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Abstract—In this paper, several methods to register and stabilize 

a motion imagery video sequence under the layered sensing 
concept are evaluated. Utilizing the layered sensing paradigm, 
an area is surveyed by a multitude of sensors at many different 
altitudes and operating across many modalities. Utilizing a 
combination of sensors provides better insight into a situation 
than could ever be achieved with a single sensor. A fundamental 
requirement in layered sensing is to first register, stabilize, and 
normalize the data from each of the individual sensors. This 
paper extends our previous work [1] to include experimental 
analysis. The paper contribution provides an evaluation of four 
registration algorithms now including the (1) Lucas-Kanade 
(LK) algorithm, (2) the Ohio State University (OSU)1 
correlation-based method, (3) robust data alignment (RDA), and 
(4) Scale Invariant Feature Transform (SIFT). Results 
demonstrate that registration accuracy and robustness were 
achieved with the LK and correlation-based methods over the 
others for image-to-image registration, restricted adaptive 
tuning, and stabilization over warped images; while the SIFT 
outperformed the others for partial image overlap.  

Keywords: Image registration, image registration evaluation, 
layered-sensing  

I. INTRODUCTION 

Image registration methods (IRM) are fundamental for 
automatic target detection, recognition, and identification [2]; 
image and data fusion [3]; and video processing, 
compression, and storage [4]. IRM aligns one or more images 
taken of the same scene. These images are usually obtained 
from different sensors, on different platforms, from different 
viewpoints. ‘Image Registration’ is a term that captures many 
products including: image-to-image registration [5][6], cross-
modal image-to-image registration [7][8], video registration 
[10], orthorectification [9], image geo-registration [9][10], 
and image mosaicking [11].  

                                                           
1 The authors thank OSU: Sangil Jwa for the RDA code, John I. Martin, 
Keith Redmill, and Dr. Ümit Özgüner for the  SIFT algorithms, and James 
W. Davis and Mark Heck for the cross-correlation implementation.  

As the name suggests, image-to-image registration [5], 
involves aligning two images. Video registration is similar, 
except the images are typically from the same platform and 
the same sensor, but from a slowly changing viewpoint [6]. 
Orthorectification is transforming a set of images so that they 
have the same viewpoint; it differs from image-to-image 
registration because the images are first transferred to a similar 
viewpoint, most often the nadir viewpoint, and then 
transformed to one another, versus transferring one image to 
another image [9]. Image geo-registration is the most valuable 
product involving correlating image pixels with world 
coordinates to appropriately map objects of interest. Finally, 
image mosaicking involves stitching two or more images 
together to create one large image [5].  

All of these processes are difficult problems due to 
changes in the operating conditions (i.e. sensor, targets, and 
environments) of the images [12]. However, although image 
registration is a difficult process, it is a requirement for 
technologies such as data fusion, especially as applied to 
Geographic Information Systems (GIS) data, change 
detection, target tracking, recognition, wide area surveillance, 
and situational awareness which are captured in the Layered 
Sensing (LS) concept shown in Figure 1.   

 

Figure 1.  Layered Sensing Paradigm [13]. 
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Multi-layered Sensing or simply, Layered Sensing (LS), is 
defined in [13]. The goal of multi-layered sensing is to fuse a 
combination of sensors to provide timely, trusted, and 
relevant information. The combination of sensors is multi-
dimensional with sensors flying on different platforms, at 
different altitudes, and capturing data of different 
phenomenology. The goal of LS is: 

 
“Layered Sensing provides military and homeland security 
decision makers at all levels with timely, actionable, trusted, 
and relevant information necessary for situational awareness 
to ensure their decisions achieve the desired 
military/humanitarian effects. Layered Sensing is 
characterized by the appropriate sensor or combination of 
sensors/platforms, infrastructure and exploitation capabilities 
to generate that situation awareness and directly support 
delivery of “tailored effects” [13]. 

 
In order to fully exploit Layered Sensing, there is a need to 

improve enabling technologies such as sensor resource 
management (SRM), image registration, tracking, and target 
identification. Image registration is crucial to the Layered 
sensing construct as it enables simultaneous tracking and 
target identification.  

