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  Abstract–Image reconstruction for the ECAT HRRT PET 
scanner with MOLAR is computationally demanding and 
requires a computer cluster for reasonable run times. Parallel 
computing using GPUs and CUDA offers a means to accelerate 
MOLAR. However, forward and backprojection operations 
present unique challenges that must be overcome to achieve 
acceptable speedup. In this study we implement GPU-accelerated 
versions of MOLAR’s forward projection, backprojection and 
algorithm update modules and compare their performance to 
CPU-only versions. During this implementation we optimized the 
GPU thread configurations for each of these modules separately, 
along with a hybrid forward-backprojection module that is used 
for algorithm updates. We also numerically evaluated the 
reconstruction results to assess the impact of floating-point to 
integer conversions dictated by the GPU architecture. We found 
forward projection to be 41 times faster than the CPU-only code, 
while backprojection was 20 times faster. We found the optimal 
thread configurations always assigned 64 threads to a thread 
block, but with different distributions across the nested indexing 
loops within each module. These results show that MOLAR’s 
forward and backprojection modules can be adequately 
accelerated to make the MOLAR reconstruction package much 
more efficient.  

I. INTRODUCTION 

OLAR (Motion-compensation OSEM List-mode 
Algorithm for Resolution-recovery reconstruction [1,2]) 

was developed to extract high-resolution images from list-
mode Siemens ECAT HRRT (High Resolution Research 
Tomograph, Siemens Medical Solutions, Knoxville, TN, 
USA) PET data. Due to computational demands, seven dual-
processor clustered computers are used to generate a typical 
image volume in about three hours. Speeding up the 
reconstruction process would bring many benefits.  Images 
would be available sooner after acquisition, particularly for 
dynamic studies; improvements in image quality through the 
use of finer sampling grids than are currently practical would 
become more accessible; and the more computationally 
intensive 4D parametric modeling implementation of MOLAR 
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[3] would become more usable. This paper investigates the 
challenges related specifically to accelerating the forward 
projection and backprojection operations that represent a large 
part of computation in MOLAR. For an overview of 
accelerating the complete MOLAR package using GPUs, see 
[4]. 

II. METHODS 

A. Hardware and Programming Environment 
We used a Hewlett-Packard xw8400 workstation having 

two dual-core Intel Xeon 5130 CPUs running at 2.0 GHz with 
12 GB of RAM. The workstation was running Red Hat Linux 
WS 5 (64-bit). For acceleration we chose an NVIDIA Tesla 
S1070-400 system with four GPUs, each having four GB of 
memory.  

MOLAR’s C++ code was compiled for the workstation 
CPU using the GNU g++ compiler (version 4.1.2). GPU code 
was written using NVIDIA’s CUDA™ SDK/compiler, version 
2.2 (NVIDIA Corporation, Santa Clara, CA). Although the 
workstation has multiple CPU cores and the Tesla S1070 has 
four independent GPUs that can be used in parallel, we used 
only one core with one GPU to evaluate relative performance. 

The CUDA programming environment facilitates the 
concurrent execution of multiple instances of code in 
“threads” that run on a GPU. These threads are organized into 
“blocks,” which are invoked by a “grid” (Fig. 1). This can 
result in thousands of concurrent instances of code operating 
on independent data elements.  

B. Computation and Test Data 
CUDA kernels (GPU-based programs) were written to 

replace the C++ modules in MOLAR that perform coincidence 
event forward projection, backprojection, and the combined 
forward-backprojection in the OSEM algorithm update. 

To evaluate relative performance, the GPU-accelerated and 
CPU-only versions of the MOLAR code were run on phantom 
data acquired on our HRRT PET scanner. A cylindrical 
phantom containing 1.3 mCi of 68Ge was scanned for five 
minutes, yielding approximately 164M events. The image 
volume dimensions were 256 x 256 x 207. Once the kernel 
configurations were optimized, we evaluated performance by 
separately reconstructing five million events using the GPU-
accelerated code and the CPU-only code. 

To assess numerical accuracy and precision, we also chose 
two clinical brain scans and reconstructed them using the 
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CPU-only and GPU-accelerated versions of MOLAR. The 
first scan had 18F-fluorodopa as the tracer and represents a 
spatially varying activity distribution, while the other scan 
utilized 11C-leucine, giving a more uniform distribution. From 
the fluorodopa scan, emission images for frame durations of 
six, 15, 60, and 90 seconds were created. Frame durations for 
the leucine scan were all 90 seconds, but five different frame 
start times were chosen so that tracer kinetics and physical 
decay caused the number of events incorporated per frame to 
vary widely. Reconstructed images were then subtracted 
voxel-by-voxel for direct comparison. 

