An Empirical Study of Performance, Power Consumption, and Energy Cost
of Erasure Code Computing for HPC Cloud Storage Systems

Hsing-bung Chen, Gary Grider, Jeff Inman, Parks Fields, Jeff Alan Kuehn
Los Alamos National Lab
Los Alamos, New Mexico 87545, USA
hbchen@lanl.gov

Abstract — Erasure code storage systems are becoming
popular choices for cloud storage systems due to cost-effective
storage space saving schemes and higher fault-resilience
capabilities. Both erasure code encoding and decoding
procedures are involving heavy array, matrix, and table-
lookup compute intensive operations. Multi-core, many-core,
and streaming SIMD extension are implemented in modern
CPU designs. In this paper, we study the power consumption
and energy efficiency of erasure code computing using
traditional Intel x86 platform and Intel Streaming SIMD
extension platform. We use a breakdown power consumption
analysis approach and conduct power studies of erasure code
encoding process on various storage devices. We present the
impact of various storage devices on erasure code based
storage systems in terms of processing time, power utilization,
and energy cost. Finally we conclude our studies and
demonstrate the Intel x86’s Streaming SIMD extensions
computing is a cost-effective and favorable choice for future
power efficient HPC cloud storage systems.

Keywords - Erasure code, SIMD Vectorization, Power
measurement, Energy cost, Power consumption, Cloud
storage

L. INTRODUCTION

Erasure code technologies [1][2][3] are primary deployed
on high speed telecommunication networks, unreliable
wireless, mobile, and deep space communication channels,
consumer’s multimedia electronics such as Blue-Ray discs,
CDs and DVDs, and computer applications such as RAID-6
based storage systems. Many erasure code encoding and
decoding implementations are using hardware based solution
such as micro-processor, DSP [30], and FPGA [31]. Erasure
coding hardware solutions work well on real-time data
streaming applications however the majority of solutions can
only handle limited problem size due to the limitation of
computing power and available memory size needed in erasure
coding processes. FPGA solution can provide efficient CPU
coding bandwidth but it normally comes with high deployment
and development cost. Furthermore it supports finite encoding
methods, fixed data chunks and code chunks ratio because of
its restricted programmable space.

Besides the application areas of consumer electronics and
wireless communications, erasure code based storage systems

U.S. Government work not
protected by U.S. copyright

71

are becoming popular choices for cloud storage systems due to
cost-effective storage space saving schemes and higher fault-
resilience capabilities. Customizable redundancy schemes
implemented in erasure code are more storage-efficient
alternative to substitute the triple or multiple data replications
solution implemented in most of today’s large-scale data
centers and HPC storage systems [2].

Efficient and effective erasure coding needs support from
heavy CPU bound computing for finite field’s matrix-vector
multiplication, and log/anti-log table lookup operations and
memory bound referencing and updating for log and anti-log
table lookup operations. Research studies and reports from
commercial systems [1][2][3][26][29] have showed that
software-based erasure coding can be deployed on distributed
storage system. Long processing time and slow coding
bandwidth is a major road block when we are attempting to
employ software based erasure coding technique on large data
set [22]. Intel x86 and SIMD based erasure code open-source
software are available for research studies and commercial
applications [18][19][20]. The x86 based instruction sets
cannot efficiently execute data parallelism mathematical
computing property in Finite field matrix-vector
multiplications and parallel table lookup operations. SIMD’s
vector computing capability allows parallel data processing and
matrix computing by multiple homogeneous cores inside a
single CPU chip. Modern general purpose microprocessors
feature multimedia extensions that support SIMD parallelism
such as Intel SSEx, AVX, AVX-2, and AVX-512 SIMD
instruction sets and ARM Neon SIMD instruction sets.
Performance benefits from applying SIMD vectorization
depend on the problem domain data model and programming
structure [21][41]. Motivations of using SIMD platform on
erasure code storage systems are exploit data level parallelism
and avoid concurrency/combine with concurrency, come at no
extra cost, it is available in modern processors design and
implementation, it has lower amount of memory load
instructions through instruction and data prefetching support,
and it is easy to use. There are also some disadvantages to use
SIMD such as backward compatible issue between old and
new platforms, extra software porting overhead and cost, may
have performance penalty without adequate porting and
optimization efforts.

Power, scalability, and reliability are three major
challenging areas we need in order to construct future Exa-
scale computing and storage systems [4][5][6][7][17].

Available energy resources, power consumption, and energy
cost are dominating factors to support, operate, and
administrate Exascale systems. Understanding properties and
characteristics of power consumption in computer systems can
assist us to improve system design and increase power
utilization. Modeling, software profiling, and measurement are
three universal approaches to understand power consumption
of systems and applications. Power modeling is limited to
inter-node variability in power draw. Software power profiling
is used to evaluate power optimization techniques and to make
power/performance trade-off. It is also an important approach
to supply critical power information for operating systems and
power-aware software. Power measurement is a direct method
to estimate application power consumption on running
systems. Respectively power measurement can be done at
system level, processor level, core level, CPU function unit
level, process level, and virtual machine levels. Research and
studies of power measurement issue are focusing mostly on
computing territory [8] [10] [12] [13] [14] [15] [16]. Power
consumption study on erasure code based storage domain is not
well covered in HPC and cloud research communities [9][11].

