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  Abstract–MOLAR (Motion-compensation OSEM List-mode 
Algorithm for Resolution-recovery reconstruction) was written to 
provide the best possible images from ECAT HRRT PET data. 
Because of computational demands, MOLAR currently requires 
a computer cluster for practical use. Here we have applied GPU-
acceleration via CUDA to all of the computationally intensive 
modules of the MOLAR package. Using an NVIDIA Tesla S1070-
400 GPU system hosted by an HP xw8400 workstation, we 
evaluated the GPU-accelerated performance of the modules that 
perform boundary checking, forward and backprojection, 
photon scatter modeling and algorithm updates. We compared 
their performance to CPU-only versions of MOLAR for a range 
of total counts (500k to 50M). We found boundary checking to be 
up to 35 times faster using the GPU. Forward and backprojection 
ran 50 and 20 times faster, respectively, and scatter modeling was 
200 times faster. Algorithm updates ran up to 15 times faster. 
The overall performance of the entire MOLAR package was 
approximately 40 times faster than the CPU-only code. These 
results show that MOLAR can be substantially accelerated using 
GPUs and can thereby be practically extended for use in high 
count and higher resolution applications, and for 4D parametric 
reconstructions.  

I. INTRODUCTION 

OLAR (Motion-compensation OSEM List-mode 
Algorithm for Resolution-recovery reconstruction [1,2]) 

was originally written for the ECAT HRRT (High Resolution 
Research Tomograph, Siemens Medical Solutions, Knoxville, 
TN, USA) to obtain high-resolution, motion-corrected images.  
The code is nevertheless flexible enough to be adapted to any 
scanner. Unfortunately, it has substantial computational 
demands and currently requires a computer cluster to obtain 
reasonable reconstruction times. More rapid reconstruction is 
desirable and would make high-count frames and 4D 
parametric reconstruction [3] more accessible. 

Many groups have tackled the problem of accelerating 
image reconstruction using a variety of technologies (GPUs, 
FPGAs, Cell-based systems, etc.) and a variety of languages 
(Cg, OpenGL, CUDA, etc.) [4-7]. We previously began 
accelerating parts of MOLAR using CUDA and GPUs, in 
particular forward projection and component-based 
normalization factor calculation [8]. In this study we have 
extended that work to all of the computationally intensive 
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components of MOLAR and have evaluated the performance 
of the complete package.  

II. METHODS 

A. Hardware and Programming Environment 
We used a Hewlett-Packard xw8400 workstation having 

two dual-core Intel Xeon 5130 CPUs running at 2.0 GHz with 
12 GB of RAM. The workstation was running Red Hat Linux 
WS 5 (64-bit). For acceleration we chose an NVIDIA Tesla 
S1070-400 system having four GPUs, each with four GB of 
memory.  

Software for the CPU code was written in C++ and 
compiled using the GNU g++ compiler (version 4.1.2). The 
GPU components were written using the CUDA™ 
SDK/compiler, version 2.2 (NVIDIA Corporation, Santa 
Clara, CA). We compared execution using a single CPU core 
to a single GPU for performance evaluation. Reconstructions 
were performed using two iterations and 30 subsets, which is 
our standard clinical practice. 

The CUDA programming environment enables the 
execution of parallelized code in “threads” that run on a GPU. 
Threads are grouped in “blocks,” which are activated by the 
invocation of a “grid,” thereby providing thousands of 
concurrent instances of the code. Fig. 1 shows the GPU thread 
structure and the associated memory hierarchy. The actual 
number of available threads is dependent on the specifications 
of the particular GPU being used. 

B. MOLAR Components and Test Data 
Our current CPU-only cluster-based implementation of 

MOLAR relies on the distribution of computational tasks 
across several commodity PCs that communicate via the 
Message Passing Interface (MPI). This implementation 
typically requires seven dual-processor nodes for a single 
frame reconstruction that produces results in a few hours. 

The major contributors to computation time in the CPU-
only MOLAR code are the modules that perform boundary 
checking (identifying the spatial boundaries of the object by 
ray tracing), forward projection and backprojection of PET 
coincidence events, photon scatter modeling, and algorithm 
update calculations. For GPU acceleration, CUDA kernels 
(GPU-based programs) were written to replace these C++ 
modules while the predominantly serial functions of MOLAR 
remained in C++ code running on the CPU.   

