

Strategies for Accelerating Forward and
Backprojection in List-mode OSEM

PET Reconstruction using GPUs
William Dieckmann, Shanthalaxmi Thada, and W. Craig Barker

 Abstract–Image reconstruction for the ECAT HRRT PET
scanner with MOLAR is computationally demanding and
requires a computer cluster for reasonable run times. Parallel
computing using GPUs and CUDA offers a means to accelerate
MOLAR. However, forward and backprojection operations
present unique challenges that must be overcome to achieve
acceptable speedup. In this study we implement GPU-accelerated
versions of MOLAR’s forward projection, backprojection and
algorithm update modules and compare their performance to
CPU-only versions. During this implementation we optimized the
GPU thread configurations for each of these modules separately,
along with a hybrid forward-backprojection module that is used
for algorithm updates. We also numerically evaluated the
reconstruction results to assess the impact of floating-point to
integer conversions dictated by the GPU architecture. We found
forward projection to be 41 times faster than the CPU-only code,
while backprojection was 20 times faster. We found the optimal
thread configurations always assigned 64 threads to a thread
block, but with different distributions across the nested indexing
loops within each module. These results show that MOLAR’s
forward and backprojection modules can be adequately
accelerated to make the MOLAR reconstruction package much
more efficient.

I. INTRODUCTION

OLAR (Motion-compensation OSEM List-mode
Algorithm for Resolution-recovery reconstruction [1,2])

was developed to extract high-resolution images from list-
mode Siemens ECAT HRRT (High Resolution Research
Tomograph, Siemens Medical Solutions, Knoxville, TN,
USA) PET data. Due to computational demands, seven dual-
processor clustered computers are used to generate a typical
image volume in about three hours. Speeding up the
reconstruction process would bring many benefits. Images
would be available sooner after acquisition, particularly for
dynamic studies; improvements in image quality through the
use of finer sampling grids than are currently practical would
become more accessible; and the more computationally
intensive 4D parametric modeling implementation of MOLAR

Manuscript received October 21, 2009. This work was supported by the

Intramural Research Program of the NIH, CC.
W. Dieckmann is with the PET Department, NIH Clinical Center, National

Institutes Health, Bethesda, MD 20892 USA (e-mail: wdieckmann
@cc.nih.gov).

S. Thada is with the PET Department, NIH Clinical Center, National
Institutes Health, Bethesda, MD 20892 USA (e-mail: sthada @cc.nih.gov).

W. C. Barker is with the PET Department, NIH Clinical Center, National
Institutes Health, Bethesda, MD 20892 USA (telephone: 301-451-3558, e-
mail: cbarker @nih.gov).

[3] would become more usable. This paper investigates the
challenges related specifically to accelerating the forward
projection and backprojection operations that represent a large
part of computation in MOLAR. For an overview of
accelerating the complete MOLAR package using GPUs, see
[4].

II. METHODS

A. Hardware and Programming Environment
We used a Hewlett-Packard xw8400 workstation having

two dual-core Intel Xeon 5130 CPUs running at 2.0 GHz with
12 GB of RAM. The workstation was running Red Hat Linux
WS 5 (64-bit). For acceleration we chose an NVIDIA Tesla
S1070-400 system with four GPUs, each having four GB of
memory.

MOLAR’s C++ code was compiled for the workstation
CPU using the GNU g++ compiler (version 4.1.2). GPU code
was written using NVIDIA’s CUDA™ SDK/compiler, version
2.2 (NVIDIA Corporation, Santa Clara, CA). Although the
workstation has multiple CPU cores and the Tesla S1070 has
four independent GPUs that can be used in parallel, we used
only one core with one GPU to evaluate relative performance.

The CUDA programming environment facilitates the
concurrent execution of multiple instances of code in
“threads” that run on a GPU. These threads are organized into
“blocks,” which are invoked by a “grid” (Fig. 1). This can
result in thousands of concurrent instances of code operating
on independent data elements.

