
  

 

Abstract—We present our work-in-progress efforts toward 

enabling the humanoid robot iCub to collect and learn from 

unsupervised first-hand experiences autonomously. Such 

personal, situated, embodied, and developmental-inspired 

Artificial Cognition would be crucial to enable social robots to 

dynamically adapt and interact in everyday life scenarios. 

I. INTRODUCTION 

For robots introduced in social contexts, it will be 
mandatory to promptly learn and adapt to the environment, 
the people therein, and the emerging social dynamics. Most 
approaches aim at empowering robots with robust, task-
specific AI models. However, as toddlers develop skills by 
interacting with the environment without precise aims, we 
posit that emergent context-specific abilities should be 
learned from the continual, first-hand interaction of robots 
with the environment and the humans in it. Robots should be 
equipped with the minimal toolset, i.e., a cognitive 
architecture, to develop over time their personalized, 
embodied, and situated Artificial Cognition (ACo) [1] 
incrementally aiming at making the system “survive”, i.e., 
preserving internal consistency [2], rather than fulfilling 
specific tasks. The recent iCog Initiative [4] gathered several 
international researchers in the joint effort to realize an open-
source, developmental-inspired cognitive architecture for the 
iCub humanoid robot. The focus on development, the 
centrality of interaction, and the attempt to identify the 
minimal elements needed to enable the emergence of 
Artificial Cognition, led us to choose a different solution from 
the existing cognitive architectures [3]. Hence, we embarked 
on developing a novel emergent enactive cognitive 
architecture from the ground up. We are applying an 
incremental approach, designing and integrating one 
cognitive component at a time, toward building a minimal 
system able to integrate and learn from multimodal 
personalized experiences exploitable in everyday activities. 

II. ARCHITECTURE 

We designed a preliminary architecture (see Figure 1, 
center) as a  system that actively observes the environment 
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and the agents therein – a fundamental ability in humans’ 
development [2]. Through continual active observation, 
humans can deduce novelty and regularities, which can 
support more complex behavior. Similarly, we design our 
architecture to identify relevant patterns from raw or low-
level observations. We embodied the architecture into the 
ICubHead robot, an actuated 6 DoF head of the humanoid 
robot iCub, mounted on a stationary 3D-printed upper body 
(see Figure 1, left). It can look around, moving the neck and 
eyes. It mounts two cameras, a stereo microphone, a speaker, 
and LEDs to produce facial expressions. The architecture 
comprises four components. The Multimodal Perception 
module processes raw images (RGB, 640x480, 30 fps) and 
audio (44.1 kHz) in real-time, extracting five low-level 
features inspired by humans’ early-age development, namely 
number of faces, number of people gazing toward iCub 
(mutual gaze), quantity of motion, illumination – from the 
images – and right and left root mean square (RMS) – from 
the audio. We considered such core features the minimal 
necessary toolset to bootstrap the architecture abilities. The 
robot behavior is led by a social motive, i.e., seeking other 
interactive agents, one of the fundamental drives leading 
infants’ behavior [5]. For this purpose, the Embodied 
Behavior module controls the ICubHead, alternating between 
static and gaze-wandering phases looking for human faces to 
track. The observation of different portions of the 
environment would also enable the robot to collect more 
generalized observations. Then, the Episode Segmentation 
module integrates and time-synchronizes the raw data, the 
low-level core features, along with the ICubHead joint values 
and the embodied behavior state into Event objects, 
timestamped snapshots of the system’s external and internal 
state. It also oversees the aggregation of Events into Episodes, 
i.e., sequential events belonging to the same scenario and 
context. We implemented the episode segmentation by 
seeking novel perceptual experiences through a curiosity-
driven approach, inspired by humans’ exploratory motive [2]. 
The ICubHead tracks the mean and standard deviation of the 
number of faces, quantity of motion, and right and left audio 
RMS; each new event is compared against the current 
episode’s averages seeking outliers, i.e., observations 
deviating more than 3 standard deviations from the episode 
mean. If less than two components are outliers, the new event 
is kept within the active episode; otherwise, the current 
episode is encoded in memory, and a new one is started. 
Lastly, the Episodic Memory module stores, in an SQLite 
database, the timestamped event-related core features, the 
episode-related means and standard deviations, and the paths 
leading to image frames, and WAV audio files. Also, the 
memory leverages the SlowFast [6], for the raw images, and 
the VGGish [7], for the stereo audio, pretrained models to 
represent episodes in an embedding space efficient to be 
memorized and compared.  
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Figure 1.  (Left) The iCubHead robot; (Center) The cognitive architecture; (Right) HDBSCAN clustering of UMAP-reduced multimodal embeddings.

