A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | AA | AB | AC | AD | AE | AF | AG | AH | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Totals ==> | 77 | 4 | 4 | 0 | 0 | 0 | 2 | 0 | 0 | 5 | 0 | 0 | 3 | 2 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 96 | |||||||||||
2 | Ok | ? | BP | BSI | BSQ | CyG | EU | TSU | BU | IF | IG | IPfx | OI | LenX | SeqX | Last | WU | WF | SG | RV | Scope | Answer | Explanation | ID | Formula | Expected | ||||||||
3 | 1 | if there is a red state, some time later there is a not red state | R_3MS5InthwHWtaZT | F(r => F(!r)) | if red, must have !red in future | |||||||||||||||||||||||||||||
4 | R_3G88D8gpZ7v63nz | F(r => F(!r)) | if red, must have !red in future | |||||||||||||||||||||||||||||||
5 | R_3Dw4BW8x0ynmmQm | F(r => F(!r)) | if red, must have !red in future | |||||||||||||||||||||||||||||||
6 | 1 | Eventually, if a state makes Red true, then some future state must make Red false | R_DSlVV5XN50E2Mzn | F(r => F(!r)) | if red, must have !red in future | |||||||||||||||||||||||||||||
7 | R_WByy6AuVYHXV65H | F(r => F(!r)) | if red, must have !red in future | |||||||||||||||||||||||||||||||
8 | 1 | There exists an instant where, if the Red light is on, then there exists a future instant with the Red light off. It is satisfied by an infinite trace with the Red light off at the first instant (under the reflexive interpretation of "F", which I am assuming). | R_vvG6iiXnXM4vZJv | F(r => F(!r)) | if red, must have !red in future | |||||||||||||||||||||||||||||
9 | R_9Td5mdNtgffkvJL | F(r => F(!r)) | if red, must have !red in future | |||||||||||||||||||||||||||||||
10 | 1 | The red light is not always on. | R_9ukqO8kCEIR4pLb | F(r => F(!r)) | if red, must have !red in future | |||||||||||||||||||||||||||||
11 | 1 | not sure | R_2saTh9ICAgM0BHV | F(r => F(!r)) | if red, must have !red in future | |||||||||||||||||||||||||||||
12 | 1 | There is an instant in which the light is red. Following, there will be an instant in which the light is not red. | R_3J3NZWyA2hcl5by | F(r => F(!r)) | if red, must have !red in future | |||||||||||||||||||||||||||||
13 | 1 | There is a non-red state following a red state, or all states are non-red after some point. | R_1mfLnqhYsR97vhv | F(r => F(!r)) | if red, must have !red in future | |||||||||||||||||||||||||||||
14 | ok | 1 | At some state, red has to hold. After that state, at some point, red has to not hold. when this has happened, the rest of trace is irrelevant Otherwise, red never holds | R_VHZdlnCi0wPqPGF | F(r => F(!r)) | if red, must have !red in future | ||||||||||||||||||||||||||||
15 | R_0ize6N4UFi1irrb | F(r => F(!r)) | if red, must have !red in future | |||||||||||||||||||||||||||||||
16 | R_3kpTXi28NBbr8mO | F(r => F(!r)) | if red, must have !red in future | |||||||||||||||||||||||||||||||
17 | R_3Rt21EZCScgM3oC | F(r => F(!r)) | if red, must have !red in future | |||||||||||||||||||||||||||||||
18 | R_enENzp0guuxVGwh | F(r => F(!r)) | if red, must have !red in future | |||||||||||||||||||||||||||||||
19 | 1 | Red is false at a state | R_1g8tSbzTTgxijrd | F(r => F(!r)) | if red, must have !red in future | |||||||||||||||||||||||||||||
20 | R_3M5V4sL4b6COyD2 | F(r => F(!r)) | if red, must have !red in future | |||||||||||||||||||||||||||||||