There are several traditional registration techniques widely 
used. Fundamentally there are intensity-based approaches and 
feature-based approaches [5][6]. Over the years, 
developments have gone from signal registration [14], to tie-
point matching such as mutual information [2][15][8], to 
combining Fourier and Multiple Classifier (e.g. MUSIC) 
techniques to aid registration [16]. Different techniques are 
compared for confidence, accuracy, timeliness, throughput, 
cost, and robustness. Image registration evaluation requires 
metrics [17], comparisons to image sets [18], and performance 
estimation and bounds [19]. Critical to IRM evaluation is a set 
of data for joint comparisons. 

A. Columbus Large Image Format (CLIF) Data  

To research Layered Sensing, two multi-layered data 
collections are available for public release, namely the 
Columbus Large Image Format (CLIF) 2006 and 2007 data 
collections. These collections are available on the Sensor 
Data Management System (SDMS) website at 
https://www.sdms.afrl.af.mil/datasets/clif2006/. The CLIF 
2007 data collection includes three 'layers' of data from multi-
layered assets--a high-flying asset, surrogate UAVs, and 
building mounted sensors. These sensors imaged the same 
area at the same time—The Ohio State University (OSU) 
Campus. The high-flying asset provides electro-optical (EO) 
data from the Large Area Image Recorder (LAIR) sensor—a 
Wide-Area Surveillance Platform (WASP). The LAIR data is 
unique as it has a 3.5-4 mile diameter footprint with one-
meter resolution, i.e. it can image several city blocks at a 
time. Furthermore, the asset is flying circular paths so it is 
able to maintain persistent surveillance over an area. The 
surrogate UAV layer, which includes EO and mid-wave 
infrared (MWIR) data are closer-in sensors flying at 2500-
6000 feet, and have sub-foot resolution. The final layer is EO 
and IR data from building mounted sensors which are at 70 

feet above ground and have sub-foot resolution. The CLIF 
2006 data collection contains similar data but contains two 
‘layers’—the LAIR layer and the building mounted layer. 
Figure 2. shows examples of all three layers. 

 

   
(a)                                         (b) 

 

     
   (c)                                     (d)                        

Figure 2.  Example data from the CLIF data collections (a) EO data from the 
LAIR sensor (b) EO data from the surrogate UAV (c) EO data from the 
building mounted sensor (d) IR data from the surrogate UAV. Notice that (a) 
– (c) are viewing the same area and that the vechilcle shown in (c) can also 
be seen in (a).  

The CLIF datasets are very rich and provide a good data 
set to test algorithms with applications to layered sensing. 
There are six image registration product needs for the data set:  

(1) Very accurate image-to-image registration, i.e. 
frame-to-frame registration, to at least within a pixel 
accuracy but sub-pixel accuracy is preferred [5]. 

(2)  Orthorectification of the data to the nadir (bird's eye) 
view [9]. 

(3) Geo-registration of the data to world coordinates. 
This entails aligning the frames to either a digital 
elevation model (DEM) or another GIS product 
containing world coordinates of the imaged area.[9]  

(4) Image mosaics of the data, specifically of the LAIR 
data. The LAIR is a system composed of six cameras 
with overlapping areas. The result is a ‘frame set’ or 
rather six overlapping frames taken at the same time. 
The mosaic would create one large image from the 
six overlapping frames and thus the ‘frame set’ would 
just become a single frame [11]. 

(5) Geo-registration of the EO data to 3D Geographical 
Information System (GIS) model, also referred to as 
Fusion Level 0 [20]. 

(6) The ultimate product is video stabilization of each of 
the videos from each of the layers in the data 
collection which would entail a combination of the 
previous products [21]. 
 

This paper provides an evaluation of the first product, 
accurate image-to-image registration for different registration 
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algorithms. The next section provides a general overview of 
the registration algorithms used in the comparison. 

 

Figure 3.  Example data from the CLIF LAIR sensor. The six different 
frames from one frame set are laid side-by-side to illustrate the need for an 
image mosaic.  

II. REGISTRATION ALGORITHMS 

There are several traditional registration techniques widely 
used. Fundamentally there are intensity-based approaches and 
feature-based approaches.[5][6]  

The most common technique is to match image intensities 
based on cross-correlation.[14] Cross-correlation (CC) suffers 
from variations in operating conditions. For example, images 
taken from EO videos still have changes in lighting conditions 
due to the difference in the time of day when they are 
collected. These changes in lighting challenge correspondence 
accuracy. Typical operating conditions include: differing 
viewpoint, shadows, weather conditions, sensor type, terrain 
type, image quality, lighting variation, reference image 
differences, and quality of metadata. However, CC typically 
works well for frame-to-frame image registration for video 
stabilization. Less constrained scenarios require more 
advanced registration techniques that are invariant to the 
operating conditions.                

