

A GPU-Accelerated Implementation of
the MOLAR PET Reconstruction Package

W. Craig Barker, Shanthalaxmi Thada, and William Dieckmann

 Abstract–MOLAR (Motion-compensation OSEM List-mode
Algorithm for Resolution-recovery reconstruction) was written to
provide the best possible images from ECAT HRRT PET data.
Because of computational demands, MOLAR currently requires
a computer cluster for practical use. Here we have applied GPU-
acceleration via CUDA to all of the computationally intensive
modules of the MOLAR package. Using an NVIDIA Tesla S1070-
400 GPU system hosted by an HP xw8400 workstation, we
evaluated the GPU-accelerated performance of the modules that
perform boundary checking, forward and backprojection,
photon scatter modeling and algorithm updates. We compared
their performance to CPU-only versions of MOLAR for a range
of total counts (500k to 50M). We found boundary checking to be
up to 35 times faster using the GPU. Forward and backprojection
ran 50 and 20 times faster, respectively, and scatter modeling was
200 times faster. Algorithm updates ran up to 15 times faster.
The overall performance of the entire MOLAR package was
approximately 40 times faster than the CPU-only code. These
results show that MOLAR can be substantially accelerated using
GPUs and can thereby be practically extended for use in high
count and higher resolution applications, and for 4D parametric
reconstructions.

I. INTRODUCTION

OLAR (Motion-compensation OSEM List-mode
Algorithm for Resolution-recovery reconstruction [1,2])

was originally written for the ECAT HRRT (High Resolution
Research Tomograph, Siemens Medical Solutions, Knoxville,
TN, USA) to obtain high-resolution, motion-corrected images.
The code is nevertheless flexible enough to be adapted to any
scanner. Unfortunately, it has substantial computational
demands and currently requires a computer cluster to obtain
reasonable reconstruction times. More rapid reconstruction is
desirable and would make high-count frames and 4D
parametric reconstruction [3] more accessible.

Many groups have tackled the problem of accelerating
image reconstruction using a variety of technologies (GPUs,
FPGAs, Cell-based systems, etc.) and a variety of languages
(Cg, OpenGL, CUDA, etc.) [4-7]. We previously began
accelerating parts of MOLAR using CUDA and GPUs, in
particular forward projection and component-based
normalization factor calculation [8]. In this study we have
extended that work to all of the computationally intensive

Manuscript received October 20, 2009. This work was supported by the

Intramural Research Program of the NIH, CC.
W. C. Barker is with the PET Department, NIH Clinical Center, National

Institutes Health, Bethesda, MD 20892 USA (telephone: 301-451-3558, e-
mail: cbarker @nih.gov).

S. Thada is with the PET Department, NIH Clinical Center, National
Institutes Health, Bethesda, MD 20892 USA (e-mail: sthada @cc.nih.gov).

W. Dieckmann is with the PET Department, NIH Clinical Center, National
Institutes Health, Bethesda, MD 20892 USA (e-mail: wdieckmann
@cc.nih.gov).

components of MOLAR and have evaluated the performance
of the complete package.

II. METHODS

A. Hardware and Programming Environment
We used a Hewlett-Packard xw8400 workstation having

two dual-core Intel Xeon 5130 CPUs running at 2.0 GHz with
12 GB of RAM. The workstation was running Red Hat Linux
WS 5 (64-bit). For acceleration we chose an NVIDIA Tesla
S1070-400 system having four GPUs, each with four GB of
memory.

Software for the CPU code was written in C++ and
compiled using the GNU g++ compiler (version 4.1.2). The
GPU components were written using the CUDA™
SDK/compiler, version 2.2 (NVIDIA Corporation, Santa
Clara, CA). We compared execution using a single CPU core
to a single GPU for performance evaluation. Reconstructions
were performed using two iterations and 30 subsets, which is
our standard clinical practice.