 

 
 
Fig. 1. GPU threads, blocks and grids and the memory hierarchy associated 

with them [5].  
 

C. Kernel Strategies 
Projection of coincidence events consists largely of tracing 

rays through an image volume along an event’s line-of-
response (LOR). Image voxels in the neighborhood of the 
LOR, as defined by the scanner’s spatial resolution function, 
are included in the computations that determine their relative 
contribution to the projection value. For the datasets used in 
this study, a 7 x 7 voxel neighborhood orthogonal to the 
LOR’s primary axis was used. 

Each coincidence event typically requires access to 
thousands of image voxels for each forward projection, so 
memory transaction efficiency is essential to good 

performance on the GPU. We sought to maximize this 
efficiency in three ways: a) the storage and retrieval of 
intermediate values were replaced with on-the-fly calculation 
of the values as they are needed, b) read-only variables, such 
as voxel weight functions, were stored in cacheable memory 
on the GPU, and c) kernel configurations were optimized by 
varying the total number of threads per block, the number of 
threads assigned to voxel indexing, and the total number of 
thread blocks in each grid. The goal of this optimization was 
to find the configuration that most effectively balanced 
memory access with computation.   

D. Forward Projection 
Because forward projection only requires read access to an 

image, image volumes were stored in 3D CUDA arrays, which 
provide cached read-only access to the GPU device memory. 
Low-latency, on-chip, shared memory available to each thread 
block was used to accumulate intermediate results across 
threads. For kernel design, we tried two separate approches: 
one in which a single block handles multiple coincidence 
events, and another that dedicates a thread block to a single 
event. The single-event kernel gave us more flexibility in the 
assignment of threads to the image array indexing loops. 

E. Backprojection 
Image voxels are modified during backprojection, so we 

could not use the GPU’s read-only array cache for efficiency 
gains. Instead, we made use of CUDA’s memory transaction 
coalescing by replicating the image volume in two versions, 
each having the image voxels arranged in different order. One 
version was x-dominant, the other y-dominant. The version 
used by any given coincidence event was determined by the 
angle of the event’s LOR to the scanner’s transaxial plane. 
After all the events are projected, the two image volumes are 
summed to obtain the complete backprojection result. This 
approach is similar to that used in the original MOLAR code. 

With many parallel threads simultaneously updating an 
image volume, it was necessary to use the atomicAdd() 
function to ensure that all events contributed to the result 
without conflicting. As an aside, because the CUDA 
atomicAdd() function only operates on unsigned integers, we 
had to scale and truncate the floating-point image values to 
32-bit integers. In doing so, we had to be careful to choose 
scale factors that would preserve as much precision as possible 
while avoiding integer overflow. 

F. OSEM Algorithm Update 
To achieve computational efficiency, the original 

implementation of MOLAR’s OSEM algorithm update 
module combines, event-by-event, a forward projection with a 
subsequent backprojection. We initially created an equivalent 
GPU kernel to perform this combined forward-backprojection 
in addition to the stand-alone forward and backprojection 
modules described above. Ultimately, however, we separated 
these operations into two separate kernels to allow 
independent performance tuning of the forward and backward 
parts. As before, GPU caching of 3D CUDA arrays were used 
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for forward projection, and two image arrays were used for 
backprojection.  

III. RESULTS 

A. Performance Comparison 
Our performance evaluations found that the GPU-

accelerated code for forward projection using the single event 
per block kernel was 41 times faster than the CPU-only code 
(Table I). The multiple-event per block kernel was better, 
running 50 times faster, but it could not be paired with a fully 
tunable version of  backprojection in the same kernel. 

Backprojection using the GPU was 20 times faster than the 
CPU, limited by the lack of caching during image array writes. 
The OSEM algorithm updates in which forward and 
backprojection were combined in a single kernel ran nine 
times faster on the GPU. When forward and backprojection 
within the algorithm updates were in separate kernels, 
performance improved to 11 times faster. 

Tuning of the various kernel block configurations varied in 
effectiveness. Forward projection showed the largest changes 
in performance, with run-times differing by almost a factor of 
three (Table II). The best performing configuration is shown 
in bold type. The three values designated “thread distribution” 
represent the number of threads assigned to three nested code 
loops that process the voxels within an LOR’s neighborhood. 

Backprojection run-times varied by about 40% across the 
different block configurations (Table III), and forward-
backprojection changed by a factor of two (Table IV). Kernel 
grid size (number of thread blocks activated per kernel 
invocation) had a negligible effect any of the observed run-
times. 