Another popular method is feature-based registration. The 
approach extracts salient features from the images and aligns 
the images by aligning the features. Features, such as points, 
edges, regions, and most commonly corners, are more robust 
to changes in lighting and viewpoint than just image intensity 
correlation.  

There are some steps that are common to either technique 
that a registration algorithm will need to solve: (1) feature 
extraction (either pixel-based or feature-based ‘features’), (2) 
establishing correspondence between features, (3) calculating 
a transformation, (4) align images by resampling, and (5) 
measuring accuracy.  

In this paper, we examine four different registration 
techniques. Three techniques were developed under the 
Revolutionary Automatic Target Recognition and Sensor 
Research (RASER) grants and the fourth, the Lucas-Kanade 
(LK) algorithm, was adapted from [10-12] and tailored to the 
CLIF data set for registration comparison and evaluation. The 
correlation-based approach is intensity-based, the robust data 
alignment (RDA) approach is feature and intensity-based, the 
Scale Invariant Feature Transform (SIFT) is feature-based, 

and the LK is intensity-based. The first three algorithms were 
described in detail in [1] but for convenience this section gives 
a quick overview of the algorithms with emphasis on the 
Lucas-Kanade algorithm.  

A. The OSU Correlation-Based Appraach  

The Ohio State University (OSU) Correlation-Based 
approach was explored by Professor James W. Davis and 
Mark Keck in cooperation with the authors [1]. The original 
algorithm was written in MATLAB and the authors adapted it 
and rewrote it in C++. The goal is to register and stabilize a 
series of images taken from a video sequence. In order to do 
this efficiently, a Gaussian image pyramid technique is 
implemented where the images are first convolved with a 
Gaussian kernel and then downsampled, for example by a 
factor of 2 or 4, and the registration process is done at the 
coarsest resolution. Starting at the coarsest resolution helps to 
increase the computational efficiency of the algorithm. 

Using the images with the coarsest resolution, uniformly 
distributed ‘feature points’ are extracted from the target 
image by dividing the image into a grid and extracting 
features located at the grid intersections. These features are 
not traditional features such as corners or edges but rather 
small, square areas of pixels where the area is referred to as 
the Template Area. The images are assumed to be texturally 
rich and thus the areas are assumed to be quality areas. The 
reference image is gridded in the same fashion (using the 
same grid size) and features are similarly extracted. A 
projective transformation is then calculated between the pixel 
area in the target image and the pixel area in the reference 
image. The target image is then warped by the projective 
transformation to create a warped image. The similarity 
measure of normalized cross-correlation is then calculated 
between the warped image and the original reference image.  

The goal is to find the projective transformation that gives 
the best value for normalized cross-correlation. Since the 
images were taken at different times from a moving camera, 
the corresponding points are assumed to be displaced by some 
small distance (at the coarsest resolution), thus the image 
intensity values at corresponding points are not equal. To 
more accurately estimate the true locations in the reference 
image, a small region around the coarser correspondences is 
searched at the finer resolution (via normalized cross-
correlation of small image patches). This area is referred to as 
the Search Area. The best matching points continue to 
propagate down to the finer levels of the image pyramid and 
the process is repeated, but within a restricted search space. 
The use of the pyramid constrains the search to a relatively 
small area, rather than using an extremely large search 
window at the original resolution. After processing the full-
resolution images, corresponding point sets are established. 
Given these two sets of corresponding points, a projective 
transformation matrix between the images is estimated. 
Additionally, the RANSAC (RANdom SAmple Consensus) 
algorithm is used to eliminate outliers in the correspondence 
set and provide the near optimal inlier set. 
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B. The Robust Data Alignment approach 

The Robust Data Alignment (RDA) approach is a novel 
approach that transforms the image registration problem into 
an optimization problem. This section gives an overview of 
the algorithm but for a detailed explanation of the approach 
see [22].  