The CUDA programming environment enables the
execution of parallelized code in “threads” that run on a GPU.
Threads are grouped in “blocks,” which are activated by the
invocation of a “grid,” thereby providing thousands of
concurrent instances of the code. Fig. 1 shows the GPU thread
structure and the associated memory hierarchy. The actual
number of available threads is dependent on the specifications
of the particular GPU being used.

B. MOLAR Components and Test Data
Our current CPU-only cluster-based implementation of

MOLAR relies on the distribution of computational tasks
across several commodity PCs that communicate via the
Message Passing Interface (MPI). This implementation
typically requires seven dual-processor nodes for a single
frame reconstruction that produces results in a few hours.

The major contributors to computation time in the CPU-
only MOLAR code are the modules that perform boundary
checking (identifying the spatial boundaries of the object by
ray tracing), forward projection and backprojection of PET
coincidence events, photon scatter modeling, and algorithm
update calculations. For GPU acceleration, CUDA kernels
(GPU-based programs) were written to replace these C++
modules while the predominantly serial functions of MOLAR
remained in C++ code running on the CPU.

The GPU-accelerated and CPU-only versions of the
MOLAR code were run separately on phantom data acquired
on our HRRT scanner. A cylindrical phantom containing 1.3

M

2009 IEEE Nuclear Science Symposium Conference Record HPP-4

U.S. Government work not protected by U.S. copyright 4114

mCi of 68Ge was scanned for five minutes, acquiring
approximately 164M counts. Reconstructions were performed
for 500k to 50M total coincidence events. Compute times for
each of the major components were isolated, event processing
rates were computed, and relative speedup was determined.
For numerical accuracy evaluation under clinical imaging
conditions, we also reconstructed patient data obtained after a
7.4 mCi injection of 18F-fluorodopa. The reconstructed frame
was 90-second duration, with 16M total counts.

Fig. 1. The relationship between GPU threads, blocks and grids and the

associated memory hierarchy [9].

C. Boundary Checking
Boundary checking (Fig. 2) is a one-time operation that is

performed for two reasons: to exclude coincidence events that
are detected by the scanner but do not contribute to the volume
of interest being reconstructed, and to define the range of
voxels along an event’s line-of-response (LOR) that contribute
to the reconstruction volume of interest. Both purposes serve
to minimize the amount of computation required for the
reconstruction and were originally implemented as a time-
saving strategy for the cluster implementation of MOLAR.

To accomplish boundary checking, each event LOR is ray-
traced from one side of the image matrix to the other. The first
voxel that intercepts the attenuation map, allowing for a pre-
defined margin outside the map, defines the starting position

for forward projection. Conversely, the last voxel intercepting
the attenuation map defines the end position. Determining this
range of voxels along an LOR can typically reduce the
relevant portion of the LOR to roughly half its original length.

Boundary checking is accelerated using the GPU by
assigning the threads within each 16 x 8 thread block to a
single coincidence event. The event LOR is divided among the
threads for simultaneous ray tracing. The end points are stored
in fast, on-chip, shared memory within the GPU for rapid
inter-thread communication. Once the entire LOR has been
traced, the boundary points are determined from the
intermediate results stored in shared memory. All coincidence
events are streamed through the GPU by invoking 5000 blocks
(events) per grid.

Fig. 2. Boundary checking determines which voxels to include in forward

projection (green) and which voxels, or coincidence events, to exclude (red).
Voxels shown are not to scale.

D. Forward Projection and Backprojection
Forward projection involves every voxel that lies in the

neighborhood of an event LOR, as defined by the scanner’s
resolution function. It is done for the attenuation map to
determine the overall impact of attenuation on a given LOR,
and iteratively for the activity distribution to determine the
estimated count rate observed by the detector pair associated
with that LOR. Backprojection, on the other hand, generates
an activity distribution image according to the current iterate
of the estimated detector count rates.