21 | R_23fQaq1kM65aSP7 | F(r => F(!r)) | if red, must have !red in future | |||||||||||||||||||||||||||||||
22 | 1 | There is a state in which red light is on and from there on there is a state in which red light is off | R_1QFcce33iJrOdLO | F(r => F(!r)) | if red, must have !red in future | |||||||||||||||||||||||||||||
23 | 1 | Eventually there is a state where red is false after some states where it was true | R_2EnQzWu9HQsIjn8 | F(r => F(!r)) | if red, must have !red in future | |||||||||||||||||||||||||||||
24 | 1 | At a certain point, either Red is always off or will eventually be off after it is on. It should be similar to asking someone to turn off the light after (and if) he turns it on, from a certain moment. | R_R9tc8AnNRKwPdkd | F(r => F(!r)) | if red, must have !red in future | |||||||||||||||||||||||||||||
25 | R_2QPzqLc2iRGU0Jd | F(r => F(!r)) | if red, must have !red in future | |||||||||||||||||||||||||||||||
26 | R_3EO18al85qREqgF | F(r => F(!r)) | if red, must have !red in future | |||||||||||||||||||||||||||||||
27 | R_3MS5InthwHWtaZT | (r U b) & G(r) | always r, eventually b | |||||||||||||||||||||||||||||||
28 | R_3G88D8gpZ7v63nz | (r U b) & G(r) | always r, eventually b | |||||||||||||||||||||||||||||||
29 | 1 | Red must always stay on. At some point in the future, blue will come on | R_3Dw4BW8x0ynmmQm | (r U b) & G(r) | always r, eventually b | |||||||||||||||||||||||||||||
30 | 1 | Holds if Red is true in every state and Blue is true in same state | R_DSlVV5XN50E2Mzn | (r U b) & G(r) | always r, eventually b | |||||||||||||||||||||||||||||
31 | 1 | The red light is always on, and at some point blue is on. | R_WByy6AuVYHXV65H | (r U b) & G(r) | always r, eventually b | |||||||||||||||||||||||||||||
32 | R_vvG6iiXnXM4vZJv | (r U b) & G(r) | always r, eventually b | |||||||||||||||||||||||||||||||
33 | R_9Td5mdNtgffkvJL | (r U b) & G(r) | always r, eventually b | |||||||||||||||||||||||||||||||
34 | R_9ukqO8kCEIR4pLb | (r U b) & G(r) | always r, eventually b | |||||||||||||||||||||||||||||||
35 | 1 | 1 | Red is true until blue is true (which might never happen) also, forever red must be true. Is the same as just G(Red) | R_2saTh9ICAgM0BHV | (r U b) & G(r) | always r, eventually b | ||||||||||||||||||||||||||||
36 | 1 | The light is red on every state, and there exists a state in which the light is blue | R_3J3NZWyA2hcl5by | (r U b) & G(r) | always r, eventually b | |||||||||||||||||||||||||||||
37 | R_1mfLnqhYsR97vhv | (r U b) & G(r) | always r, eventually b | |||||||||||||||||||||||||||||||
38 | R_VHZdlnCi0wPqPGF | (r U b) & G(r) | always r, eventually b | |||||||||||||||||||||||||||||||
39 | 1 | all red at least one blue | R_0ize6N4UFi1irrb | (r U b) & G(r) | always r, eventually b | |||||||||||||||||||||||||||||
40 | R_3kpTXi28NBbr8mO | (r U b) & G(r) | always r, eventually b | |||||||||||||||||||||||||||||||
41 | R_3Rt21EZCScgM3oC | (r U b) & G(r) | always r, eventually b | |||||||||||||||||||||||||||||||
42 | 1 | Red always holds and blue will be true eventually. | R_enENzp0guuxVGwh | (r U b) & G(r) | always r, eventually b | |||||||||||||||||||||||||||||
43 | 1 | Red occurs at every state, and blue occurs at a state. | R_1g8tSbzTTgxijrd | (r U b) & G(r) | always r, eventually b | |||||||||||||||||||||||||||||