The RDA first extracts features from the target and 
references images. The approach is not tied to a specific 
feature extractor but the implementation used by the authors, 
courtesy of Dr. Ümit Özgöner and Sangil Jwa of OSU, uses 
the Kanade-Lucas-Tomasi (KLT) algorithm that essentially 
extracts corners from the image. Using the KLT features from 
the target image a distribution function of those features is 
created and likewise a probability distribution function (PDF) 
is created for the reference image. Then the joint PDF for the 
template and reference image is calculated. The calculation of 
the two marginal PDFs and the joint PDF is similar to the 
steps taken for mutual information technique. As in mutual 
information, the big picture idea is when the images are 
aligned; their PDFs will be most similar.  Hence the problem 
is to define how to best measure the similarity between the 
PDFs.  

For the RDA, they were able to construct a cost criterion 
based on information theory for this application.  Thus, given 
the two PDFs the idea is to find an affine transformation that 
minimizes the following cost function,    

 
 

(1) 

 

where  is a transformed feature point 
by an affine transformation , and  corresponds to the 
Parzen-window as described in [22]. An impressive result of 
the RDA is that finding the transformation that minimizes the 
cost criterion, is equivalent to minimizing relative entropy; 
and that it has been show to be more efficient than the mutual 
information approach [22].  

C.  The OSU SIFT Approach 

The OSU SIFT Approach is an image registration 
technique that relies on SIFT features. For a detailed 
explanation of the approach see [1]. The OSU SIFT approach 
is based on the Scale Invariant Feature Transform (SIFT) 
algorithm, originally developed by David Lowe at the 
University of British Columbia in conjunction with an 
implementation of the RANSAC algorithm and a Linear Least 
Squares fit [4]. The original application of the OSU SIFT 
Algorithm was to geo-register the CLIF LAIR data. For this 
paper, the OSU SIFT approach is used for frame-to-frame 
registration to register the UAV data and evaluate the 
performance.   

The SIFT algorithm is unusual because the detector and 
descriptor are more closely related than in most algorithms. 
The SIFT descriptor relies on an orientation assignment given 
to the detector, so the detector and descriptor are not easily 
separable.   

SIFT looks for local extrema in the scale-space which 
consists of several Difference of Gaussian (DoG) images. 
Extrema that are along edges or in low contrast regions are 
eliminated because they are considered to be unstable. The 
algorithm then convolves the area immediately around the 
keypoint with a Gaussian kernel and uses the result to 
calculate the local image gradients. The image gradients are 
then used to assign an orientation to the keypoint.  

The descriptor is then computed as a 44 array of 
histograms. Each histogram contains 8 bins according to the 
original implementation of SIFT. The key to the descriptor is 
that it is calculated relative to the orientation of the keypoint 
by first resampling the area around the keypoint so that the 
orientation of the keypoint will be in one of the cardinal 
directions. By computing the descriptor relative to the 
orientation of the keypoint, rotational invariance is achieved. 
The descriptor is computed by convolving the area around the 
keypoint with a Gaussian kernel with sigma equal to 1.5 times 
that of the keypoint sigma. The image gradients at each pixel 
are calculated and the magnitude is added to the correct bin in 
the histogram, based on the direction of the image gradient.  

The OSU SIFT approach then uses RANSAC to find the 
optimal affine transformation between the image pairs based 
on the matching SIFT descriptors. The best transformation 
found by RANSAC is then used to select the points that are 
closest to each other after the transformation is applied. These 
points are then used to generate the final transformation 
between the two images by using a linear least squares fit.  

D. Lucas-Kanade Algorithm 

The Lucas-Kanade image alignment approach is unique 
compared to the other algorithms explored in this paper 
because it doesn't align images by selecting features and 
solving the correspondence problem [10-12]. Instead LK uses 
a gradient descent optimization technique, Gauss-Newton, to 
align images by making use of image intensity differences 
along with intensity gradient information [8-10]. The approach 
starts with an initial estimate of the global projective 
transformation and uses the intensity gradients to improve the 
transformation estimate in an iterative fashion. The Gauss-
Newton optimization relies on local linear approximations and 
is easily influenced by the initial transformation estimate and 
local extrema so convergence is not guaranteed. In order to 
provide more robustness a coarse-to-fine, the Gaussian 
pyramid, strategy was implemented.  