Many erasure code research works are only focusing on
encoding and decoding algorithm design and performance
studies on small size data set [37][38][39][40][41] that can be
fit into memory based coding operations. They did not reflect
real world usage of erasure code application on storage
systems such as shared disk storage systems or SSD/Flash
array systems. The impact of real storage I/O operations was
not considered in those research studies. In this paper, we
mainly concentrate on studying power consumption of erasure
code on large size data sets normally generated in HPC cloud
storage environment. To do this we design data workload
generally seen in HPC computing environment and adopt
breakdown measurement and performance analysis approach.
We decouple power consumption from various testing cases
and provide a reasonable estimating model for energy cost.
We compare erasure encoding power consumption on a large
data set then measured x86 vs. SIMD extension platforms in
terms of processing time, coding bandwidth, and energy cost.
We also study the performance impact of using various storage
devices during erasure code computing such as SATA hard
disk and Flash memory storage device.

The rest of this paper is organized as follows. We present
related research works in section II. In Section III, we present
the methodology used in power measurement and the test bed
setup for power consumption studies. In Section IV, we
provide performance results and analysis. We do a survey of
related works in Section V. In section VI, we conclude our
findings and outline future research and development activities
in this area.

II. RELATED WORKS

In this section, we provide background information of
power related researches and studies. Modeling, profiling, and
Vmeasurement are three common used methodologies in
power studies on computer systems. The work in [5] describes

72

a tri-level HPC power measurement methodology for large
scale High performance computing systems. Level-1 only
measure core phase average power consumption. Level-2
measures 10 average power measurement in the core phase,
covers full range of power consumption, and also measures
idle power consumption. Level-3 covers level-2 measurement
scope with continuously integrated energy. In [6], author
present a power measurement framework and obtain a per-
node (socket) granularity at frequencies of up to 100 samples
per second. This frame work has been tested on SNL’s
Catamount Light Weight Kernel OS. It also can quantify the
amount of energy used by applications and to contrast
application energy use between a Light Weight and General
Purpose operating system. In [8], authors use a power
consumption model to predict the power utilization and usage
information on computing server and storage system in data
centers. The proposed power consumption model covers CPU,
memory, hard disk, mainboard, fan, and power supply unit. In
[9], authors describe a power model called “TEMPO” and The
proposed “TEMPO” power cost estimating method is used to
accurately estimate the disk power consumption using a trace
of all requests issued to the disk with a real-time streaming
workload. In [7], authors present a study of power
consumption in real-world, large-scale, enterprise, disk based
backup storage systems. They also provide several key
observations on power consumption variations across
platforms and approaches for future development of power
management technologies. A power consumption breakdown
study on a modern laptop is mentioned in [12]. Authors
performed multi-phases power measurement on CPU, Hard
drive, LCD display. In [14], a simple power consumption
model was proposed and used to study HDD and SSD storage
devices. Authors discuss how to apply their power
consumption model and select a target storage server so that
the total power consumption can be reduced.

III. EXPERIMENTAL TEST-BED SETUP

A. storage node platform and storage devices

A HP 7620 workstation is configured as the storage node in
testing. Table-1 shows the testing hardware information. We
use both SSD/flash storage and SATA disk based storage in
testing. We study the impact of I/O access latency on erasure
coding process. Figure-1 shows the erasure coding processing
diagram.

B. Open soruce eraure code softwate used in testing

We select three open-source erasure code software systems
in our erasure code computing power study. They are zfec [29],
Jerasure 1.2 [18], and Jerasure 2.0 [19] [20][21].

“zfec” is based on the forward error correction code (FEC)
software designed by Luigi Rizzo in 1998 [26]. Rizzo’s FEC
software was one of the earlier software based Reed-Solomon
erasure code implementations. There are three purposes of
Rizzo’s FEC software: (1) to put software FEC in the right
perspective by presenting the principle of operation of erasure
codes and showing that software based FEC is not exceedingly
expensive, (2) to provide the research community with a high

performance C implementation of erasure code, and (3) to
demonstrate that software based erasure code can despite its
overhead be used to actually improve performance on slow
wireless networks and fast wired networks as well as unicast
and multicast communication protocols. “zfec” has made
several changes from the original FEC package, including
addition of the Python API, refactoring of the C API to support
zero-copy operation, a few clean-ups and optimizations of the
core code itself, and the addition of a command-line tool
named "zfec". “zfec” provides command line interface and
support API access interface in C, Python, and Haskell.
“zfec” has been used in erasure code storage research projects
such as Tahoe-LAFS [33] and NCCloud [32]. Current the zfec
software only run on Intel X86 platforms.

Jerasure-1.2 (aka EC-1) has implemented Vandermonde
based Reed-Solomon code and Cauchy based Reed-Solomon
code erasure encoding and decoding methods. The
mathematical properties are based on Galois-field word size
support of 8, 16 or 32 bits. It also implements Minimal Density
RAID-6 encoding/decoding method. Jerasure-1.2 s
implemented as a single thread/process erasure coding library
using C/C++ programming interface. The main target
application is storage systems. Jerasure-1.2 technology has
been deployed in commercial products such as Scality Ring
Storage system CEPH distributed file system [34], and
OpenStack’s SWIFT object store [35]. Jerasure 1.2 is support
Intel X86 platform only.

Jerasure-2.0 (aka EC-2) [21] basically is a software
enhancement of Jerasure-1.2 with Intel stream SIMD extension
instruction sets support and some flexible and optimization
improvement. Jerasure-2.0 is implemented in C++ language
and has added generalized EVENODD (Double Disk Failure)
and RDP (Row-Diagonal Parity) to its library. Jerasure-2.0
supports arbitrary Galois-field word size 8, 16, 32, 64, and 128
bits. Jerasure 2.0 supports both Intel SIMD (MMX, SSEx, and
AVX) and ARM SIMD (NEON) platforms.

storage

Hardware- Description
HP 7620
CPU Intel Xeon E5-2620 v2 Processor,
2.1GHZ. 6 cores
Memory 32GB PC-3 1600 DDR3 memory
(0N Fedora 20, 64-bit OS
SATA HDD 4TB Hitachi 4TB Sata HDD
PCI-E based OCZ Revo-350 960 GB PCI-E Flash
Flash storage Storage
Table-1: storage node configuration and setup
SSD/Flash SSD/Flash
Storage Erasure Storage
coding
Disk based SIMD Disk based
storage