44 | 1 | Red is Always true and Blue is true at some point | R_3M5V4sL4b6COyD2 | (r U b) & G(r) | always r, eventually b | |||||||||||||||||||||||||||||
45 | R_23fQaq1kM65aSP7 | (r U b) & G(r) | always r, eventually b | |||||||||||||||||||||||||||||||
46 | R_1QFcce33iJrOdLO | (r U b) & G(r) | always r, eventually b | |||||||||||||||||||||||||||||||
47 | R_2EnQzWu9HQsIjn8 | (r U b) & G(r) | always r, eventually b | |||||||||||||||||||||||||||||||
48 | R_R9tc8AnNRKwPdkd | (r U b) & G(r) | always r, eventually b | |||||||||||||||||||||||||||||||
49 | R_2QPzqLc2iRGU0Jd | (r U b) & G(r) | always r, eventually b | |||||||||||||||||||||||||||||||
50 | 1 | Since we have RED for each position, the formula (RED U BLUE) cannot be true because BLUE cannot never be satisfied. The formula is always false. | R_3EO18al85qREqgF | (r U b) & G(r) | always r, eventually b | |||||||||||||||||||||||||||||
51 | R_3MS5InthwHWtaZT | r & !X(b) | r now, !b next | |||||||||||||||||||||||||||||||
52 | 1 | Red is on now and in the next step blue is off. | R_3G88D8gpZ7v63nz | r & !X(b) | r now, !b next | |||||||||||||||||||||||||||||
53 | 1 | Red is on at first instant, blue must be off at the next time instant. | R_3Dw4BW8x0ynmmQm | r & !X(b) | r now, !b next | |||||||||||||||||||||||||||||
54 | R_DSlVV5XN50E2Mzn | r & !X(b) | r now, !b next | |||||||||||||||||||||||||||||||
55 | R_WByy6AuVYHXV65H | r & !X(b) | r now, !b next | |||||||||||||||||||||||||||||||
56 | R_vvG6iiXnXM4vZJv | r & !X(b) | r now, !b next | |||||||||||||||||||||||||||||||
57 | 1 | Red initially and second state in not blue | R_9Td5mdNtgffkvJL | r & !X(b) | r now, !b next | |||||||||||||||||||||||||||||
58 | 1 | The red light is on in the first state and the blue light is not on in the second state. | R_9ukqO8kCEIR4pLb | r & !X(b) | r now, !b next | |||||||||||||||||||||||||||||
59 | R_2saTh9ICAgM0BHV | r & !X(b) | r now, !b next | |||||||||||||||||||||||||||||||
60 | R_3J3NZWyA2hcl5by | r & !X(b) | r now, !b next | |||||||||||||||||||||||||||||||
61 | 1 | The first state is red and the second state is not blue. | R_1mfLnqhYsR97vhv | r & !X(b) | r now, !b next | |||||||||||||||||||||||||||||
62 | 1 | red must always hold in the first state, second state must not be blue, states after that are not important to the formula | R_VHZdlnCi0wPqPGF | r & !X(b) | r now, !b next | |||||||||||||||||||||||||||||
63 | R_0ize6N4UFi1irrb | r & !X(b) | r now, !b next | |||||||||||||||||||||||||||||||
64 | 1 | The first state has Red, the second does not have blue | R_3kpTXi28NBbr8mO | r & !X(b) | r now, !b next | |||||||||||||||||||||||||||||
65 | 1 | The light starts as red and is not blue in the next state | R_3Rt21EZCScgM3oC | r & !X(b) | r now, !b next | |||||||||||||||||||||||||||||
66 | R_enENzp0guuxVGwh | r & !X(b) | r now, !b next | |||||||||||||||||||||||||||||||
67 | R_1g8tSbzTTgxijrd | r & !X(b) | r now, !b next | |||||||||||||||||||||||||||||||
68 | R_3M5V4sL4b6COyD2 | r & !X(b) | r now, !b next | |||||||||||||||||||||||||||||||
69 | 1 | The red light is in a state and then there must be a state in which the light is not blue | R_23fQaq1kM65aSP7 | r & !X(b) | r now, !b next | |||||||||||||||||||||||||||||