Embeddings should highlight the similarities between 
episodes, letting recurrent and novel experiences emerge. The 
next development iteration will focus on (i) the memory 
consolidation process, building long-term memory from daily 
experiences, and (ii) the loop closure, leveraging episodes 
recognition and prediction to support the robot’s proactive 
behavior. However, before going any further, we deemed it 
necessary to validate the current episode segmentation and 
memory encoding approach. 

III. VALIDATION EXPERIMENT 

Wwe placed the ICubHead robot in our open office 
(Figure 1, left). The area hosts four researchers’ desks, while 
up to 10 people could pass by during the day. The room 
becomes empty at lunchtime and during events involving the 
group. The ICubHead was positioned close to our break area, 
where we keep treats to be shared among the group. This zone 
is highly crowded after lunch, while it is sporadically visited 
during the day. We kept the ICubHead active for 4 
consecutive days, from 10 AM to 4 PM (24 hours in total).  
Colleagues were asked to keep their habits to ensure the 
naturalness of the data collection. 

IV. RESULTS & DISCUSSION 

The architecture collected 449 (M=112, SD=83) episodes, 
distributed resembling the open space occupation of those 
days: two researchers were present on day1 (19 eps.); four on 
day2 (217 eps.), and day3 (130 eps.); lastly, on day4 (83 eps.), 
a single person was in the room with others coming 
sporadically. On average, 90% of the episodes were collected 
between 1 and 2 PM, consistent with our usual after-lunch 
break. Episodes in such a timeframe were also the shortest – 
on average, 1-minute long w.r.t. 25 minutes in the remaining 
time. We speculate that higher population in the room would 
generate a higher variability in the multimodal perception, 
causing more outliers and, hence, more scattered episodes. 
Then, we analyzed the multimodal embeddings produced for 
the episodes, looking for clusters revealing recurrences in the 
observations. We normalized and concatenated the video 
embeddings with the audio ones, averaging between channels, 
obtaining a 528-long vector. Then, we applied a 2-component 
dimensionality reduction with UMAP and clustered the 
resulting features with the HDBSCAN algorithm as it is 
robust against clusters of different densities and dimensions. 
The model identified four clusters (Figure 1, right, outliers in 
gray), achieving a silhouette score of 0.65. To characterize the 

clusters concerning the low-level multimodal perception 
features, we fitted a mixed effect model for each one: we 
considered the outliers-filtered HDBSCAN ‘cluster’ as a 
fixed factor and added the random effect of the ‘day’. Cluster 
0 showed the highest number of faces (B=1.77, t=17.72, 
p<0.001) and audio RMS (B=6.86, t=11.59, p<0.001) w.r.t. 
the other clusters; such scenes could be related to populated-
loud episodes where multiple people socially interact in the 
room. Cluster 1 had the highest illumination (B=0.15, t=7.48, 
p<0.001), while cluster 3 presented the lowest quantity of 
motion (B=-0.44, t=5.61, p<0.001); we speculate they group 
not-populated-quiet episodes where either there was nobody 
in the room or the few ones were at their desks, causing the 
low amount of motion. Summing up, the low-level 
multimodal features effectively segmented the episodes and a 
meaningful representation emerged by unsurprisingly 
clustering the raw-perception embeddings. Our next step will 
be improving the episode segmentation robustness, reducing 
the number of episodes in high-variability periods. An 
effective architecture should be aware that a novel episode 
despite being salient, does not necessarily represent the 
beginning of a new experience. Still, the system was able to 
learn the primitive distinction between populated-loud and 
not-populated-quiet episodes from the ground up. This 
knowledge will be crucial to equip the architecture with a 
long-term memory able to categorize the just-experienced 
episode fostering proactive behavior – e.g., to decide whether 
it is meaningful to interact – or detecting misalignment 
compared to the past.  
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