B. Computation and Test Data
CUDA kernels (GPU-based programs) were written to

replace the C++ modules in MOLAR that perform coincidence
event forward projection, backprojection, and the combined
forward-backprojection in the OSEM algorithm update.

To evaluate relative performance, the GPU-accelerated and
CPU-only versions of the MOLAR code were run on phantom
data acquired on our HRRT PET scanner. A cylindrical
phantom containing 1.3 mCi of 68Ge was scanned for five
minutes, yielding approximately 164M events. The image
volume dimensions were 256 x 256 x 207. Once the kernel
configurations were optimized, we evaluated performance by
separately reconstructing five million events using the GPU-
accelerated code and the CPU-only code.

To assess numerical accuracy and precision, we also chose
two clinical brain scans and reconstructed them using the

M

2009 IEEE Nuclear Science Symposium Conference Record HPP-3

U.S. Government work not protected by U.S. copyright 4110

CPU-only and GPU-accelerated versions of MOLAR. The
first scan had 18F-fluorodopa as the tracer and represents a
spatially varying activity distribution, while the other scan
utilized 11C-leucine, giving a more uniform distribution. From
the fluorodopa scan, emission images for frame durations of
six, 15, 60, and 90 seconds were created. Frame durations for
the leucine scan were all 90 seconds, but five different frame
start times were chosen so that tracer kinetics and physical
decay caused the number of events incorporated per frame to
vary widely. Reconstructed images were then subtracted
voxel-by-voxel for direct comparison.

Fig. 1. GPU threads, blocks and grids and the memory hierarchy associated

with them [5].

C. Kernel Strategies
Projection of coincidence events consists largely of tracing

rays through an image volume along an event’s line-of-
response (LOR). Image voxels in the neighborhood of the
LOR, as defined by the scanner’s spatial resolution function,
are included in the computations that determine their relative
contribution to the projection value. For the datasets used in
this study, a 7 x 7 voxel neighborhood orthogonal to the
LOR’s primary axis was used.

Each coincidence event typically requires access to
thousands of image voxels for each forward projection, so
memory transaction efficiency is essential to good

performance on the GPU. We sought to maximize this
efficiency in three ways: a) the storage and retrieval of
intermediate values were replaced with on-the-fly calculation
of the values as they are needed, b) read-only variables, such
as voxel weight functions, were stored in cacheable memory
on the GPU, and c) kernel configurations were optimized by
varying the total number of threads per block, the number of
threads assigned to voxel indexing, and the total number of
thread blocks in each grid. The goal of this optimization was
to find the configuration that most effectively balanced
memory access with computation.

D. Forward Projection
Because forward projection only requires read access to an

image, image volumes were stored in 3D CUDA arrays, which
provide cached read-only access to the GPU device memory.
Low-latency, on-chip, shared memory available to each thread
block was used to accumulate intermediate results across
threads. For kernel design, we tried two separate approches:
one in which a single block handles multiple coincidence
events, and another that dedicates a thread block to a single
event. The single-event kernel gave us more flexibility in the
assignment of threads to the image array indexing loops.

E. Backprojection
Image voxels are modified during backprojection, so we

could not use the GPU’s read-only array cache for efficiency
gains. Instead, we made use of CUDA’s memory transaction
coalescing by replicating the image volume in two versions,
each having the image voxels arranged in different order. One
version was x-dominant, the other y-dominant. The version
used by any given coincidence event was determined by the
angle of the event’s LOR to the scanner’s transaxial plane.
After all the events are projected, the two image volumes are
summed to obtain the complete backprojection result. This
approach is similar to that used in the original MOLAR code.

With many parallel threads simultaneously updating an
image volume, it was necessary to use the atomicAdd()
function to ensure that all events contributed to the result
without conflicting. As an aside, because the CUDA
atomicAdd() function only operates on unsigned integers, we
had to scale and truncate the floating-point image values to
32-bit integers. In doing so, we had to be careful to choose
scale factors that would preserve as much precision as possible
while avoiding integer overflow.