Both forward and backprojection operations involve
frequent reads of the activity distribution image array. Each
read suffers from memory access latency that makes these
reads much slower than computational instructions.
Fortunately forward projection operations can be organized by
voxel neighborhoods, and thereby make use of fast, cached
memory accesses. Backprojection, however, is also unable to
take advantage of caching, which is a read-only option. It also
requires atomic writes to avoid consistency conflicts between
concurrent threads. The respective acceleration strategies for
forward and backprojection therefore necessitate different
approaches. A detailed discussion of the challenges and

4115

strategies involved in accelerating these modules is discussed
in [10].

The algorithm update portion of MOLAR is a hybrid
module in that it involves both forward and backprojection
operations, along with the OSEM update factor calculations
that are only performed on the CPU. Because this mixed CPU-
GPU implementation has a substantial overall impact on
MOLAR, the performance of this module was evaluated
separately.

E. Scatter Modeling
A 3D version of the single-scatter simulation (SSS) model

[11] was implemented in MOLAR for scatter correction. The
implementation computes the scatter contribution for “scatter
points” that are distributed throughout the subject volume. For
each scatter point, MOLAR computes the scatter observed by
virtual “detectors” that mimic real scanner detectors but are
positioned in a cylindrical geometry with coarser spatial
sampling. Fig. 3 shows the spatial distribution of the virtual
detectors and the scatter points for a cylinder phantom. Coarse
sampling is acceptable because scatter varies slowly spatially
and can therefore be readily interpolated. Even so, there are
thousands of scatter point-virtual detector combinations to
compute. For each combination, the contribution of all image
voxels in the neighborhood of an event’s LOR must be
computed. Because these computations are independent, this
task is readily parallelized.

Fig. 3. The distribution of “virtual detectors” (red) in a cylindrical

arrangement and “scatter points” (blue) randomly distributed throughout the
object being imaged, in this case a cylindrical phantom.

There are two main tasks in the scatter model that are

computationally intensive: ray summing and scatter
calculation. Ray sums are computed along lines that connect
every scatter point-virtual detector pair for both the
attenuation map and for the estimated activity distribution.
This is similar to event forward projection except one end
point lies within the subject volume.

Our GPU-accelerated ray sums are parallelized using a
single grid invocation that encompasses all scatter point-
virtual detector combinations. The attenuation map and
activity distribution are stored in 3D read-only, cached arrays
that are efficiently accessed. A single thread block is assigned
to each scatter point with the individual threads of that block
each assigned to a virtual detector. All threads execute the
same code, but some threads complete sooner than others due
to differences in the distances the ray sums must traverse in
their respective paths. The threads therefore do not suffer from
code divergence, which degrades overall performance, so that
fast performance is maintained.

Scatter calculation is performed for every possible virtual
detector pair (e.g., detectorA and detectorB), mimicking the
physical process of PET coincidence detection. For each
detector pair, the contribution from all the scatter points are
combined to get an estimate of the total scatter observed by
that pair of detectors. For the HRRT, the virtual detectors are
located at and indexed by 17 axial positions and 100 azimuthal
angles. To parallelize scatter calculation, the GPU-accelerated
code invokes a grid for one of the virtual detector’s
(detectorA) angle. Blocks, which can have two indices, are
defined by detectorA’s axial position and by detectorB’s
angle. Threads are then assigned by detectorB’s axial position
so that 16 scatter points can be computed concurrently. This
arrangement results in 272 (16 x 17) active threads per block,
1700 blocks, and 100 grids.

F. Numerical Accuracy
Images generated by the CPU-only and GPU-accelerated

code were compared for numerical accuracy by direct
subtraction of the final reconstructed images. Maximum
absolute differences and mean differences within a large
region of interest (ROI) were obtained from a single central
slice and from a summed image (slices 50-150). The images
were also evaluated visually for artifacts.

G. Overall Package Performance
Lastly, we evaluated the net event processing rates for the

complete GPU-accelerated MOLAR package.

III. RESULTS

A. Boundary Checking
As seen in Fig. 4, GPU-accelerated boundary checking was

nine to 35 times faster than for the CPU-only code. The best
performance occurred when large numbers of counts were
processed, overcoming the startup costs inherent in initiating
the GPU kernels. The GPU processing rate levels out at more
than 1M events/sec for 10M total counts.