70 | 1 | Red light is on in the first state and does not exist a next state which has Blue light on | R_1QFcce33iJrOdLO | r & !X(b) | r now, !b next | |||||||||||||||||||||||||||||
71 | 1 | Red is true in current state and it does not exist a next state where blue hold or if it exists blue may not hold | R_2EnQzWu9HQsIjn8 | r & !X(b) | r now, !b next | |||||||||||||||||||||||||||||
72 | R_R9tc8AnNRKwPdkd | r & !X(b) | r now, !b next | |||||||||||||||||||||||||||||||
73 | 1 | the first state must be red and the second must be not blue | R_2QPzqLc2iRGU0Jd | r & !X(b) | r now, !b next | |||||||||||||||||||||||||||||
74 | R_3EO18al85qREqgF | r & !X(b) | r now, !b next | |||||||||||||||||||||||||||||||
75 | 1 | every red state is followed by non- red followed by red | R_3MS5InthwHWtaZT | G(r => X(!r & X(r))) | whenever r, off/on evermore | |||||||||||||||||||||||||||||
76 | 1 | whenever red holds, it also holds two steps later. | R_3G88D8gpZ7v63nz | G(r => X(!r & X(r))) | whenever r, off/on evermore | |||||||||||||||||||||||||||||
77 | R_3Dw4BW8x0ynmmQm | G(r => X(!r & X(r))) | whenever r, off/on evermore | |||||||||||||||||||||||||||||||
78 | R_DSlVV5XN50E2Mzn | G(r => X(!r & X(r))) | whenever r, off/on evermore | |||||||||||||||||||||||||||||||
79 | 1 | Either the red light is never on, or it becomes on in state k, and from that point onwards it is on in state k+m iff m is even. | R_WByy6AuVYHXV65H | G(r => X(!r & X(r))) | whenever r, off/on evermore | |||||||||||||||||||||||||||||
80 | 1 | In every instant, if the Red light is on, then the next instant has the Red light off and its subsequent instant has the Red light on. It is satisfied also by an infinite trace where the Red light is always off. | R_vvG6iiXnXM4vZJv | G(r => X(!r & X(r))) | whenever r, off/on evermore | |||||||||||||||||||||||||||||
81 | 1 | Red and not red states alternate ad infinitum | R_9Td5mdNtgffkvJL | G(r => X(!r & X(r))) | whenever r, off/on evermore | |||||||||||||||||||||||||||||
82 | R_9ukqO8kCEIR4pLb | G(r => X(!r & X(r))) | whenever r, off/on evermore | |||||||||||||||||||||||||||||||
83 | R_2saTh9ICAgM0BHV | G(r => X(!r & X(r))) | whenever r, off/on evermore | |||||||||||||||||||||||||||||||
84 | R_3J3NZWyA2hcl5by | G(r => X(!r & X(r))) | whenever r, off/on evermore | |||||||||||||||||||||||||||||||
85 | R_1mfLnqhYsR97vhv | G(r => X(!r & X(r))) | whenever r, off/on evermore | |||||||||||||||||||||||||||||||
86 | R_VHZdlnCi0wPqPGF | G(r => X(!r & X(r))) | whenever r, off/on evermore | |||||||||||||||||||||||||||||||
87 | 1 | alternating red | R_0ize6N4UFi1irrb | G(r => X(!r & X(r))) | whenever r, off/on evermore | |||||||||||||||||||||||||||||
88 | 1 | All states that have red are followed by a state that does not have red and is itself followed by a state that does have red. I.e. after the first red in the trace, the trace alternates between !Red and Red | R_3kpTXi28NBbr8mO | G(r => X(!r & X(r))) | whenever r, off/on evermore | |||||||||||||||||||||||||||||
89 | could be IF | 1 | After the first time the red light is on, it will be alternating between on and off | R_3Rt21EZCScgM3oC | G(r => X(!r & X(r))) | whenever r, off/on evermore | ||||||||||||||||||||||||||||
90 | 1 | If red holds, red should be false at the next state and then turns back to true again | R_enENzp0guuxVGwh | G(r => X(!r & X(r))) | whenever r, off/on evermore | |||||||||||||||||||||||||||||