The GPU-accelerated and CPU-only versions of the 
MOLAR code were run separately on phantom data acquired 
on our HRRT scanner. A cylindrical phantom containing 1.3 
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mCi of 68Ge was scanned for five minutes, acquiring 
approximately 164M counts. Reconstructions were performed 
for 500k to 50M total coincidence events. Compute times for 
each of the major components were isolated, event processing 
rates were computed, and relative speedup was determined. 
For numerical accuracy evaluation under clinical imaging 
conditions, we also reconstructed patient data obtained after a 
7.4 mCi injection of 18F-fluorodopa. The reconstructed frame 
was 90-second duration, with 16M total counts.

 

 
 
Fig. 1.  The relationship between GPU threads, blocks and grids and the 

associated memory hierarchy [9].  
 

C. Boundary Checking 
Boundary checking (Fig. 2) is a one-time operation that is 

performed for two reasons: to exclude coincidence events that 
are detected by the scanner but do not contribute to the volume 
of interest being reconstructed, and to define the range of 
voxels along an event’s line-of-response (LOR) that contribute 
to the reconstruction volume of interest. Both purposes serve 
to minimize the amount of computation required for the 
reconstruction and were originally implemented as a time-
saving strategy for the cluster implementation of MOLAR.  

To accomplish boundary checking, each event LOR is ray-
traced from one side of the image matrix to the other. The first 
voxel that intercepts the attenuation map, allowing for a pre-
defined margin outside the map, defines the starting position 

for forward projection. Conversely, the last voxel intercepting 
the attenuation map defines the end position. Determining this 
range of voxels along an LOR can typically reduce the 
relevant portion of the LOR to roughly half its original length. 

Boundary checking is accelerated using the GPU by 
assigning the threads within each 16 x 8 thread block to a
single coincidence event. The event LOR is divided among the 
threads for simultaneous ray tracing. The end points are stored 
in fast, on-chip, shared memory within the GPU for rapid 
inter-thread communication. Once the entire LOR has been 
traced, the boundary points are determined from the 
intermediate results stored in shared memory. All coincidence 
events are streamed through the GPU by invoking 5000 blocks 
(events) per grid. 

 

 
 
Fig. 2.  Boundary checking determines which voxels to include in forward 

projection (green) and which voxels, or coincidence events, to exclude (red).  
Voxels shown are not to scale. 

 

D. Forward Projection and Backprojection 
Forward projection involves every voxel that lies in the 

neighborhood of an event LOR, as defined by the scanner’s 
resolution function. It is done for the attenuation map to 
determine the overall impact of attenuation on a given LOR, 
and iteratively for the activity distribution to determine the 
estimated count rate observed by the detector pair associated 
with that LOR. Backprojection, on the other hand, generates 
an activity distribution image according to the current iterate 
of the estimated detector count rates.

Both forward and backprojection operations involve 
frequent reads of the activity distribution image array. Each 
read suffers from memory access latency that makes these 
reads much slower than computational instructions. 
Fortunately forward projection operations can be organized by 
voxel neighborhoods, and thereby make use of fast, cached 
memory accesses. Backprojection, however, is also unable to 
take advantage of caching, which is a read-only option. It also 
requires atomic writes to avoid consistency conflicts between 
concurrent threads. The respective acceleration strategies for 
forward and backprojection therefore necessitate different 
approaches. A detailed discussion of the challenges and 
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strategies involved in accelerating these modules is discussed 
in [10]. 

The algorithm update portion of MOLAR is a hybrid 
module in that it involves both forward and backprojection 
operations, along with the OSEM update factor calculations 
that are only performed on the CPU. Because this mixed CPU-
GPU implementation has a substantial overall impact on 
MOLAR, the performance of this module was evaluated 
separately.