B. Forward Projection and Backprojection
Forward projection on the GPU (Fig. 5) was found to be 38

to 50 times faster over the range of count totals used. Indeed,
performance gains were fairly consistent over the entire range
of number of events evaluated.

4116

Fig. 4. Boundary checking performance as a function of total events

processed.

Backprojection, on the other hand, was only 16 to 20 times

faster (Fig. 6). This lesser performance gain was not
unexpected since backprojection requires writing to GPU
memory, and array caching is a read-only feature of our GPU.

The algorithm update portion of MOLAR includes forward
and backprojection operations that accompany computation of
the OSEM update factors. We saw very little speedup from the
GPU-accelerated code when a low number of events are
processed (Fig. 7). This is largely due to the fact that the
update calculations are done on the CPU and dominate low
event count processing. For high-count reconstructions,
performance improves as backprojection becomes more
dominant. The event processing rate increases to almost
100k/sec for 20M counts, without reaching a plateau. This
trend suggests that we will see better performance for higher
event totals.

C. Scatter Modeling
Scatter modeling showed the most dramatic performance

boost with the GPU-accelerated code being 200 times faster
than the CPU-only code. Here event count totals have no
impact because scatter modeling is a geometrical calculation
driven by the image array dimensions, and by the number of
virtual detectors and scatter points. Because modeling has
much more computation relative to memory access, it is
highly suited to GPU acceleration.

D. Numerical Accuracy
Difference images computed from the CPU-only and GPU-

accelerated reconstruction results demonstrated minor
quantitative concerns. Fig. 8 displays a central slice and a
summed image (slices 50:150), along with the ROI used for
numerical comparison.

For the central slice, the maximum absolute relative
difference observed within the ROI was 2.3%, well below the
image standard deviation (approximate measurement noise) of

Fig. 5. Forward projection performance as a function of total events

processed.

Fig. 6. Backprojection performance as a function of total events processed. gg pp jj pp pp

Fig. 7. Performance of the OSEM algorithm update module as a function

of total events processed. This module has forward and backprojection
operations.

4117

50%. The summed image gave 0.5%, less than the image
standard deviation of 12%. This equates to numerical
inaccuracies that are approximately 4% of the image
measurement noise.

The difference images (bottom row, Fig. 8) reveal subtle
artifacts that are we believe are due to array indexing and
integer rounding discrepancies. The magnitude of these
artifacts (inaccuracies) are well below the statistical
measurement noise inherent in these data, and can be ignored
in many cases. Nevertheless, it is better that they are resolved,
and we anticipate that these discrepancies can be corrected
upon further investigation.

Fig. 8. Numerical evaluation of GPU-accelerated code compared to CPU-

only code. A central slice (left column) and the sum of slices 50 to 150 (right
column) are displayed: the activity distribution (top row), along with the
region of interest (middle row), and the GPU-CPU difference image (bottom
row). The numbers in brackets indicate the minimum and maximum grayscale
voxel values.

E. Overall Performance
We observed an overall acceleration of the entire MOLAR

package that was 31 to 49 times faster than the CPU-only code
(Fig. 9). It is notable that within the range of events evaluated
here, the slope of the event processing rate curve is positive.
This trend suggests that overall performance will continue to
improve for 100M or more total events.

Fig. 9. Overall performance of MOLAR as a function of total events

processed.

IV. DISCUSSION
In general, GPU-accelerated code demonstrated substantial

performance improvement over the CPU-only code. Best
performance was typically seen for count totals above 10M.