91 | R_1g8tSbzTTgxijrd | G(r => X(!r & X(r))) | whenever r, off/on evermore | |||||||||||||||||||||||||||||||
92 | 1 | Alternate forever Red and !Red from the first occurrence of Red | R_3M5V4sL4b6COyD2 | G(r => X(!r & X(r))) | whenever r, off/on evermore | |||||||||||||||||||||||||||||
93 | 1 | This can be described as a sequence of red, followed by a not red and a next red state | R_23fQaq1kM65aSP7 | G(r => X(!r & X(r))) | whenever r, off/on evermore | |||||||||||||||||||||||||||||
94 | R_1QFcce33iJrOdLO | G(r => X(!r & X(r))) | whenever r, off/on evermore | |||||||||||||||||||||||||||||||
95 | R_2EnQzWu9HQsIjn8 | G(r => X(!r & X(r))) | whenever r, off/on evermore | |||||||||||||||||||||||||||||||
96 | 1 | The Red light is alternated. When it is on, at the next state is off, and vice versa. | R_R9tc8AnNRKwPdkd | G(r => X(!r & X(r))) | whenever r, off/on evermore | |||||||||||||||||||||||||||||
97 | 1 | A red state is always followed by a not-red and a red states, in sequence. | R_2QPzqLc2iRGU0Jd | G(r => X(!r & X(r))) | whenever r, off/on evermore | |||||||||||||||||||||||||||||
98 | 1 | The trace which satisfies the formula is of this type: RED->!RED->RED->!RED-> .... ->RED->!RED-> .... or (if it starts with !RED) !RED->RED->!RED->RED-> .... ->!RED->RED-> .... | R_3EO18al85qREqgF | G(r => X(!r & X(r))) | whenever r, off/on evermore | |||||||||||||||||||||||||||||
99 | 1 | same | R_3MS5InthwHWtaZT | F(r => F(!r)) | same | |||||||||||||||||||||||||||||
100 | R_3G88D8gpZ7v63nz | F(r => F(!r)) | same | |||||||||||||||||||||||||||||||
101 | R_3Dw4BW8x0ynmmQm | F(r => F(!r)) | same | |||||||||||||||||||||||||||||||
102 | 1 | Same as LTL | R_DSlVV5XN50E2Mzn | F(r => F(!r)) | same | |||||||||||||||||||||||||||||
103 | R_WByy6AuVYHXV65H | F(r => F(!r)) | same | |||||||||||||||||||||||||||||||
104 | 1 | Same. | R_vvG6iiXnXM4vZJv | F(r => F(!r)) | same | |||||||||||||||||||||||||||||
105 | R_9Td5mdNtgffkvJL | F(r => F(!r)) | same | |||||||||||||||||||||||||||||||
106 | 1 | same | R_9ukqO8kCEIR4pLb | F(r => F(!r)) | same | |||||||||||||||||||||||||||||
107 | 1 | not sure | R_2saTh9ICAgM0BHV | F(r => F(!r)) | same | |||||||||||||||||||||||||||||
108 | 1 | same | R_3J3NZWyA2hcl5by | F(r => F(!r)) | same | |||||||||||||||||||||||||||||
109 | 1 | Same as above | R_1mfLnqhYsR97vhv | F(r => F(!r)) | same | |||||||||||||||||||||||||||||
110 | 1 | same | R_VHZdlnCi0wPqPGF | F(r => F(!r)) | same | |||||||||||||||||||||||||||||
111 | R_0ize6N4UFi1irrb | F(r => F(!r)) | same | |||||||||||||||||||||||||||||||
112 | R_3kpTXi28NBbr8mO | F(r => F(!r)) | same | |||||||||||||||||||||||||||||||
113 | R_3Rt21EZCScgM3oC | F(r => F(!r)) | same | |||||||||||||||||||||||||||||||
114 | R_enENzp0guuxVGwh | F(r => F(!r)) | same | |||||||||||||||||||||||||||||||
115 | 1 | same | R_1g8tSbzTTgxijrd | F(r => F(!r)) | same | |||||||||||||||||||||||||||||
116 | R_3M5V4sL4b6COyD2 | F(r => F(!r)) | same | |||||||||||||||||||||||||||||||
117 | R_23fQaq1kM65aSP7 | F(r => F(!r)) | same | |||||||||||||||||||||||||||||||
118 | 1 | same | R_1QFcce33iJrOdLO | F(r => F(!r)) | same | |||||||||||||||||||||||||||||
119 | 1 | same | R_2EnQzWu9HQsIjn8 | F(r => F(!r)) | same | |||||||||||||||||||||||||||||