 Registration involves aligning an input image  xI with a 

template image  xT  using a global warp  pxW ;  where x  
represents pixel coordinates and p  represents the global 
parameterized transformation [27]. For our implementation we 
chose our transformation/warp,  pxW ; , to be a projective 
homography as seen in Equation (2). Other various 
parameterized transformations, including affine, are discussed 
in [27]. 
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The Lucas-Kanade algorithm tries to minimize the squared 
differences between the warped image and the template 
image at each iteration.  
 

       
x

xTppxWI 2;  (3) 

 
From [27], the algorithm outline used in our method consists 
of: 

(1) Warp  xI  with  pxW ; to get   pxWI ;  

(2) Calculate the error image     pxWIxT ;  

(3) Warp  xI , gradient of  xI , with  pxW ;  

(4) Evaluate the Jacobian 
p

W




 

(5) Compute  
p

W
xI




  

(6) Compute Hessian using Equation (4) 

(7) Compute p  using Equation (5) and update p  

(8) Repeat until convergence, p  
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 321 pypxp   (7) 
 

 654 pypxp   (8) 
 

 187  ypxp  (9) 
 
Steps (1) and (3) required warping the image and its gradient 
image. In order to perform the resampling, our 
implementation uses bilinear interpolation which involves 
linear weighting based on the 4 nearest pixel intensity values.  

             

III. EXPERIMENTS AND RESULTS 

The evaluation consisted of five experiments as explained 
in the author’s previous publication [1]. For convenience 

those experiments are quickly outlined in the next section. 
Furthermore, the results of those experiments are presented.  
 

A. Experiment 1(Image-to-Image Registration) 

For the first experiment, each registration algorithm was 
used for frame-to-frame registration (F-F) of the EO 
unmanned aerial vehicle (UAV) data. For the F-F experiment, 
a transformation was found between Images 1-2 and then 
Images 2-3 and so on. The reference image was then warped 
to the reference image using four different types of 
interpolation routines--nearest neighbor, bilinear, bicubic 
spline, and Lanczos. In [1], Mendoza-Schrock et al provides 
an explanation of these routines. The root mean square error 
(RMSE) was then calculated for each of the pairs. First, a 
sample dataset was used to find the optimum parameters for 
the algorithm. The training set consisted of three sub-datasets 
chosen to be representative of the entire dataset. Each sub-
dataset contained unique structure, for example the first was 
over a body of water, the second was over an urban 
environment, and the third was over an area with high levels 
of vegetation. There were a total of 296 frames, of size 
4004x2672 pixels, used for the experiments where Frame 1 is 
entitled “EO_Run01_s2_301_15_00_31.993190_1” in the 
original CLIF 2007 EO UAV data collection, and Frame 2 is 
entitled “EO_Run01_s2_301_15_00_31.993190_2” and so on. 
The results of this experiment are shown in Table 1. The 
bicubic spline interpolation routine consistently gave slightly 
better results (on average one tenth of a pixel) so the results 
using the bicubic spline routine are reported in Table I.  

TABLE I.   

RMSE Results for Experiment 1 

Algorithm 
Median 
RMSE 

Mean 
RMSE 

Standard 
Deviation 

Correlation-Based Approach 7.6862 8.2159 4.9661 

RDA Approach  9.1542 9.8452 5.2024 

SIFT Approach 9.2506 9.4069 2.6130 

LK Approach 7.4788 7.9908 4.2682 
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(a) 

 

(b) 

Figure 4.  Evaluation of the registration accuracy and robustness of 
the LK approach. (a) Results for frame-to-frame UAV EO data. (b) 
Results for LAIR EO data using tuning parameters of UAV EO data. 

B. Experiment 2 (Robustness over tuning) 

For the second experiment, each registration approach was 
used for frame-to-frame registration of the EO LAIR data, 
again using all four different types of interpolation routines. 
However, the algorithms were not re-tuned for the new 
dataset. The goal of this experiment was to see how well the 
algorithm performed without being re-tuned for this specific 
dataset. This gives an indication of the algorithm’s robustness. 
There were a total of 100 frames, of size 2672x4008 pixels, 
used for this experiment where Frame 1 is entitled “Camera 3 
Frame 319” in the original CLIF 2006 EO LAIR data 
collection. The results are shown in Table 1I. Again the 
bicubic spline interpolation routine consistently gave slightly 
better results (on average one tenth of a pixel) so the results 
using the bicubic spline routine are reported in Table II.  

TABLE II.   