Figure-1: Source and destination devices used in erasure

coding process

73

Coding | Methods | Description

platform

1-x86 zfec zfec erasure code

2-x86 ECI1-A | Jerasure-1.2: Reed-Solomon-
Vandermonde

3-x86 ECI-B Jerasure-1.2:Cauchy-Original based

4-x86 EC1-C Jerasure-1.2:Cauchy-Good based

5-SIMD | EC2-A | Jerasure-2.0: Reed-Solomon-
Vandermonde

6-SIMD | EC2-B Jerasure-2.0:Cauchy-Original based

7-SIMD | EC2-C Jerasure-2.0:Cauchy-Good based

Table-2: Erasure coding methods

C. Power Measurement device

“Watts Up/.net” [23] is the device we used in measuring
erasure code computing power consumption. We can simply
plug any device into “Watts Up/.net” and the meter
instantaneously displays the wattage (power) being used, as
well as the cost in dollars and cents. “Watts Up/.net” provides
useful power consumption information such as current watts,
minimum watts, maximum watts, power factor, cumulative
watt hours, average monthly kilowatt hours, tier 2 kilowatt
hour threshold (used to calculate secondary kWh rates),
elapsed time, cumulative energy cost, average monthly cost,
line volts, minimum volts, maximum volts, current amps,
minimum amps, and maximum amps. The minimum sampling
period is one second.

A Built-in Non-volatile memory is used to record
continuous and cumulative power consumption data. Clear
“Non-volatile memory” is use to emulate a start monitoring
process. “Watts/Up” software runs on a connected PC and is
used to read logged power data from “No-Volatile memory”. It
displays selected timing graph for all recorded data such as
Watts, Volts, Amps, WattHour, and Energy Cost. The data and
graphs can then be exported to Excel spreadsheet and word
processor programs for further analysis.

Table-2 lists the erasure coding methods used in power
measurement and energy cost studies.

IV. METHODOLOGICAL APPROACH

A. Methodoligical Approach

Our methodological approach is to apply a breakdown
based power measurement and analysis method. We use a
“stand-alone” inline meter” type power measurement device
and take physical power measurement on designed active
workloads and system idle state that are applied to large data
set erasure code encoding process. We concentrate on a single
storage node level power measurement and we monitor
runtime power utilization time line graph. We observe the
correlated time-line graph of erasure code computing, /O
operations, and power consumption at varying system
utilization (or workload) levels. Power measurement and
power consumption monitoring provide us insight to select the
appropriate computing platform(s) to reach cost-effective and
energy-efficiency optimization.

B. Testing workload desings

Erasure coding bandwidth has been studied and compared
[1]02][18][[19][20][21][26] but are limited to small scale data
sets and are restricted to memory access operations. Hence
coding process is only done within memory range and cache
buffer is used to speed up the coding bandwidth. Those coding
bandwidth tests are focusing on comparing different type of
coding methods. Those performance results cannot truthfully
reflect practical usage of erasure code process on storage
systems. Typically large HPC data sets in the range of
gigabytes to terabytes are constantly created dy-to-day.
Realistic testing workload should not be limited to memory
only access range and they should include read and write
operations on storage devices in power measurement studies.
To minimize memory caching or buffering impact on selected
testing workload and incorporate real operation impact from
data access latency, we choose to use a 40GB data set and
design three different testing workloads.

The encoding is parameterized by two integers, K and M.
K is the total number of data chunks produced, and M is the
total number of code chunks produced. Any K chunks of data
and code are necessary to reconstruct the original data. The
coding ratio is defined as M/K and the storage overhead is
defined as (K+M)/K. Three designed workloads are covered
50%, 25% and 20% storage overhead cases in erasure code

computing. Table-3 lists is three designed testing workloads.

Data Size : K:data | M:code | Overhead | Read Write
40GB chunk chunk chunk chunk
Workload-1 160 80 50% 160 240
Workload-2 160 40 25% 160 200
Workload-3 160 32 20% 160 192

Table-3: testing work loads

C. Breakdown power measurement phases

We adopt a breakdown analysis in power measurement
process. We measure power consumption in different system
states: system idle, read-then-write data access, and erasure
code computing. We then calculate power consumption for
Erasure-computing. We collect wall clock processing time,
encoding bandwidth, and energy cost data generated from a
“Watts/UP” power meter. Each phase’s activity is described as
follows.

e Phase-1: Baseline power measurement in system idle state
A baseline power consumption data is measured when a

system is not running any application type workload. Only
system related tasks are active. The system idle state is in a
state where a computer system is ready to accept any workload
[4] [5]. The system idle state is not a sleep or a hibernation
state. This measurement is calculated as constant power
consumption per time unit of the system.

o Py, - power consumption/hour in Idle state
e Phase-2: Read/Write data power measurement

Apply read-then-write operations on a 40 Gigabyte data set
and calculate the average read-then-write energy cost.

O Preadorite - Read-then-write Power consumption/hour

0 P - Read Power consumption/hour

74

o P, - Write Power consumption/hour

0 COoStreudmrite - Read-then-write Power consumption/hour

0 CoSt,euq - Read Power consumption/hour

o Costyie - Write Power consumption/hour

e Phase-3: Erasure code computing power measurement — total
processing time

Launch an erasure coding process with a data set and

selected coding method.

