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Abstract— A survey of present methods and current techniques 
being pursued by the US Air Force for image fusion and 
registration is conducted.  Formulating the problem within a 
signal detection theory framework provides a unique thrust. 

I. INTRODUCTION 
Modern image fusion techniques need to become 

increasing sophisticated as the hardware that gleans data from 
complex visual scenes becomes ever-increasing more 
powerful in its ability to extract information from an 
exogenous environment. Once the data gathering hardware 
systems are calibrated and registered (with each other), the 
difficult problem is then to integrate or fuse the data in a 
manner which improves the quality of the overall visual 
rendering that may be presented to a decision maker. If the 
fused image is “information rich” in some sense and better 
than any individual or constituent image, then the fusing of 
the information has been a productive task and adds value to 
the overall process of object identification. 

The first step in image fusion is the static registration of 
the individual data gathering sources. There exist a number of 
techniques for this task, and the literature is reviewed on 
some of the more popular methods. One modern example 
even includes the concept of  “image registration energy” [1], 
whereas a minimum energy framework is synthesized to 
develop the coordination between the individual camera 
sources.  There also exist alternative image registration 
methods [2] based on principals of optimality employing least 
squares methods which have certain computational 
advantages. The registration problem has to be validated and 
calibrated against a test bed system. 

After the initial registration problem has been addressed, 
there exists a number of ways the actual fusion of the images 
can be conducted. First the static case is discussed. One well 
known example is the Laplacian Pyramid method [3] in 
which different camera sources of varying resolution size, 
field of view, and other dynamic attributes are combined.  
Such a procedure involves extracting key control points 
within an image and coordinating the control point data in a 
manner which is beneficial overall. Again, the recurring point 

is that the fused image must always result in an improvement 
over any individual or constituent image, alone. The use of  
statistical methods [2], such as maximum likelihood, can be 
very beneficial if proper definitions of the density functions 
can be determined which make up the objects to be identified. 

The final step would be the image fusion under dynamic 
conditions [4]. As the image gathering sources move with 
time, in order to identify an object, a model of relative image 
motion must be incorporated in the algorithm. This also 
affects the algorithms used for the image fusion problem 
under motion. Several techniques to provide adequate models 
of objects in motion are incorporated into the fusion 
algorithm. Again, statistical methods such as maximum 
likelihood have the advantage that they provide statistical 
optimality for certain types of formulations. For example, for 
minimization of the type 2 error, for a given and fixed type 1 
error in identification, the Neyman-Pearson method provides 
optimality advantages for the dynamic application of image 
fusion techniques. 

Another important variable to consider in the image fusion 
methodologies is the computational efficiency of the various 
algorithms employed. Certainly, as the object of interest to be 
identified changes dynamically, and data are quickly 
captured, the efficacy of the dynamic fusion technique is 
heavily predicated on the numerical efficiency of the 
procedures employed. A survey of the extant methods and the 
possible computational bottlenecks that may occur due to 
different analysis procedures are discussed. 

Finally, a comparison of the image fusion methods will be 
investigated across various application domains. For 
example, [5,6] there are a number of successful methods 
which may provide advantages in situations where the 
identification satisfies optimality principles (least squares). A 
discussion of the present methods and the ongoing work at 
the AFRL will be presented. 

II.  FORMULATION OF THE PROBLEM 
Fig. (1) displays the problem of interest. Multi camera 

sources may be viewing a moving object of interest.  In Fig. 
(2) the multi cameras are translating while the entity of 
interest is stationary (in a relative sense).  Fig. (3) shows how   
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 Fig. (1) – Stationary Multi Cameras 

Fig. (2) – Multi Cameras are Moving 

Fig. (3) – A Cube Object in Different Orientations  

Fig. (4) – The Classical Image Fusion/Registration Problem 

an object may provide a different image, depending on the 
orientation, even for the same entity. In  Fig. (4) the classical 
registration/fusion problem is posed, i.e. the fused image is 
more “information rich” than any of its constituent images. 
The question is how to best register and fuse the individual 
images? This procedure also generalizes to hyper spectral 
data such as portrayed in Fig. (5). In that diagram, various  

Fig. (5) – The Hyper Spectral Imaging Problem 

slices of an image have particular signatures inherent of an 
object.  In Fig. (6), a possible paradigm is discussed using 
maximum likelihood methods [2,4].  The problem is then cast 
within the framework of  optimal estimation, as considered in 
Fig. (7).  

Fig. (6) – Maximum Likelihood Estimation Methods 
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Fig. (7) – A Signal Detection Theory (SDT) Viewpoint 
Some of the immediate questions the registration/fusion 
problem brings to light include: 

(1) In Fig. (6), how to best select within and across the 
candidate sources target (images) to optimize the 
information received at the final fused image? 

(2) If certain image sources are giving similar 
(correlated) information, how to “weed out” those 
sources that are not beneficial in adding new 
information to the overall fused image? This  is to be 
considered even though the quality of the similar 
images are high, they may unfairly over weigh one 
source of information. 

III.A SIGNAL DETECTION THEORY (SDT) FRAMEWORK

With reference to Fig. (8), the approach here will develop 
analogies between the classical problem of detecting whether 
a signal or noise alone has been received.  In Fig. (8) it is 
desired to determine when the signal S(t) went high? Only 
measurement of the signal + noise is available  and the goal is 
to determine if the signal S(t) is in the high or low state.  
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Fig. (8) – Signal, Noise, and Signal plus Noise 

IV.  FORMULATING THE IMAGE FUSION PROBLEM IN SDT

Since brevity must be the style here, the goal will make the 
selection of the target images from Fig. (6) and their 
respective weightings analogous to signal detection theory. 
The rationale for this approach is due to the fact that an 
extensive background knowledge exists in the SDT area 
which can be leveraged to assist in the formulation of the 

image fusion problem. To briefly outline the procedure, the 
following steps will cast the image fusion into a framework 
such that SDT principles can be employed.  