120 | 1 | It should be the same interpretation. | R_R9tc8AnNRKwPdkd | F(r => F(!r)) | same | |||||||||||||||||||||||||||||
121 | R_2QPzqLc2iRGU0Jd | F(r => F(!r)) | same | |||||||||||||||||||||||||||||||
122 | R_3EO18al85qREqgF | F(r => F(!r)) | same | |||||||||||||||||||||||||||||||
123 | R_3MS5InthwHWtaZT | (r U b) & G(r) | r for all states, b for some | |||||||||||||||||||||||||||||||
124 | R_3G88D8gpZ7v63nz | (r U b) & G(r) | r for all states, b for some | |||||||||||||||||||||||||||||||
125 | 1 | Red must always stay on and before the trace ends, blue must come on | R_3Dw4BW8x0ynmmQm | (r U b) & G(r) | r for all states, b for some | |||||||||||||||||||||||||||||
126 | 1 | Same as LTL | R_DSlVV5XN50E2Mzn | (r U b) & G(r) | r for all states, b for some | |||||||||||||||||||||||||||||
127 | 1 | same | R_WByy6AuVYHXV65H | (r U b) & G(r) | r for all states, b for some | |||||||||||||||||||||||||||||
128 | R_vvG6iiXnXM4vZJv | (r U b) & G(r) | r for all states, b for some | |||||||||||||||||||||||||||||||
129 | R_9Td5mdNtgffkvJL | (r U b) & G(r) | r for all states, b for some | |||||||||||||||||||||||||||||||
130 | R_9ukqO8kCEIR4pLb | (r U b) & G(r) | r for all states, b for some | |||||||||||||||||||||||||||||||
131 | 1 | Red is true until blue is true (which must eventually happen before the trace finishes), also in every point until the end red is true. Is different that G(Read) since blue must eventually hold. | R_2saTh9ICAgM0BHV | (r U b) & G(r) | r for all states, b for some | |||||||||||||||||||||||||||||
132 | 1 | The lights is red on every state until the end of the trace, and there exists a state, before the end of the trace, in which the light is blue | R_3J3NZWyA2hcl5by | (r U b) & G(r) | r for all states, b for some | |||||||||||||||||||||||||||||
133 | R_1mfLnqhYsR97vhv | (r U b) & G(r) | r for all states, b for some | |||||||||||||||||||||||||||||||
134 | R_VHZdlnCi0wPqPGF | (r U b) & G(r) | r for all states, b for some | |||||||||||||||||||||||||||||||
135 | 1 | same | R_0ize6N4UFi1irrb | (r U b) & G(r) | r for all states, b for some | |||||||||||||||||||||||||||||
136 | R_3kpTXi28NBbr8mO | (r U b) & G(r) | r for all states, b for some | |||||||||||||||||||||||||||||||
137 | R_3Rt21EZCScgM3oC | (r U b) & G(r) | r for all states, b for some | |||||||||||||||||||||||||||||||
138 | 1 | same | R_enENzp0guuxVGwh | (r U b) & G(r) | r for all states, b for some | |||||||||||||||||||||||||||||
139 | 1 | same | R_1g8tSbzTTgxijrd | (r U b) & G(r) | r for all states, b for some | |||||||||||||||||||||||||||||
140 | 1 | same | R_3M5V4sL4b6COyD2 | (r U b) & G(r) | r for all states, b for some | |||||||||||||||||||||||||||||
141 | R_23fQaq1kM65aSP7 | (r U b) & G(r) | r for all states, b for some | |||||||||||||||||||||||||||||||
142 | R_1QFcce33iJrOdLO | (r U b) & G(r) | r for all states, b for some | |||||||||||||||||||||||||||||||
143 | R_2EnQzWu9HQsIjn8 | (r U b) & G(r) | r for all states, b for some | |||||||||||||||||||||||||||||||
144 | R_R9tc8AnNRKwPdkd | (r U b) & G(r) | r for all states, b for some | |||||||||||||||||||||||||||||||
145 | R_2QPzqLc2iRGU0Jd | (r U b) & G(r) | r for all states, b for some | |||||||||||||||||||||||||||||||
146 | 1 | Same reasoning of LTL. | R_3EO18al85qREqgF | (r U b) & G(r) | r for all states, b for some | |||||||||||||||||||||||||||||