O Tiow - total processing time

o T,. - Total erasure coding time

o Tyo - Total IO time

o T, - misc time, inter viability events system or kernel
related

o Tmtal = Tec + TIO + Tets

o P,. - erasure computing power consumption/hour

o ecOverhead - storage overhead ratio = (K+M)/K

0 Py - Total power consumption

e} Ptutal:Pidle*Ttutal-i_Preadiwrite*TlO-i_ P(:L'*Tec

e Phase-4: calculate erasure code power energy cost

We then calculate the energy cost for processing erasure

encoding.
oP L’E:P total'P idle >X<Tmtal—"_l:) read-write * TIO
e Phase-5: Energy cost estimating calculation

We use energy cost generated from “Watts/UP”” meter measurement
and convert it to a real estimated energy cost based on local energy
price.

o TestingObjectSize: In real world applications, storage
device 1/O access latency can contribute signification
overhead on erasure coding process. The benefit of
memory caching may offset the influence of 1/0 latency
and can'’'t truthfully represent real world application
workloads. To understand the realistic impact of 1/O
access latency on power consumption, we try to minimize
the effect of memory caching and emphasize the impact of
1/O access delay from various storage devices. We choose
a data object which size is bigger than the system memory
size. We reference to large scale Checkpoint & Restart
and visualization data sets commonly seen in many large
scale HPC computing environments [36][42][43][44] and
choose a set of 40/80/120 GB data objects and use them

for our erasure code computing power measurement
cases.

o FinalObjectSize: TestingObjectSize*ecOverhead

o TripleCopyObjectSize: TestingObjectSize * 3

0 ENGreadgmhenwrire: AvergaeCost per GB Read- then-Write

o TargetObject Size: TOS, the total amount of erasure
coded data

o FinaltargrObjectSize:
ecOverhead

o Unit,,, - Energy cost per kilowatt-hour

0 ENG. o~ Power Consumption/kW * Unit,,s *Px

. ErasureComputing(ENG .,s)=(Pec*Tec/kW}*ENG s,
. [O(ENGC()SI):(PIO >X<TIO/kI/V} *ENGC()SI
. SyStemBaSic(ENGmsl) :(Pidle *Tid/e/kVV} *ENGCost

0 ENG o5 Unit,g cost is set to $10/KWh in the “Watts/UP”
power meter. The actual Energy cost will be prorated to
an actual energy cost in ENG, .

%

FTOS, FTOS 708

0 ENG,, is generated from Watts/UP spread sheet.

0 ENGyeqi: Local energy cost is about 10.7cent/KWh in New
Mexico State. we use ENG .. to calculate real estimation
in production systems.

0 ENG, .y : Actual energy cost spending is calculated as
(((FTOS)/TestingObjectSize) * ENG o5)/(10/ ENG)

o ENGTr‘ipleCapy" TrlpleCopyObjectSize * ENGReadthenWrite
V. TESTING RESULTS AND PERFORMANCE ANALYSIS

Analyzing power consumption data from selected seven
erasure coding methods, we conduct a sequence of lengthy
testing cases. Each designed testing cases are repeated three
times and we take average of results. We focus on three
performance metrics: processing time, power consumption,
and energy cost of erasure coding process. Processing time is
measured using “time” command. Power consumption is
measured using “WattsUp” power meter and energy cost is
calculated based on the consumed power and unit energy cost
defined in power meter. Power consumption is associated with
prorated energy cost. In our performance analysis, we
exclusively present processing time and energy cost in
performance studies.

A. Baseline system Idle state power consumption and
accociated energy cost
For Idle state power consumption, we collect one four-
hour period of a system in the Idle state circumstance. From
“Watts UP” logging data, we check hourly data. We compare
consistency of data value changed over contiguous hours and
we then calculate Pyy, value.

B. Storage Device Read-then-Write result

For P eadwiic Value, we use Linux “dd” command (a data
copy and data convert command) and launch a read from
“device A” and write to “device B” testing case on various
size data object. We obtain the read-then-write processing time
and energy cost record from the spread-sheet logged in “Watts
UP” power meter. We calculate the P caqwiiee Value. To simplify
the read-then-write power cost estimation, we assume that read
and write operations equally share processing time and energy
cost.

Single DD testing is used on 40GB, 80GB, and 120GB,
data sets to collect processing time and energy cost information
on storage devices. SATA HDD read-then-write bandwidth is
in the range within 48.49MB/sec and 72.39MB/sec. The range
of PCI-E SSD read-then-write bandwidth is from 392.93
MB/sec to 504.12MB/sec. Figure-2A and Figure-2B expose
the advantage using PCI-E SSD in terms of processing time
and energy cost reduction. Energy cost data is reflecting the
length of processing time on read-then-write data access
operation. The I/O access patterns and variability of blended
I/O and computing operations constitute final processing time.
The influence of I/O read-then-write processing time plays an
important factor when applications incorporated heavy I/O
operations during processing. Results from Figure-2A also
point out that decomposing a larger object into several smaller

75

objects can reduce overall I/O access time even they are
handled sequentially. For example, we barely spend 485
seconds on six individual 40GB objects (total 6x40GB=240
GB size) Read-then—Write but we have to use 625.46 second to
handle a single 240 GB object.

C. Processing time, encoding bandwidth, and energy cost

We show processing time comparison using zFec,
EC1{A,B,C}, and EC2{A,B,C} on HDD and SSD storage
devices in Figure-3A and Figure-4A. We show that employing
SIMD support can reduce significant portion of processing
time by 85.33% and 90.25% respectively.

We also illustrate that the choice of storage devices has
impacted on EC2-B and EC2-C coding methods. In Figure-3A
the SIMD advantage is counteracted by the long media access
time. Slower data access latency on HDD device has caused
the procrastination of overall processing time, slow encoding
bandwidth (Figure-3A) and increased energy cost increase.
Some x86 based ECI-B/EC1-C methods can out-perform
SIMD based EC2-B/EC2-C methods when HDD device is
used as testing storage device on all three testing workloads.