Because of the performance gains achieved here, the
relative time requirements of other portions of MOLAR have
become more pronounced. In particular, disk I/O now
occupies a greater fraction of overall run-time, particularly
when large dynamic datasets are involved, or when disk
caching is needed. In the reconstructions performed here, we
found that disk I/O accounted for 1% of CPU-only
reconstruction time, but 30% of the GPU-assisted
reconstruction time. These performance bottlenecks can be
alleviated by using newer, faster disk drives, perhaps even
solid state drives. We also anticipate that the recently released
Intel Nehalem architecture will provide much better CPU
memory performance for the CPU-based components of
MOLAR that are not readily parallelized, particularly those
that have high memory requirements. These factors partially
explain why we observed a speedup factor of only 31 for 10M
events as compared to 49 for 500k events in Fig. 9.

One of our other goals is to run MOLAR in a multi-core,
multi-GPU environment to see if a large reconstruction job
can be adequately achieved within a single server. For
example, an 8-core server with 64 GB of RAM coupled to 8
GPUs may make it possible to run a 4D reconstruction job
entirely within a single server, eliminating inter-computer
communication limitations.

V. CONCLUSION

This study has demonstrated the benefit of using GPUs to
accelerate MOLAR. We anticipate additional improvements as
we move toward better data I/O support. This acceleration
positions us well for rapid reconstruction of high count
datasets, higher resolution finely-sampled images, and perhaps
even 4D parametric reconstructions.

4118

REFERENCES
[1] R. E. Carson, W. C. Barker, J-S. Liow, and C. A. Johnson, “Design of a

motion-compensation OSEM list-mode algorithm for resolution-
recovery reconstruction for the HRRT,” IEEE Nuclear Science
Symposium and Medical Imaging Conference, Portland, 2003.

[2] C. A. Johnson, S. Thada, M. Rodriquez, Y. Zhao, A. R. Iano-Fletcher, J-
S. Liow, W. C. Barker, R. L. Martino, and R. E. Carson, “Software
architecture of the MOLAR-HRRT reconstruction engine,” IEEE
Nuclear Science Symposium and Medical Imaging Conference, Rome,
2004.

[3] J. Yan, B. Planeta-Wilson, J-D. Gallezot, R. E. Carson, “Initial
evaluation of direct 4D parametric reconstruction with human PET
data,” IEEE Nuclear Science Symposium and Medical Imaging
Conference, Orlando, 2009

[4] G. Pratx, G. Chinn, F. Habte, P. Olcott, and C. Levin, “Fully 3-D list-
mode OSEM accelerated by graphics processing units,” IEEE Nuclear
Science Symposium and Medical Imaging Conference, San Diego, 2006.

[5] G. Pratx, G. Chinn, P. D. Olcott, and C. S. Levin, “Fast, accurate and
shift-varying line projections for iterative reconstruction using the
GPU,” IEEE Trans. Med. Imag., vol. 28, no. 3, pp. 435-445, Mar. 2009.

[6] F. Xu and K. Mueller, “Accelerating popular tomographic reconstruction
algorithms on commodity PC graphics hardware,” IEEE Trans. Nucl.
Sci., vol. 52, no. 3, pp. 654-663, Jun. 2005.

[7] O. Bockenbach, S. Schuberth, M. Knaup, and M. Kachelrieß, “High
performance 3D image reconstruction platforms; state of the art,
implications and compromises,” 9th International Meeting on Fully
Three-Dimensional Image Reconstruction in Radiology and Nuclear
Medicine, Lindau, 2007.

[8] W. C. Barker and S. Thada, “GPU acceleration of MOLAR for HRRT
list-mode OSEM reconstructions,” IEEE Nuclear Science Symposium
and Medical Imaging Conference, Honolulu, 2007.

[9] CUDA Programming Guide Version 2.3, NVIDIA Corporation, Santa
Clara, CA.

[10] W. Dieckmann, S. Thada, and W. C. Barker, "Strategies for accelerating
forward and backprojection in list-mode OSEM PET reconstruction
using GPUs," Workshop on High Performance Medical Imaging IEEE
Nuclear Science Symposium and Medical Imaging Conference, Orlando,
2009.

[11] C. C. Watson, "New, faster, image-based scatter correction for 3D PET,"
IEEE Trans. Nucl. Sci., vol. 47, no. 4, pp. 1587-1594, Aug. 2000.

4119

