1 − r̂j2|2

×

∫
det. 1

∫
det. 2

pr(r̂j1|rj1)pr(r̂j2|rj2) d3rj1 d3rj2, (8′)

because β0 = cos(α0) = −1 for α0 = π. The delta function

that appears in (6) and (8′) is an angular delta function [2],

defined as: ∫
4π

δ(s − s0)t(s) dΩs = t(s0),

in which the integral is performed over the solid angle 4π,

Ωs is the infinitesimal solid angle element, and t(s) is a test

function.

The two expressions for pr(Aj |rn) derived above

might require experimentally determining pr(βj), pr(β̂j |βj),
pr(r̂j1|rj1), and pr(r̂j2|rj2). Alternatively, assumptions can

be made on the shape of those PDFs. For example, if we

assume that pr(β̂j |βj), pr(r̂j1|rj1), and pr(r̂j2|rj2) are all

Gaussians, integrals in (8) and (8′) can be evaluated analyti-

cally.

IV. ML ESTIMATION OF POSITION OF INTERACTION

The integrands in (8) and (8′) contain quantities of the

form pr(r̂|r), which expresses how well r is estimated from

the detector outputs. One way to calculate r̂ is by means

of ML estimation [10], [11]. Assume that G(r) represents

noisy (i.e. random) detector outputs corresponding to an event

occurring at location r in the detector. For example, G(r)
might be a vector with K random components, each of them

corresponding to a PMT output in a scintillation camera. In

such a case, the ML estimate of r can be mathematically

defined as:

r̂ = argmax
r0

pr
[
G(r)|r0

]
. (9)
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If r̂ satisfies the condition above then pr(r̂|r) asymptotically

approximates a multivariate normal PDF with mean r and co-

variance matrix given by the inverse of the Fisher information

matrix F
r̂|r for the estimation of r [2], [12], [13]:

pr(r̂|r) →

√
det(F

r̂|r)

(2π)3/2
exp

[
−

1

2

(
r̂ − r

)T

F
r̂|r

(
r̂ − r

)]
.

In a scintillation camera, multiple visible photons are produced

for each gamma-ray event, and each visible photon leads

to the generation of many photoelectrons. Thus, asymptotic

properties of ML estimation hold true and the approximation

above is a valid assumption.

The Fisher information matrix provides a way of quantify-

ing an upper bound on how well information can be extracted

from detector outputs [2]. If the noise in the components of

G(r) follows a Poisson distribution, the (m, n)th component

of the Fisher information matrix is given by [2]:

[
F

r̂|r

]
mn

=

K∑
k=1

1

Gk(r)

∂Gk(r)

∂xm

∂Gk(r)

∂xn
(10)

where r = (x1, x2, x3) and Gk(r) is the mean of the kth

detector output for an interaction event occurring at r. The

derivatives that appear in (10) can be evaluated analytically by

first interpolating calibration data with spline functions [14].

Also, spline interpolation can be used to deliver continuous

values for r̂ when (9) is used.

To summarize, the overall reconstruction algorithm that

gives an estimate f̂ of the radiotracer distribution consists of

two separate ML-estimation steps:

1) For each event, use (9) to estimate the position of

interaction;

2) Given the list of estimates previously calculated, iter-

ate (2) to get f̂ .

It is worth noting that ML methods provide a rigorous and—in

some sense—optimal way to extract information from detector

data. The optimality of ML estimation is used in the two steps

above, giving an estimate f̂ that most likely produced the

collected detector data.

V. HARDWARE CONFIGURATION AND RESULTS

For this research, we used a GPU supercomputer, which we

assembled using commodity hardware. The hardware config-

uration included four NVIDIA GeForce 9800 GX2 graphics

cards. The software configuration included the Linux operating

system and the NVIDIA’s CUDA software development kit.

For a total cost of less than $3000, our GPU supercomputer

is capable of about 4 TFLOPS.

The theory outlined in the previous sections requires the

ability of performing 3-D ML estimation of event position

from PMT data. A 3-D contracting-grid [10] algorithm was

implemented for a CUDA-capable GPU device and run on

our GPU machine. For the �th event occurring on a detector, a

vector G� = {G�1, . . . , G�K} of K PMT outputs is collected.

The elements of G� are integer numbers. Assuming Poisson

statistics, the ML estimation problem can now be mathemati-

cally formulated as [2], [10]:

m̂� = argmax
m∈{1,...,M}

{
K∏

k=1

[
Gk(m)

]G�k 1[
G�k

]
!
e−Gk(m)

}

= argmax
m∈{1,...,M}

Λ�m, (11)

in which the vector G(m) is the mean PMT output for an event

occurring at pixel m [15]. The goal of the contracting-grid

algorithm is to compute m̂� by avoiding the exhaustive search

above. In our case, we considered a 69 × 69 × 25-voxel 3-D

detector and we assumed K = 64 PMT outputs for each event.

The contracting-grid algorithm starts by considering a uniform

4 × 4 × 4 coarse grid that covers the whole detector. The

quantity Λ�m in (11) is evaluated at each point of the grid and

the value of m that maximizes Λ�m on the grid is used as

the center of the grid in the next iteration. The grid spacing

is halved at each iteration. The algorithm terminates when the

grid spacing is one voxel in each dimension.

In our GPU implementation, each event was assigned to

a 4 × 4 × 4 thread block. The threads in a thread block

are responsible for loading into the shared memory the PMT

outputs G�. Once the PMT data are loaded, each thread

computes the likelihood Λ�m for a point on the grid. The 64

values of the likelihood are then searched for the maximum

value. The center of the grid for the next iteration and the new

grid spacing are calculated as outlined above, and shared with

all the threads in the block using shared variables.

Each NVIDIA GeForce 9800 GX2 graphics card installed in

our machine contains two CUDA-capable devices, which can

be used independently, for a total of eight devices. We also

implemented the same contracting-grid algorithm for a con-

ventional cluster machine, which we used for our comparison.

Results of the comparison are reported in Table I.

TABLE I
COMPARISON RESULTS

Architecture Events/s Speedup

AMD Phenom 9850 2.5 GHz CPU 989.67 —
NVIDIA GeForce 9800 GX2, 1 device 34224.59 34.58
NVIDIA GeForce 9800 GX2, 8 devices 246003.92 248.57

VI. CONCLUSIONS

In this paper the list-mode (LM) MLEM algorithm is

applied to ML position and energy estimates for a Compton

camera. An expression for the probability density function of

the event attribute vector was given. The full implementation

of the reconstruction algorithm requires two distinct estimation

steps: the first is the 3-D ML estimation of event position from

PMT data and the second consists in the reconstruction of the

object distribution from the list of position estimates by using

an iterative formula. We have written a GPU algorithm that

implements the first estimation step and we ran our code on

a GPU supercomputer assembled from commodity hardware.

Our implementation could achieve a 250× speedup with re-

spect to an implementation on a conventional cluster machine.
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We are currently working on the GPU implementation of the

iterative reconstruction step.
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