The result is turned toward other direction when PCI-E
SSD device is deployed as the storage media (Figure-4A).
EC2-B/EC2-C can reduce processing time (28.01%/28.15%,
27.01%/25.64%, 27.17%/25.85%) on three different testing
workloads. They also can reduce power consumption (28.29%
/ 26.69%, 28.19% / 24.54%, 27.54% / 2529%) when
experimented on three different workloads. Figure-3B and
Figure-4B show the encoding bandwidth when applying
erasure computing on SATA/HDD and SSD/Flash storage
devices. SIMD’s erasure coding approach can outperform the
other x86 based methods when using SSD as the storage
devices. Using SSD/FLASH device can significantly reduce
data access time due to its lower I/O latency and high IOPs
features. It also contributes to minimize total processing time
and reduce energy spending cost (Figure-5A and Figure-5B) .

HDD vs. SD - Read then Write Processing time

, 2000 (sec) 1697.44
& EHDD m=mSSD
g 1500 1159.65
Tu 1000
|
g 500
£
=%

0

40GB 80GB 120GB

Figure-2A: Read-then-write - HDD vs PCI-E Flash SSD —
processing time

“zfec” software only runs on x86 platform. We use “zfec”
testing results as reference performance metrics. We notice that
EC2gvp coding methods have outperform “zfec” coding
method on every testing workload. However “zfec” can
achieve shorter processing time and consume less power
compared to the EC1-A method on HDD and SSD storage
devices.

SSD vs HDD: energy cost on Read then Write 40GB

0.8 0.713
0.7 EHDD m=mSSD

0.6
0.5
0.4
0.3

0.2 0.091
0.1 0.036

0.48

0.284

Energy Cost

40GB 80GB 120GB

Figure-2B: Read-then-write on HDD vs PCI-E Flash SSD —

energy cost

D. Impact of Storage device on Erasure coding process

Our testing results illustrate that EC1-A and EC2-A coding
methods can demonstrate the significant performance impact of
adoption (1) x86 platform vs. SIMD platform and (2) various
storage devices. Figure-6A shows that energy cost reduction
of x86 vs. SIMD using SATA HDD is 90.01%, 87.85%, and
87.04%, Figure-6B shows energy cost reduction x86 vs SIMD
using PCI-E SSD is 56.02%, 42.96%, and 52.42%. SIMD
based erasure coding method can drastically ameliorate coding
throughout and cut back power consumption. The SIMD’s data
parallelism capability proves to be a superior enhancement on

erasure code computing.

zfecx86 vs EC1x86 vs EC2SIMD using SATA HDD

1329
1380

(K.M)=(160,32) =EC2-C-W-8

2515 BEC2-B-W-8

=EC2-A-WS

1553

1600 =ECI-C-W-8

(K,M)=(160,40)
=EC1-B-W-8

3079

BECI-A-W-8

2810
2909 mzfec
(K.M)=(160,80)

5929
3232

0 1000 2000 3000, 4000 5000 6000 7000
Processing time: sec

Figure-3A: zfecygs vs. EClyge vs EC2gpvp — Processing time
using SATA HDD

zfecx86 vs EC1x86 vs EC2SIMD using SATA HDD

TEE2C-W-8
(K.M)=(160,32)
®EC2-B-W-8
mEC2-A-W8

®ECI-C-W-8

w3l wes

(K,M)=(160,40)

BECI-A-W-8
mzfec
70.06
(K,M)=(160,30)
0 10 20 30 40 70 80 90

Coding bandwidtslg MB/s6eocc
Figure-3B: zfec,g, vs. EClyg vs EC2gimp — Encoding
bandwidth using SATA HDD

zfecx86 vs EC1x86 vs EC2SIMD usinf PCI-E SSD device
W-8
W-8
M)=(160,32 W
(KM)=(160.32) W
-W-8
-W-8
(K,.M)=(160,40)
(K,M)=(160,80)
3560
0 500 1000 1500 2000 2500 3000 3500 4000
Processing time: wallclock, sec

Figure-4A: zfecygs vs. EClyge vs EC2gpvp — processing time
using PCI-E SSD

zfecx86 vs EC1x86 vs EC2SIMD usinf PCI-E SSD device

164.39
(K,M)=(160,32)

148.41
(K.M)=(160,40)

WEC2-C-W-8
=EC2-B-W-8
BEC2-A-W8
BECI-C-W-8

107.23 =EC1-B-W-8
BECI-A-W-8
= zfec

(K,M)=(160,80)

0 20 40 60 80 100 120 140 160 180
Processing time: wallclock, sec

Figure-4B: zfec,g, vs. EClyg vs EC2gpmp — Encoding
bandwidth using PCI-E SSD

zfecx86 vs EC1x86 vs EC2SIMD using SATA HDD

(K,M)=(160,32)

(K,M)=(160,40)

(K,M)=(160,80)
2.664

0 0.5

25 3

Elnergy Cost:1 'rfleter readil%g
Figure-5A: zfecygs vs. EClygs vs EC2gpqp — energy cost using
SATA HDD

zfecx86 vs EC1x86 vs EC2SIMD using PCI-E SSD

WEC2-C-W-8
BEC2-B-W-8
BEC2-A-W-8
BECI-C-W-8
BECI-B-W-8
BECI-A-W-8

(K,M)=(160,32)
1.065

(K,M)=(160,40)