RMSE Results for Experiment 2 

Algorithm 
Median 
RMSE 

Mean 
RMSE 

Standard 
Deviation 

Correlation-Based 
Approach 

3.8114 3.8461 0.3123 

RDA Approach  9.6577 11.0055 5.4599 

SIFT Approach 9.8566 10.4649 3.6886 

LK Approach 3.8114 3.8461 0.3123 

 

C. Experiment 3 (Robustness over Stabilization) 

Next, the UAV EO data was stabilized using each 
algorithm. Pairwise transformations were concatenated 

throughout the sequence to register each frame back to the 
first frame of the sequence, i.e. instead of producing the results 
for frame-to-frame registration; the transformations were 
multiplied to produce a stable video sequence. Thus, to get the 
transformation for Frame 3, the transformation from Frames 
1-2, and the transformation from Frames 2-3 were multiplied, 
then to get the transformation for Frame 4, the transformation 
from Frames 1-2, the transformation from Frames 2-3, and the 
transformation from Frames 3-4 were multiplied, and so on. 
Since the flight paths were linear, dog bone patterns, the video 
was restarted every time half the image was black, i.e. 50% of 
the resulting frame was black pixels. This resulted in multiple 
sequences of stabilized video, where the number of sequences 
varied by algorithm. This provides a micro-analysis into the 
data, and shows the specific part of the data that the algorithm 
had trouble with. The results for the Lucas Kanade approach 
are shown in Table III. To eliminate unnecessary repetition, 
the results for the other three approaches are found in [1]. 

TABLE III.   

Results for Experiment 3 

Seq. Frames Number of 
Frames in 
Sequence 

Median 
Intensity 

RMS 
Error 

Mean 
Intensity 

RMS 
Error  

Standard  
Deviation 

1 001-032 031 7.1346 8.6345 2.4024 
2 033-062 029 8.4412 8.4293 0.3245 
3 063-094 031 8.3374 8.4110 0.7531 
4 095-124 029 7.3415 7.6948 0.8706 
5 125-152 027 7.3109 7.4660 0.5682 
6 153-180 025 6.4080 6.6068 0.7795 
7 181-213 032 7.5853 8.6602 2.4238 
8 214-240 026 6.9169 7.3652 1.2392 
9 241-246 005 6.0108 6.2413 0.5859 
10 247-276 029 7.9719 9.2153 2.5755 
11 277-296 019 6.9050 7.2071 1.0973 
Overall Mean 295 7.3058 7.8120 1.2382 

 

D. Experiment 4 (Robustness over warping) 

Experiment 4 also provides an indication of the algorithm 
robustness. The images were warped using a transformation 
consisting of the product of the previous transformations as 
described in Experiment 3. The warped image at each stage 
was then compared to the first image and the RMSE was 
calculated, and the result is shown in a graph. The RMSE is 
expected to increase over time as errors will accumulate 
through the propagation. Sources of error will be from the 
registration algorithm, moving vehicles, and the ‘parallax 
problem’. The ‘parallax problem’ is a byproduct of trying to 
perform 2D registration of a 3D object. Typically one focuses 
on the ground plane, and the taller an object is, the more out-
of-plane movement there will be between images and the 
more error in trying to find a 2D transformation to describe 
the change in viewpoint. The results for the Lucas Kanade 
approach are shown in Figure 5.  This shows the propagation 
of error over time for the first 30 frames compared to the first 
frame. Here flatter trends are more desirable, and the curve 
appears to follow a logarithmic trend with an R2 value of 

228



0.9735. To eliminate unnecessary repetition, the results for 
the other three approaches are found in [1]. 

 

Figure 5.  Results of Experiment 4 for the LK approach. 

E. Experiment 5 (Robustness over partial overlap) 

Experiment 5 is another indication of the robustness of the 
algorithm, specifically in regards to partial overlap. 
Specifically, a transformation was found between the first 
frame and the nth frame, where n ran from 2 to 295. 
Eventually the partial overlap, or the translation and rotation 
change will be so large, that the algorithm will not be able to 
find a suitable transformation. The more robust an algorithm 
is, the farther it will progress before it breaks down.  

TABLE IV.   