E. Scatter Modeling
A 3D version of the single-scatter simulation (SSS) model 

[11] was implemented in MOLAR for scatter correction.  The 
implementation computes the scatter contribution for “scatter 
points” that are distributed throughout the subject volume. For 
each scatter point, MOLAR computes the scatter observed by 
virtual “detectors” that mimic real scanner detectors but are 
positioned in a cylindrical geometry with coarser spatial 
sampling. Fig. 3 shows the spatial distribution of the virtual 
detectors and the scatter points for a cylinder phantom. Coarse 
sampling is acceptable because scatter varies slowly spatially 
and can therefore be readily interpolated. Even so, there are 
thousands of scatter point-virtual detector combinations to 
compute. For each combination, the contribution of all image 
voxels in the neighborhood of an event’s LOR must be 
computed. Because these computations are independent, this 
task is readily parallelized. 

 

 
Fig. 3. The distribution of “virtual detectors” (red) in a cylindrical 

arrangement and “scatter points” (blue) randomly distributed throughout the 
object being imaged, in this case a cylindrical phantom. 

 
There are two main tasks in the scatter model that are 

computationally intensive: ray summing and scatter 
calculation. Ray sums are computed along lines that connect 
every scatter point-virtual detector pair for both the 
attenuation map and for the estimated activity distribution. 
This is similar to event forward projection except one end 
point lies within the subject volume. 

Our GPU-accelerated ray sums are parallelized using a 
single grid invocation that encompasses all scatter point-
virtual detector combinations. The attenuation map and 
activity distribution are stored in 3D read-only, cached arrays 
that are efficiently accessed. A single thread block is assigned 
to each scatter point with the individual threads of that block
each assigned to a virtual detector. All threads execute the 
same code, but some threads complete sooner than others due 
to differences in the distances the ray sums must traverse in 
their respective paths. The threads therefore do not suffer from 
code divergence, which degrades overall performance, so that 
fast performance is maintained. 

Scatter calculation is performed for every possible virtual 
detector pair (e.g., detectorA and detectorB), mimicking the 
physical process of PET coincidence detection. For each 
detector pair, the contribution from all the scatter points are 
combined to get an estimate of the total scatter observed by 
that pair of detectors.  For the HRRT, the virtual detectors are 
located at and indexed by 17 axial positions and 100 azimuthal 
angles. To parallelize scatter calculation, the GPU-accelerated 
code invokes a grid for one of the virtual detector’s 
(detectorA) angle. Blocks, which can have two indices, are 
defined by detectorA’s axial position and by detectorB’s 
angle. Threads are then assigned by detectorB’s axial position 
so that 16 scatter points can be computed concurrently. This 
arrangement results in 272 (16 x 17) active threads per block, 
1700 blocks, and 100 grids. 

F. Numerical Accuracy 
Images generated by the CPU-only and GPU-accelerated 

code were compared for numerical accuracy by direct 
subtraction of the final reconstructed images. Maximum 
absolute differences and mean differences within a large 
region of interest (ROI) were obtained from a single central 
slice and from a summed image (slices 50-150). The images 
were also evaluated visually for artifacts. 

G. Overall Package Performance 
Lastly, we evaluated the net event processing rates for the 

complete GPU-accelerated MOLAR package. 

III. RESULTS 

A. Boundary Checking 
As seen in Fig. 4, GPU-accelerated boundary checking was 

nine to 35 times faster than for the CPU-only code. The best 
performance occurred when large numbers of counts were 
processed, overcoming the startup costs inherent in initiating 
the GPU kernels. The GPU processing rate levels out at more 
than 1M events/sec for 10M total counts. 

B. Forward Projection and Backprojection 
Forward projection on the GPU (Fig. 5) was found to be 38 

to 50 times faster over the range of count totals used. Indeed, 
performance gains were fairly consistent over the entire range 
of number of events evaluated.  
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Fig. 4. Boundary checking performance as a function of total events 

processed. 
 
Backprojection, on the other hand, was only 16 to 20 times 

faster (Fig. 6). This lesser performance gain was not 
unexpected since backprojection requires writing to GPU 
memory, and array caching is a read-only feature of our GPU.  

The algorithm update portion of MOLAR includes forward 
and backprojection operations that accompany computation of 
the OSEM update factors. We saw very little speedup from the 
GPU-accelerated code when a low number of events are 
processed (Fig. 7). This is largely due to the fact that the 
update calculations are done on the CPU and dominate low 
event count processing. For high-count reconstructions, 
performance improves as backprojection becomes more 
dominant. The event processing rate increases to almost 
100k/sec for 20M counts, without reaching a plateau. This 
trend suggests that we will see better performance for higher 
event totals. 