Step 1: In Figs. (4,6) develop a set of difference images: 
                                         D1i = IR – ITi                                 (1) 
Where IR is the reference image (usually the visual image) 
and the one the decision maker would normally have 
available  if no other  target images were collected. The 
matrix D1i will be treated if it was the signal + noise variable 
and the question to be asked is whether D1i is noise alone or 
signal plus noise when the signal may be high?  

Step 2: To determine if D1i is noise alone or signal + noise 
when the signal is high, a correlation operation on the matrix 
can be defined as follows: 
Let the correlation function generate a matrix  �1i defined as 
follows on the difference matrices D1i:
                                 �1i  = corr(D1i)                                     (2) 
 Now let �1i denote a norm squared of the matrix  �1i such as 
the Frobenius norm: 
                                     �1i= ||�1i ||2F                                        (3) 
Note the Frobenius norm of a matrix A may be easily 
calculated as follows: 

                        ||A||2F = �
mn

ji
ija

,

,

2)(                                         (4) 

Step 3: The first pass through the difference matrices D1i has 
now been completed.  A minimum threshold for �1i  is defined 
based on a threshold scalar quantity � > 0.  The quantity � is 
determined from an image with only noise. We can now 
assign a certain number of the �i  values via the following 
Rule 1: 

Rule 1:    For image ITi if    �1j= ||�1j ||2F  < � then assign 
                                          �j  = �1j                                         (5) 
Thus the image ITi has been eliminated and its �j  has been 
determined for Fig. (6). 

Step 4: To continue the sieve operation, assume IT2  has not 
been eliminated. If, at this point, IT2 had been eliminated, 
then move up to IT3 or IT4 or the next highest target image 
that has not been eliminated.  Again, suppose  IT2 has not 
been eliminated, then define a second set of difference 
matrices as follows: 
                                  D2j =  IT2- Ij             j=3,…,n               (6)             
and repeat the following calculations: 
                                  �2j  = corr(D2j)                                    (7) 
                                   �2j= ||�2j ||2F                                          (8) 
And invoke Rule 2: 

Rule 2:               For image Ij if    �2j= ||�2j ||2F  < �,  then 
assign                                     �j  = �2j                                    (9) 
Again, this will eliminate some of the Ij images.  
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To continue, presume I3 has not been eliminated at this point. 
If it has, then go to the next highest target image. Again 
define a third difference matrix: 
                         D3k =  I3- Ik                     k = 4,…,n            (10)  
and repeat the following calculations: 
                             �3k  = corr(D3k)                                      (11) 
                              �3k= ||�3k ||2F                                            (12) 
And invoke Rule 3: 

Rule 3:         For image Ik if    �3k= ||�3k ||2F  < �,  then assign    
                                        �k  = �3k                                        (13) 
Again, this will eliminate more of the Ik images.  
The process now repeats itself with the next set of difference 
matrices (presuming  I4 has not been eliminated up to this 
point). 
                             D4l =  I4 - Il                  l = 5,…,n            (14) 

until all �k  are defined.  It may take up to n-1 rules, but all �j
will eventually be assigned in proportion to the contribution 
they add in a correlation sense. Also, if �3k  in equation (12)  
> �, then the remaining �j  may be set to their �3k  values. 

V.   STATISTICAL TESTING WITH CHI SQUARE 

Another advantage of the procedure outlined herein is that the 
classical decision mechanism as portrayed in Fig. (7) can now 
be modified by a Chi square test. This is because the square 
of the Frobenius norm is used in the decision process. To 
illustrate the new testing scenario, Fig. (9) shows how this 
decision process will be implemented.  To confirm the 
efficacy of the method presented so far, a Monte Carlo 
simulation was conducted. Fig. (10)  shows the candidate  

Fig. (9) – Using a Chi Square Likelihood Ratio Test 

Fig. (10) – The Candidate signal S(t) to be Detected 

signal S(t) which is desired to be detected in the high state. 
Fig. (11) shows the zero mean white Gaussian noise to be 
added.  Fig. (12) is the combination of both plots. In Fig. (13) 
the algorithm described herein was employed on the  Monte 
Carlo run of 10,000 points. It is clear the decision rule 
empirically determined in Fig. (13) via Monte Carlo 
simulation closely follows the theoretical version as seen in 
Fig. (9). 

Fig. (11) – The Normal White Gaussian noise Added 

Fig. (12) – Both the Test Noise and Signal + Noise 

Fig. (13) – The Empirically-derived  Histogram Plots 
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VI.  CONCLUSIONS AND DISCUSSION 

Comparing the decision rule employing Fig. (9) in lieu of Fig. 
(7) has some unique advantages. First, only positive 
quantities are used in the statistical testing in Fig. (9) which is 
easier to implement. This rule is computationally simple 
which is required in the numerous testing of the difference 
images in real time. The same principals of optimality still 
apply in Fig. (9) as in Fig (7) using the Neyman-Pearson test. 
The simplicity of the Frobenius norm being calculated from 
only the matrix coefficients in equation (14) also has its 
computational benefits.  

VII.  FUTURE WORK AND RECOMMENDATIONS 

The work presented so far has involved simulated data. Data 
from actual images are currently being evaluated. At issue is 
the computational cost of providing timely decisions, which 
is a major consideration of the choice of the final algorithms 
selected.
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