147 | R_3MS5InthwHWtaZT | r & !X(b) | r now, if next !b | |||||||||||||||||||||||||||||||
148 | 1 | red is on now and either the trace ends here, or it has a next step and in this case blue is off. | R_3G88D8gpZ7v63nz | r & !X(b) | r now, if next !b | |||||||||||||||||||||||||||||
149 | 1 | Red is on at first time instant and the trace can end. If time step 2 exists, then blue must be off | R_3Dw4BW8x0ynmmQm | r & !X(b) | r now, if next !b | |||||||||||||||||||||||||||||
150 | R_DSlVV5XN50E2Mzn | r & !X(b) | r now, if next !b | |||||||||||||||||||||||||||||||
151 | R_WByy6AuVYHXV65H | r & !X(b) | r now, if next !b | |||||||||||||||||||||||||||||||
152 | R_vvG6iiXnXM4vZJv | r & !X(b) | r now, if next !b | |||||||||||||||||||||||||||||||
153 | 1 | Red initially and second star is not blue or there is no second state | R_9Td5mdNtgffkvJL | r & !X(b) | r now, if next !b | |||||||||||||||||||||||||||||
154 | 1 | The red light is on in the first state, and it's not the case that there is a second state in which the blue light is on (either there is no second state, or the blue light is off then). | R_9ukqO8kCEIR4pLb | r & !X(b) | r now, if next !b | |||||||||||||||||||||||||||||
155 | R_2saTh9ICAgM0BHV | r & !X(b) | r now, if next !b | |||||||||||||||||||||||||||||||
156 | R_3J3NZWyA2hcl5by | r & !X(b) | r now, if next !b | |||||||||||||||||||||||||||||||
157 | 1 | The first state is red and the second state (if it exists) is blue | R_1mfLnqhYsR97vhv | r & !X(b) | r now, if next !b | |||||||||||||||||||||||||||||
158 | 1 | same but trace of length 1 with red on in the first state would also satisfy the formula | the formula on describes the first and second state, for LTLf, since there is a negative next, if no next state exist that part of the formula is satisfied. Hence, trace of length 1 satisfying red is also a valid trace. | R_VHZdlnCi0wPqPGF | r & !X(b) | r now, if next !b | ||||||||||||||||||||||||||||
159 | R_0ize6N4UFi1irrb | r & !X(b) | r now, if next !b | |||||||||||||||||||||||||||||||
160 | 1 | The first state has red, and if there is a second state it does not have blue. | R_3kpTXi28NBbr8mO | r & !X(b) | r now, if next !b | |||||||||||||||||||||||||||||
161 | 1 | The light is red and if there is a next state the light is not blue in that state | R_3Rt21EZCScgM3oC | r & !X(b) | r now, if next !b | |||||||||||||||||||||||||||||
162 | R_enENzp0guuxVGwh | r & !X(b) | r now, if next !b | |||||||||||||||||||||||||||||||
163 | R_1g8tSbzTTgxijrd | r & !X(b) | r now, if next !b | |||||||||||||||||||||||||||||||
164 | R_3M5V4sL4b6COyD2 | r & !X(b) | r now, if next !b | |||||||||||||||||||||||||||||||
165 | wow | 1 | In LTLf we cannot use a strong next, since there is no guarantees that there will be a next state | R_23fQaq1kM65aSP7 | r & !X(b) | r now, if next !b | ||||||||||||||||||||||||||||
166 | 1 | same | R_1QFcce33iJrOdLO | r & !X(b) | r now, if next !b | |||||||||||||||||||||||||||||
167 | 1 | same | R_2EnQzWu9HQsIjn8 | r & !X(b) | r now, if next !b | |||||||||||||||||||||||||||||
168 | R_R9tc8AnNRKwPdkd | r & !X(b) | r now, if next !b | |||||||||||||||||||||||||||||||
169 | see above, "second must not be blue" | 1 | same [[ the first state must be red and the second must be not blue ]] | R_2QPzqLc2iRGU0Jd | r & !X(b) | r now, if next !b | ||||||||||||||||||||||||||||