(K,M)=(160,80)
2672

0 0.5 1
Energy Cost: meter reading

1.5 2 25 3

Figure-5B: zfec,gs vs. EClyg vs EC24g4 — energy cost using
PCI-E SSD

EC1-Ax86 vs EC2-ASIMD: energy cost reduction using SATA

w 37 HDD 2,672
£ HECI-A-W-8 EEC2-A-W8
] 2.5
2
5 2
K] 1.389
E L5 1.137
2
1
; 0.543
£ o5 0245 0.32
=

(K.M)=(160,32)
Coding method: x86 vs SIMD platforms

(K,M)=(160,40) (K,M)=(160,80)

Figure-6A: Energy cost reduction of x86 vs SIMD using
SATA HDD

77

EC1-A 4 vs EC2-Aq,p: energy cost reduction using PCIE-SSD

2.453

HEC1-A-E-8 HEC2-A-E-8

1.325
1.065

Energy Cost: meter reading

(K,M)=(160,32)

(K,M)=(160,40)
Coding method: x86 vs. SIMD platforms
Figure-6B: Energy cost reduction v86 vs SIMD using PCI-E
SSD

(K,M)=(160,80)

E. Energy cost analysis from Mixed storage media testing

Figure-7 presents the mixed storage medias EC2-A
erasure coding test results. All SSD based system can reduce
50.75% energy cost compared to all HDD based system.
Mixed medias or hyper-converged storage system are used in
modern data center and HPC storage system. SSD/HDD
storage system can save 33.33% energy cost and HDD/SSD
storage system can save 24.15% energy cost compared to
HDD/HDD system.

Energy Cost: EC2-A 40GB encoding
read from source--> encoding -->write to destination

B Energy Cost ®Normalized cost - based on SSD/SSD
1.5075

1.2188

1.1358

SSD-->SSD SSD-->HDD HDD-->SSD HDD-->HDD

Figure-7: Mixed Media Erasure encoding energy cost: from
source device -to destination device- EC2-A coding method

Results have demonstrated that storage device’s access
latency and IOPS play an important factor of reducing
processing time and saving energy cost on erasure code
computing.

F. Energy cost reduction from using SIMD extension on ECI-
Ax86 Vs. ECZ-AS]MD method

LANL’s 2015/2016 Trinity machine is expecting to
create around three peta bytes active archival data every
month. Applying Phase-E formula and using measured data
from Figute-6A and Figure-6B, we calculate energy cost using
ECI-A and EC2-A methods for three continuous production
years period. We expect to process 120 PB data. To simplify
the energy cost estimation, we ignore energy cost of data
transmission over network link in our calculation.

We list the energy cost comparison and energy cost
reduction ratio between ECI-A,g and EC2-Agpp coding
methods in Figure-8 and Figure-9. We compare three coding
overhead ratios: 50%, 25%, and 20%. In Figure-8 we obtain
67.25% to 84.95% energy cost reduction using SATA HDD
storage device. In Figure-9, we see energy cost reduction from
87.04% to 90.04% when utilizing the build-in SIMD extension
in x86 CPU core and SSD/Flash storage device .

We use ENGryiplecopy formula defined in the section IV
and calculate energy cost for Triple-Replication approach. The
data transmission cost over network is ignored here.

In Figure-11, we compare cost saving between the x86
based erasure coding approach and the triple-Replication
approach. x86 based erasure code solution does not show
energy cost saving advantage compared to the triple
replication approach both on using HDD and SDD storage
devices. The SATA HDD 1/O access time and x86 computing
time is the main root-cause of prolonging erasure coding
processing time. The consequence is the high energy cost.

In Table-4, we compare cost saving between SIMD
erasure coding approach and Triple-Replication approach. The
SIMD based erasure coding methods show significant energy
cost reduction compared to the triple replication methods. In
addition the deployment of erasure code method on cloud
storage systems not only reduce energy cost but also cut the
spending on infrastructure required for setting up cloud
storage systems such as storage devices, data network facility,
floor space, etc.

G. Energy cost breakdown analysis

Table-4 presents the energy cost distribution among
baseline IDLE state, I/0O operation, and erasure code
computing. The baseline/IDLE state energy cost has
contributed 77% to 92% of overall power consumption from
all coding methods. The large portion of energy cost goes to
IDLE/baseline state is due to longer processing time from
using x86 platform and SATA HDD storage device. It
indicates that we need a better approach to boost system
utilization, increase coding throughput, and reduce energy cost
on a modern multi-core compute system. To handle same
amount of workload, shorter total processing time means
better throughput and better energy efficiency because the
IDLE/baseline energy cost was amortized from high data
access bandwidth and faster erasure coding process.

g 10464.77 25% m50%
Z _EC2A-SIMD

(=]
8
o=
=
@ =
> <« 31957.79
<% EC1Ax86 52573.65
& 120994.88
=

0 B9 Cost (3 00000 150000

Figure-8: Energy cost comparison - EC1-Aygs vs EC2-Agpvp
using HDD

78

=
E 5014.37 20% ®W25% m50%
= EC2A-SIMD 6093.85
£ 12081.72
=8
= =
- 38697.84
< ECIA=x86 50151.25
3] 121362[24
=
0 39999 Cost (520000 150000

Figure-9: Energy cost comparison - EC1-A,gs vs EC2-Agmp
using SSD

EC2A:25%

mSSD =HDD

EC2A:50% 18213.42

) 6.98
TripleCopy 40155.95

51.25

EC1A:25% D573.65

EC1A x86vs EC2ASIMD
vs Triple Copy using SATA/HDD

121362.24

ECI1A:50% 12099888

0 20000

40000 60000 80000

Energy Cost ($)

100000 120000 140000

Figure 10: Energy cost comparison — EC1-A,gs vs EC2AgppVvs
Triple copies using HDD and SSD