RMSE Results for Experiment 5 

Algorithm 
Ending 
Frame 

Starting 
Frame 

Percent 
Overlap 

Correlation-Based 
Approach 

8 1 85 

RDA Approach  3 1 95 

SIFT Approach 58 1 16 

LK Approach 6 1 89 

        

IV. DISCUSSION AND FUTURE WORK 

In the previous section, five experiments were explained 
and the results for the experiments using four different 
registration algorithms were reported (CC, RDA, SIFT, and 
LK). The LK approach outperformed the other three 
registration algorithms in the first three experiments. These 
results are not surprising since the KL approach is very similar 
to the OSU Correlation based approach and the OSU 
correlation-based approach outperformed the other algorithms 
in similar experiments [1]. The LK was specifically set-up to 
optimize the RMSE and to perform well on single modality 
data so it should naturally outperform the other algorithms. 
For Experiment 2, where the LAIR data was registered using 
the tuning parameters from the UAV data, the LK approach 
was expected to outperform all the other algorithms.  As 
expected it outperformed the RDA and the SIFT but tied with 
the LK. For Experiment 5, the SIFT algorithm still 
outperformed all the other algorithms. This is not surprising as 

the SIFT features are very salient and persist over a long 
sequence of frames affording video registration.  

For frame-to-frame registration of the EO UAV data, all 
algorithms produced RMSEs in the range of 8-9 m. All four 
algorithms had trouble with the Frames 185–215. Frame 200 
is shown in Fig. 1(c). These frames were predominately 
imaging vegetation in residential areas. For all algorithms, 
there was a unique spike in the intensity RMSE from Frame 
245-246. What occurred here is that there were a couple of 
lost frames in the original data. This is a real-world event that 
occurs often, and illustrates a need for robust registration 
algorithms that can recover from the loss of frames. 

Future work will focus on registration evaluation metrics 
in a sensitivity study (e.g. registration robustness versus 
operating conditions).  RMSE provides a reasonable measure 
with the assumption that frame rates are high enough and 
scene changes (parallax and moving vehicles) are minimal. 
However, instead of using RMSE perhaps median or mean of 
the difference of the absolute values would be a better metric 
since it would not be as easily affected by the outlier frames 
such as Frame 245, where a loss of frames occurred. 
Additionally, a ground-truth effort will be performed so non-
intensity-based metrics can be employed. Further, the 
algorithms will be used to produce georegistered results 
where data is fused into a GIS. The image-GIS fusion will 
solve the problem of running into the ‘black’ pixel issue with 
video stabilization as described in Experiment 3. Also, bundle 
adjustment will be utilized to reduce error propagation.  

Preprocessing work such as image orthorectification also 
is needed so that all images are aligned in regards to 
viewpoint. Improvements will include more sophisticated 
multi-dimensional optimization techniques with each 
algorithm so that optimum parameters can be more accurately 
identified (and evaluated) instead of optimizing for one 
parameter at a time, independent of the other parameters. 

Additionally recall that, the OSU Correlation-Based 
approach solved for a projective transformation, while the 
others solved for an affine transformation. Also, the OSU 
Correlation-Based approach has to some degree a built-in 
capability to self-tune to find the optimal parameters, i.e. after 
setting the initial conditions it self-tunes for number of 
features, window size, and RANSAC parameter. Self-tuning 
a feature implemented by the authors. In order to be able to 
compare apples-to-apples, all algorithms should solve for 
similar transformations and all algorithms should be adjusted 
to have self-tuning capabilities. Finally, other RASER Grant 
algorithms will be brought into the evaluation, as well as 
other state-of-the-art-algorithms found in the literature.  

V. SUMMMARY 

There are several traditional registration techniques based 
on feature and intensity based methods. This paper 
summarizes four different algorithms. The first approach is 
intensity-based—The OSU Correlation-Based approach. The 
second approach is feature and intensity-based—the Robust 
Data Alignment (RDA) approach. The third approach is a 
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feature-based approach—the OSU Scale Invariant Feature 
Transform (SIFT) approach. The fourth approach—the 
Lucas-Kanade (LK) approach—is intensity-based. All 
approaches were utilized over a common data set for 
registration evaluation for frame-to-frame registration in a 
series of experiments using the CLIF data collections—
specifically the EO UAV data and the EO LAIR data.  

In future work, multi-modality data will be brought into 
the experiments to demonstrate the strength of the RDA 
approach as it is specifically designed to handle multi-
modality data. Both of the CLIF data collections have 
overlapping IR and EO data, making these collections well 
suited for further experiments.  
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