F. OSEM Algorithm Update
To achieve computational efficiency, the original

implementation of MOLAR’s OSEM algorithm update
module combines, event-by-event, a forward projection with a
subsequent backprojection. We initially created an equivalent
GPU kernel to perform this combined forward-backprojection
in addition to the stand-alone forward and backprojection
modules described above. Ultimately, however, we separated
these operations into two separate kernels to allow
independent performance tuning of the forward and backward
parts. As before, GPU caching of 3D CUDA arrays were used

4111

for forward projection, and two image arrays were used for
backprojection.

III. RESULTS

A. Performance Comparison
Our performance evaluations found that the GPU-

accelerated code for forward projection using the single event
per block kernel was 41 times faster than the CPU-only code
(Table I). The multiple-event per block kernel was better,
running 50 times faster, but it could not be paired with a fully
tunable version of backprojection in the same kernel.

Backprojection using the GPU was 20 times faster than the
CPU, limited by the lack of caching during image array writes.
The OSEM algorithm updates in which forward and
backprojection were combined in a single kernel ran nine
times faster on the GPU. When forward and backprojection
within the algorithm updates were in separate kernels,
performance improved to 11 times faster.

Tuning of the various kernel block configurations varied in
effectiveness. Forward projection showed the largest changes
in performance, with run-times differing by almost a factor of
three (Table II). The best performing configuration is shown
in bold type. The three values designated “thread distribution”
represent the number of threads assigned to three nested code
loops that process the voxels within an LOR’s neighborhood.

Backprojection run-times varied by about 40% across the
different block configurations (Table III), and forward-
backprojection changed by a factor of two (Table IV). Kernel
grid size (number of thread blocks activated per kernel
invocation) had a negligible effect any of the observed run-
times.

B. Numerical Accuracy
Subtracting images from the CPU-only reconstructions

from those obtained with the GPU-accelerated code revealed
minor numerical issues. Fig. 2 (top row) shows a central slice
from the fluorodopa (left column) and leucine (right column)
reconstructions along with outlines of the regions-of-interest
(ROI) used for numerical comparison. The middle row shows
difference images (GPU minus CPU) and the bottom row
shows percent differences. The fluorodopa reconstruction
included 16M events, while the leucine run had 43M events.

For the fluorodopa and leucine central slices, the mean
values were 8,427 Bq/ml and 28,783 Bq/ml, respectively.
Approximate measurement noise, as estimated by the voxel
standard deviation within the ROIs, were 52% and 41%. The
maximum absolute differences between the GPU and CPU
images were 194 and 529, which is 4.4 and 4.5% of the
approximate measurement noise.

The mean ROI values for the difference images were -0.07
and -14.45, or -0.0008% and 0.05% of the mean values.
Standard deviations of the difference regions were 15.8 and
51.8, which is 0.36 and 0.44% of the measurement noise.

Subtle artifact structures in the difference images are clearly
visible in the bottom row of Fig. 2. We suspect that the
primarily diagonal features are caused by floating-point

rounding differences in the voxel indexing code, which we
expect to be able to correct after further investigation. There
are also other small round-off differences, similar in
magnitude to differences arising from the floating-point to
integer conversions used in our GPU-based backprojection
module.