Coding method (K.M) /O | Erasure | IDLE
ratio coding | baseline

ECI-A (160,80) | 1% 13% 86%
ECI-A (160,40) | 2% 8% 90%
ECI-A (160,32) | 2% 6% 92%
EC2-A/SIMD (160,80) | 10% 11% 79%
EC2-A/SIMD (160,40) | 13% 9% 78%
EC2-A/SIMD (160,32) | 16% 7% 77%

Table 4: Energy cost distribution: EC1-A vs. EC2-A using
HDD

VI. CONCLUSION AND FUTURE WORKS

In this paper, we investigated the advantage of deploying
SIMD platform on erasure code based storage system in term
of processing time and energy cost. We applied a breakdown
power measurement approach on three open source erasure
code software. We applied multi-phase measurement on three
designed workloads and collected power measurement
information from a stand-alone power meter and storage
sever. We observed the mixing I/O access behavior with
compute bound erasure computing process on SATA HDD
and PCI-E based SSD devices. Our testing results have

demonstrated that using SIMD support on erasure code
computing can help to reduce erasure coding processing time
and significantly reduce energy cost.

We also noticed that System IDLE state has dominated
the overall processing time and energy cost. When we
consider applying erasure code on a very big data set, a single
encoding process is not capable of providing enough coding
bandwidth. We need to utilize complete SIMD computing
power from each CPU core in a multi-core system and explore
its potential parallel I/O capability.

The initial power measurement work on erasure code
computing has inspired additional efforts in many related
areas. Large objects in gigabyte to terabyte range are
commonly seen in today’s cloud big data computing
environment. From read-the-write testing cases, we presented
the advantage of partitioning a big object into several small
objects and handle them sequentially. Current erasure coding
software solution used a single process approach. To
effectively apply erasure code on very large data set and
sustain a reasonable coding bandwidth, we cannot merely
reply on single process approach. In addition to employ SIMD
data parallelism, applying function parallelism on a multi-core
computer system is a promising feature to boost system
utilization and increase productivity in terms of reducing
energy cost and coding throughput. To relief the bottleneck of
using single thread erasure encoding approach, our future plan
for this work will leverage open source erasure code software
and implement a parallelizing erasure coding system software
system. We intend to utilize all N-Way SIMD computing
resource from an N-core/CPU based system and extend it with
cluster capability. Furthermore, we are planning to apply this
parallelizing erasure coding software on very large scale
cluster and cloud storage systems.

ACKNOWLEDGMENT

This work was supported in part by the US Department of
Energy and LANL ASCI funding. We thank the technical
supports from LANL’s HPC-5 group and HPC-3 group.

REFERENCES

John D. Cook, Robert Primmer, AD de Kwant. Compare
Cost and Performance of Replication and Erasure Coding,
In Hitachi Review Vol. 63, July 2014

Hakim Weatherspoon and John D. Kubiatowicz. Erasure
Coding vs. Replication: A Quantitive Comparison, In
IPTPS 2006 - The 5th International Workshop on Peer-to-
Peer Systems

Osama Khan, Randal Burns , James Plank, William
Pierce, Rethinking FErasure Codes for Cloud File
Systems: Minimizing [/O for Recovery and Degraded
Reads, In Usenix 2012 FAST conference

Chung-Hsing Hsu and Stephen W. Poole, Power
Measurement for High Performance Computing: State of
the Art, 1In 2011 International Conference Green
Computing Conference and Workshops (IGCC)

79

[3]

(el

(7]

(8]

(91

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Thomas R. W. Scogland , and etc., A Power-
Measurement Methodology for Large-Scale, High-
Performance Computing, In Proceedings of the S5th
ACM/SPEC international conference on Performance
engineering (2014)

James H. Laros III and etc., Topics on Measuring Real
Power Usage on High Performance Computing Platforms,
In Cluster Computing and Workshops, 2009, CLUSTER
'09. IEEE International Conference

Zhichao Li, Kevin M. Greenan, Andrew W. Leung, Erez
Zadok, Power Consumption in Enterprise-Scale Backup
Storage Systems, In Usenix 2012 FAST Conference
Robert Basmadjian and etc, A Methodology to Predict
the Power Consumption of Servers in Data Centres, In
Proceedings of the 2nd International Conference on
Energy-Efficient Computing and Networking (2011)
Donald Molaro, Hannes Payer, Damien Le Moal |,
Tempo: Disk Drive Power Consumption Characterization
and Modeling, In ISCE '09. IEEE 13th International
Symposium on Consumer Electronics

Dimitris Economou , Suzanne Rivoire , Christos
Kozyrakis. Full-system power analysis and modeling for
server environments, In 2006 Workshop on Modeling
Benchmarking and Simulation (MOBS)

Zhuo Liu, Jian Zhou, Weikuan Yu, Fei Wu, Xiao Qin,
and Changsheng Xie, MIND: A Black-Box Energy
Consumption Model for Disk Arrays, In International
Green Computing Conference 2011

Aqgeel Mahesri and Vibhore Vardhan, Power
Consumption Breakdown on a Modern Laptop, In Lecture
Notes in Computer Science Volume 3471, 2005, pp 165-
180

Hung-Ching Chang, Erik Kruus, Thomas J Barnes,
Abhishek R. Agrawal, and Kirk W. Cameron, Storage
Power Optimizations for Client Devices and Data
Centers, In Intel Technology Journal on Energy and
Sustainability, 2012.