C. Scatter Modeling 
Scatter modeling showed the most dramatic performance 

boost with the GPU-accelerated code being 200 times faster 
than the CPU-only code. Here event count totals have no 
impact because scatter modeling is a geometrical calculation 
driven by the image array dimensions, and by the number of 
virtual detectors and scatter points. Because modeling has 
much more computation relative to memory access, it is 
highly suited to GPU acceleration. 

D. Numerical Accuracy 
Difference images computed from the CPU-only and GPU-

accelerated reconstruction results demonstrated minor 
quantitative concerns. Fig. 8 displays a central slice and a 
summed image (slices 50:150), along with the ROI used for 
numerical comparison.  

For the central slice, the maximum absolute relative 
difference observed within the ROI was 2.3%, well below the 
image standard deviation (approximate measurement noise) of  

 

 
 
Fig. 5. Forward projection performance as a function of total events 

processed. 

 
 
Fig. 6. Backprojection performance as a function of total events processed. gg pp jj pp pp

 
Fig. 7. Performance of the OSEM algorithm update module as a function 

of total events processed. This module has forward and backprojection 
operations. 
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50%. The summed image gave 0.5%, less than the image 
standard deviation of 12%. This equates to numerical 
inaccuracies that are approximately 4% of the image 
measurement noise. 

The difference images (bottom row, Fig. 8) reveal subtle 
artifacts that are we believe are due to array indexing and 
integer rounding discrepancies. The magnitude of these 
artifacts (inaccuracies) are well below the statistical 
measurement noise inherent in these data, and can be ignored
in many cases. Nevertheless, it is better that they are resolved, 
and we anticipate that these discrepancies can be corrected 
upon further investigation.  

 
Fig. 8. Numerical evaluation of GPU-accelerated code compared to CPU-

only code. A central slice (left column) and the sum of slices 50 to 150 (right 
column) are displayed: the activity distribution (top row), along with the 
region of interest (middle row), and the GPU-CPU difference image (bottom 
row). The numbers in brackets indicate the minimum and maximum grayscale 
voxel values. 

E. Overall Performance 
We observed an overall acceleration of the entire MOLAR 

package that was 31 to 49 times faster than the CPU-only code 
(Fig. 9). It is notable that within the range of events evaluated 
here, the slope of the event processing rate curve is positive. 
This trend suggests that overall performance will continue to 
improve for 100M or more total events. 

 
Fig. 9. Overall performance of MOLAR as a function of total events 

processed. 

IV. DISCUSSION 
In general, GPU-accelerated code demonstrated substantial 

performance improvement over the CPU-only code. Best 
performance was typically seen for count totals above 10M.  

Because of the performance gains achieved here, the 
relative time requirements of other portions of MOLAR have 
become more pronounced. In particular, disk I/O now 
occupies a greater fraction of overall run-time, particularly 
when large dynamic datasets are involved, or when disk 
caching is needed. In the reconstructions performed here, we 
found that disk I/O accounted for 1% of CPU-only 
reconstruction time, but 30% of the GPU-assisted 
reconstruction time. These performance bottlenecks can be 
alleviated by using newer, faster disk drives, perhaps even 
solid state drives. We also anticipate that the recently released 
Intel Nehalem architecture will provide much better CPU 
memory performance for the CPU-based components of 
MOLAR that are not readily parallelized, particularly those 
that have high memory requirements. These factors partially 
explain why we observed a speedup factor of only 31 for 10M 
events as compared to 49 for 500k events in Fig. 9. 

One of our other goals is to run MOLAR in a multi-core, 
multi-GPU environment to see if a large reconstruction job 
can be adequately achieved within a single server. For 
example, an 8-core server with 64 GB of RAM coupled to 8 
GPUs may make it possible to run a 4D reconstruction job 
entirely within a single server, eliminating inter-computer 
communication limitations. 

V. CONCLUSION

This study has demonstrated the benefit of using GPUs to 
accelerate MOLAR. We anticipate additional improvements as 
we move toward better data I/O support. This acceleration 
positions us well for rapid reconstruction of high count 
datasets, higher resolution finely-sampled images, and perhaps 
even 4D parametric reconstructions.  
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