170 | R_3EO18al85qREqgF | r & !X(b) | r now, if next !b | |||||||||||||||||||||||||||||||
171 | 1 | same but only satisfiable if no red states | cannot be satisfied in ltlf if there is one red state there should be infinitely many (if strong next) | R_3MS5InthwHWtaZT | G(r => X(!r & X(r))) | never r | ||||||||||||||||||||||||||||
172 | 1 | red never holds | R_3G88D8gpZ7v63nz | G(r => X(!r & X(r))) | never r | |||||||||||||||||||||||||||||
173 | R_3Dw4BW8x0ynmmQm | G(r => X(!r & X(r))) | never r | |||||||||||||||||||||||||||||||
174 | R_DSlVV5XN50E2Mzn | G(r => X(!r & X(r))) | never r | |||||||||||||||||||||||||||||||
175 | 1 | The property can only be satisfied by traces where red is never on. | R_WByy6AuVYHXV65H | G(r => X(!r & X(r))) | never r | |||||||||||||||||||||||||||||
176 | 1 | 1 | In every instant, if the Red light is on, then there exists the next instant with Red light off and it has a subsequent instant with the Red light on. A finite trace with just one instant that has the Red light off is enough to satisfy the formula. | R_vvG6iiXnXM4vZJv | G(r => X(!r & X(r))) | never r | ||||||||||||||||||||||||||||
177 | 1 | Not satisfiable, must always be a next and next next state | R_9Td5mdNtgffkvJL | G(r => X(!r & X(r))) | never r | |||||||||||||||||||||||||||||
178 | R_9ukqO8kCEIR4pLb | G(r => X(!r & X(r))) | never r | |||||||||||||||||||||||||||||||
179 | R_2saTh9ICAgM0BHV | G(r => X(!r & X(r))) | never r | |||||||||||||||||||||||||||||||
180 | R_3J3NZWyA2hcl5by | G(r => X(!r & X(r))) | never r | |||||||||||||||||||||||||||||||
181 | R_1mfLnqhYsR97vhv | G(r => X(!r & X(r))) | never r | |||||||||||||||||||||||||||||||
182 | R_VHZdlnCi0wPqPGF | G(r => X(!r & X(r))) | never r | |||||||||||||||||||||||||||||||
183 | 1 | same | R_0ize6N4UFi1irrb | G(r => X(!r & X(r))) | never r | |||||||||||||||||||||||||||||
184 | 1 | same | R_3kpTXi28NBbr8mO | G(r => X(!r & X(r))) | never r | |||||||||||||||||||||||||||||
185 | 1 | The light can never be red | R_3Rt21EZCScgM3oC | G(r => X(!r & X(r))) | never r | |||||||||||||||||||||||||||||
186 | 1 | Red never holds | R_enENzp0guuxVGwh | G(r => X(!r & X(r))) | never r | |||||||||||||||||||||||||||||
187 | R_1g8tSbzTTgxijrd | G(r => X(!r & X(r))) | never r | |||||||||||||||||||||||||||||||
188 | 1 | Red cannot be true | R_3M5V4sL4b6COyD2 | G(r => X(!r & X(r))) | never r | |||||||||||||||||||||||||||||
189 | WOW | 1 | In LTLf we cannot use a strong next, since there is no guarantee of a next state | R_23fQaq1kM65aSP7 | G(r => X(!r & X(r))) | never r | ||||||||||||||||||||||||||||
190 | R_1QFcce33iJrOdLO | G(r => X(!r & X(r))) | never r | |||||||||||||||||||||||||||||||
191 | R_2EnQzWu9HQsIjn8 | G(r => X(!r & X(r))) | never r | |||||||||||||||||||||||||||||||
192 | 1 | Impossible to guarantee the alternation because there's no next in the last step. | R_R9tc8AnNRKwPdkd | G(r => X(!r & X(r))) | never r | |||||||||||||||||||||||||||||
193 | 1 | same meaning as LTL, but finite traces that satisfies the formula are only those ones that doesn't contain any red state (due to the implication) | R_2QPzqLc2iRGU0Jd | G(r => X(!r & X(r))) | never r | |||||||||||||||||||||||||||||
194 | 1 | same | R_3EO18al85qREqgF | G(r => X(!r & X(r))) | never r |