Takuro Inoue, Makoto Tkeda, Tomoya Enokido, Ailixier
Aikebaier, and Makoto Takizawa, A Power Consumption
Model for Storage-based Applications, In 2011
International Conference on Complex, Intelligent, and
Software Intensive Systems

Meikel Poess and Raghunath Othayoth Nambiar, Energy
cost, the key challenge of today's data centers: a power
consumption analysis of TPC-C results, In Proceedings
of the VLDB Endowment Journal

James William Smith, Ali Khajeh-Hosseini, Jonathan
Stuart Ward, and Ian Sommerville, CloudMonitor:
Profiling Power Usage, In 2012 IEEE 5th International
Conference on Cloud Computing

Jack Dongarra, Hatem Ltaief, Piotr Luszczek, and
Vincent M. Weaver, Energy Footprint of Advanced
Dense Numerical Linear Algebra Using Tile Algorithms
on Multicore Architectures, In 2012 Second International
Conference on Cloud and Green Computing (CGC)
Jerasurel.2: A Library in C/C++ Facilitating Erasure
Coding for Storage Applications version 1.2 -

[19]

[20]

(21]

[22]

(23]
[24]

[25]

[26]

(27]

(28]

[29]

[30]

[31]

[32]

[33]
[34]

http://web.eecs.utk.edu/~plank/plank/papers/CS-08-

627 .html

Jerasure erasure code open source software from UTK -
"Jerasure.org"

Open Source Encoder and Decoder for SD Erasure Codes
- University of Tennessee at Knoxville tehnical report
CS-13-704

James S. Plank , Kevin M. Greenan , and Ethan L. Miller
, Screaming Fast Galois Field Arithmetic Using Intel
SIMD Instructions, In FAST 2013: 11th USENIX
Conference on File and Storage Technologies,

Gaurav Mitra, Beau Johnston. Alistair P. Rendell, and
Eric McCreath , and Jun Zhou, Use of SIMD Vector
Operations to Accelerate Application Code Performance
on Low-Powered ARM and Intel Platforms, In 2013 IEEE
27th International Symposium on Parallel & Distributed
Processing Workshops and PhD Forum

“Watts Up/.net” - WattsUP Metters INC

Chung-hsing Hsu and Stephen W. Poole. Power Signature
Analysis of the SPECpower ssj2008 Benchmark,
Proceeding ISPASS 'l1 Proceedings of the IEEE
International Symposium on Performance Analysis of
Systems and Software

Guilherme Calandrini, Alfredo Gardel, Ignacio Bravo,
Pedro Revenga, José L. Lazaro, and F. Javier Toledo-
Moreo. Power Measurement Methods for Energy
Efficient Applications, Sensors Journal, Special Issue
State-of-the-Art Sensors Technology in Spain 2013)

Luigi Rizzo, “On the feasibility of software FEC”,
University di Pisa, Italy, 1998

Maria A. Kazandjieva, Brandon Heller, Philip Levis,
Christos Kozyrakis. Energy Dumpster Diving, Second
Workshop on Power Aware Computing (HotPower),
November 2009

Chung-Hsing Hsu, Jacob Combs, Jolie Nazor, Fabian
Santiago, Rachelle Thysell, Suzanne Rivoire.

Application Power Signature Analysis, HPPAC 2014 -
The Tenth Workshop on High-Performance, Power-
Aware Computing

zfec — a fast erasure code used in command line ¢, python
and Haskell: zfec python open source code

TI Reed Solomon Decoder: TMS320C64x
Implementation. Application Report SPRA686 -
December 2000

Lilian Atieno, Jonathan Allen, Dennis Goeckel and
Russell Tessier, An Adaptive Reed-Solomon Errors-and-
Erasures Decoder. ACM 2006 FPGA International
Conference, February 22-24, 2006, Monterey, California,
USA

Yuchong Hu, Henry C.H. Chen, and Patrick P.C. Lee,
NCCloud: Applying Network Coding for the Storage
Repair in a Cloud-of-Clouds. 2012 the 10th USENIX
Conference on File and Storage Technologies (FAST)
confernence.

Tahoe-LAFS- Tahoe-LAFS web page

CEPH Erasure code pool document - CEPH Erasure code
information from "ceph.com"

80

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

Paul Luse and Kevin Greenan, Swift Object Storage:
Adding Erasure Code. SNIA Eduction September 2014
Nosayba El-Sayed and Bianca Schroeder, Checkpoint /
Restart in Practice: When ‘Simple is Better’, 2014 IEEE
Cluster Conference

Catherine D. Schuman James S. Plank, A Performance
Comparison of Open-Source Erasure Coding Libraries for
Storage Applications, University of Tennesse Technical
Report Technical Report UT-CS-08-625

James S. Plank, Jianqiang Luo, and Catherine D.
Schuman, A Performance Evaluation and Examination of
Open-Source Erasure Coding Libraries For Storage,
USENIX 2009 FAST Conference

John D. Cook Robert Primmer Ab de Kwant Compare
Cost and Performance of Replication and Erasure
Coding”, Hitachi Review Vol 63, July 2014

Jiangiang Luo, Lihao Xu, and James Plank, An Efficient
XOR-Scheduling Algorithm for Erasure Codes Encoding,
2009 IEEE International Conference on
DependableSystems and Networks

Aleksei Marov and Sergei Platonov, Effective method for
coding and decoding RS codes using SIMD instructions,
2014 High performance Extreme Computing Conference
Philip Carns, Robert Latham, Robert Ross, Kamil Iskra,
Samuel Lang, and Katherine Riley, 24/7 Characterization
of Petascale /O Workloads, 2014 Parallel Processing:
20th International Conference Euro-Par

Youngjae Kim, Raghul Gunasekaran, Galen M. Shipman,
David A. Dillow, Zhe Zhang, and Bradley W. Settlemyer,
Workload Characterization of a Leadership Class Storage
Cluster, SC 2009, PDSW workshop

James Ahrens, Implications of Numerical and Data
Intensive Technology Trends on Scientific Visualization
and Analysis, The 2015 SIAM Computational Science
and Engineering (CSE)