B. Numerical Accuracy 
Subtracting images from the CPU-only reconstructions 

from those obtained with the GPU-accelerated code revealed 
minor numerical issues.  Fig. 2 (top row) shows a central slice 
from the fluorodopa (left column) and leucine (right column) 
reconstructions along with outlines of the regions-of-interest 
(ROI) used for numerical comparison.  The middle row shows 
difference images (GPU minus CPU) and the bottom row 
shows percent differences. The fluorodopa reconstruction 
included 16M events, while the leucine run had 43M events. 

For the fluorodopa and leucine central slices, the mean 
values were 8,427 Bq/ml and 28,783 Bq/ml, respectively. 
Approximate measurement noise, as estimated by the voxel 
standard deviation within the ROIs, were 52% and 41%.  The 
maximum absolute differences between the GPU and CPU 
images were 194 and 529, which is 4.4 and 4.5% of the 
approximate measurement noise.  

The mean ROI values for the difference images were -0.07 
and -14.45, or -0.0008% and 0.05% of the mean values. 
Standard deviations of the difference regions were 15.8 and 
51.8, which is 0.36 and 0.44% of the measurement noise. 

Subtle artifact structures in the difference images are clearly 
visible in the bottom row of Fig. 2. We suspect that the 
primarily diagonal features are caused by floating-point 

rounding differences in the voxel indexing code, which we 
expect to be able to correct after further investigation. There 
are also other small round-off differences, similar in 
magnitude to differences arising from the floating-point to 
integer conversions used in our GPU-based backprojection 
module. 
 

TABLE I.  EVENT PROCESSING RATES FOR 5M EVENTS 
 

  Events/sec Events/sec 
 Module CPU-only GPU-accelerated 
 Forward Proj. (single-event/block) 9,770 396,000 
 Backprojection 8,561 167,001 
 OSEM Fwd-Back (1 kernel) 4,550   39,062 
 OSEM Fwd-Back (2 kernels) 4,550   48,543 
 

 
 

TABLE II.  TUNING THE FORWARD PROJECTION KERNEL, 1M EVENTS 
 

  Thread Relative 
 Threads per Block Distribution Run-time 
            256 8 / 8 / 4 2.79 
            128 8 / 8 / 2 2.37 
              64 8 / 8 / 1 1.91 
            128 4 / 4 / 8 1.44 
              32 2 / 2 / 8 1.52 
              64 2 / 2 / 16 1.00 
            128 2 / 2 / 32 1.30 
 

 
 

TABLE III.  TUNING THE BACKPROJECTION KERNEL, 200K EVENTS 
 

  Thread Relative 
 Threads per Block Distribution Run-time 
            256 8 / 8 / 4 1.09 
            128 8 / 8 / 2 1.04 
              64 8 / 8 / 1 1.00 
            128 16 / 4 / 2 1.31 
            128 4 / 16 / 2 1.37 
 

 
 

TABLE IV.  TUNING THE FORWARD/BACKPROJECTION KERNEL, 5M EVENTS 
 

  Thread Relative 
 Threads per Block Distribution Run-time 
            128 8 / 8 / 2 1.08 
              64 8 / 8 / 1 1.09 
            128 4 / 4 / 8 1.06 
              64 4 / 4 / 4 1.00 
              64 2 / 2 / 16 1.47 
                8 2 / 2 / 2 1.98 

 

IV. DISCUSSION 
It is difficult to know precisely why particular thread 

distributions perform best for a given kernel. There appear to 
be many factors. Memory access timing varies greatly for 
forward projection and backprojection due to the presence of 
low-latency cache for data reading. Each module performs 
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different calculations between ray-tracing operations.  Cached 
image access is slightly more efficient for one dominant axis 
compared to the other. In short, aside from the observation 
that the optimal configurations all had 64 threads in a block, it 
appears that finding those optimal configurations will continue 
to be an experimental exercise. 

Re-optimizing configurations is likely to useful if the 
number of neighboring voxels associated with an LOR is 
changed, or even for seemingly minor kernel changes. 
Different versions of GPUs also have different computational 
and memory I/O characteristics, and therefore should benefit 
from customized optimization. 

 
 

 
Fig. 2. Sample images obtained from GPU-accelerated code compared 

with CPU-only results. The left column is from a fluorodopa study, the right 
column is from a leucine study. Top row: central slices, with the outlines of 
the regions-of-interest used. Middle row: GPU-CPU difference images. 
Bottom row: percent difference images. The numbers indicate the minimum 
and maximum grayscale voxel values. 

 

V. CONCLUSION 
Forward projection and backprojection in OSEM list-mode 

PET reconstruction can be substantially accelerated when 
assisted by a GPU co-processor. Tuning of CUDA thread 

block dimensions to alter global memory access patterns 
yields worthwhile benefits.  
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