TABLE I. EVENT PROCESSING RATES FOR 5M EVENTS

 Events/sec Events/sec
 Module CPU-only GPU-accelerated
 Forward Proj. (single-event/block) 9,770 396,000
 Backprojection 8,561 167,001
 OSEM Fwd-Back (1 kernel) 4,550 39,062
 OSEM Fwd-Back (2 kernels) 4,550 48,543

TABLE II. TUNING THE FORWARD PROJECTION KERNEL, 1M EVENTS

 Thread Relative
 Threads per Block Distribution Run-time
 256 8 / 8 / 4 2.79
 128 8 / 8 / 2 2.37
 64 8 / 8 / 1 1.91
 128 4 / 4 / 8 1.44
 32 2 / 2 / 8 1.52
 64 2 / 2 / 16 1.00
 128 2 / 2 / 32 1.30

TABLE III. TUNING THE BACKPROJECTION KERNEL, 200K EVENTS

 Thread Relative
 Threads per Block Distribution Run-time
 256 8 / 8 / 4 1.09
 128 8 / 8 / 2 1.04
 64 8 / 8 / 1 1.00
 128 16 / 4 / 2 1.31
 128 4 / 16 / 2 1.37

TABLE IV. TUNING THE FORWARD/BACKPROJECTION KERNEL, 5M EVENTS

 Thread Relative
 Threads per Block Distribution Run-time
 128 8 / 8 / 2 1.08
 64 8 / 8 / 1 1.09
 128 4 / 4 / 8 1.06
 64 4 / 4 / 4 1.00
 64 2 / 2 / 16 1.47
 8 2 / 2 / 2 1.98

IV. DISCUSSION
It is difficult to know precisely why particular thread

distributions perform best for a given kernel. There appear to
be many factors. Memory access timing varies greatly for
forward projection and backprojection due to the presence of
low-latency cache for data reading. Each module performs

4112

different calculations between ray-tracing operations. Cached
image access is slightly more efficient for one dominant axis
compared to the other. In short, aside from the observation
that the optimal configurations all had 64 threads in a block, it
appears that finding those optimal configurations will continue
to be an experimental exercise.

Re-optimizing configurations is likely to useful if the
number of neighboring voxels associated with an LOR is
changed, or even for seemingly minor kernel changes.
Different versions of GPUs also have different computational
and memory I/O characteristics, and therefore should benefit
from customized optimization.

Fig. 2. Sample images obtained from GPU-accelerated code compared

with CPU-only results. The left column is from a fluorodopa study, the right
column is from a leucine study. Top row: central slices, with the outlines of
the regions-of-interest used. Middle row: GPU-CPU difference images.
Bottom row: percent difference images. The numbers indicate the minimum
and maximum grayscale voxel values.

V. CONCLUSION
Forward projection and backprojection in OSEM list-mode

PET reconstruction can be substantially accelerated when
assisted by a GPU co-processor. Tuning of CUDA thread

block dimensions to alter global memory access patterns
yields worthwhile benefits.

REFERENCES
[1] R. E. Carson, W. C. Barker, J-S. Liow, and C. A. Johnson, “Design of a

motion-compensation OSEM list-mode algorithm for resolution-
recovery reconstruction for the HRRT,” IEEE Nuclear Science
Symposium and Medical Imaging Conference, Portland, 2003.

[2] C. A. Johnson, S. Thada, M. Rodriquez, Y. Zhao, A. R. Iano-Fletcher, J-
S. Liow, W. C. Barker, R. L. Martino, and R. E. Carson, “Software
architecture of the MOLAR-HRRT reconstruction engine,” IEEE
Nuclear Science Symposium and Medical Imaging Conference, Rome,
2004.

[3] J. Yan, B. Planeta-Wilson, J-D. Gallezot, R. E. Carson, “Initial
evaluation of direct 4D parametric reconstruction with human PET
data,” IEEE Nuclear Science Symposium and Medical Imaging
Conference, Orlando, 2009

[4] W. C. Barker, S. Thada, and W. Dieckmann, "A GPU-accelerated
implementation of the MOLAR PET reconstruction package," Workshop
on High Performance Medical Imaging IEEE Nuclear Science
Symposium and Medical Imaging Conference, Orlando, 2009.

[5] CUDA Programming Guide Version 2.3, NVIDIA Corporation, Santa
Clara, CA.

4113

