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Abstract -Users require information fusion to reduce assessment. Level 2 and 3 are situation assessment and
dimensionality for real world, complex decision-making. threat assessment. Level 4 is process refinement (or sensor
Typically, researchers design fusion systems based on management [3]) and level 5 is User refinement. User
limited data that does not capture all operating conditions rq inement requires reliable results for effective decision
seen in the real world (i.e. weather for video sensors). making. The user evaluates the utility of information based
Fusion systems are of limited use when presented with on infornation needs, cost of action estimates, and data
poor data, inappropriate models, and unrealistic reliability. Reliability requires accurate, confident and
assumptions. Decision makers are burdened with the task timely results. Specifically, for a valid spatiotemporal
of determining the quality offused output based on trial analysis, reliability requires accurate, confident, and timely
and error. If the fusion system works in most scenarios, results.
aids the user in purposefiil decisions, and leady to
successi actions the user has high system confidence. Lvl0-Pre-Processingev
However if the fusion system causes erroneous results that L - Object Asse 5finement
lead to poor decisions, the user disposes of the entire Distributed
system - which could have been the result of bad data, Leel2- Situation Assessment
incomplete models, and restricted assumptions. Thus, ILoca:lom - umpactAssesmputer
when a fiusion system is fielded, there has to be metrics SIG E
associated with model fidelity, data uncertainty, and EWEL
constraints over applicability. By combing representations Sonar

RadarIof data quality, this paper derives a reliability metric to Rlfe
aid users to trust jusion outputs, perform a utiliy MT[ DataBase MAanageent System Procesv
assessment, and re/ine sensor collections. Distributed Refinement

1Sourcs Supp Information
Keywords: Metrics, fusion, quality reliability fidelit DataBan DaurcenSenso

1 Introduct'ion Figure 1. User-Fusion Model
In 1990, the US Department of Defense defined data

fusion as "a technology which involves the acquisition, Since users can refine, approve, or negate machine-
integration, filtering, correlation and synthesis of useful fusion decisions, it is important to know what criteria they
data from diverse sources for the purposes ofl used in their decision making process. Many times, the
situationlenvironment assessment, planning, detecting, user is forced to combine the presented data, infer
verifing, diagnosing problems, aiding tactical and unknowns, and decide based on limited or uncertain data.
strategic decisions, and improving systems performance [4] Users typically do not know the quality of the data that
and utility". [I] The definition requires two parts, the is being presented to them, nor do they know when it was
machine and the user. The machine does the integration collected. In order to establish mission [5] criteria and
and filtering of "useful data", while the user provides metrics for decision making, we derive a reliability metric
quantitative and qualitative situation assessments and for data assessment. Reliability [6] in the decision making
sensor management strategies based on a performance and is similar to utility estimation [7, 8, 9] in that the trust the
utility analysis. The unidentified word in the definition is user has is related to the quality of the data (timeliness,
"useful". We propose a reliability metric to quantitatively accuracy, and confidence as well as reducability and
explainusein;;fu 7 presentation).
The User F asso model, [2] shown in Figure 1, lHuman computer interface (1HCI) approaches

incorporate six levels of informnation. Level 0 is the a emphasize the valuative nature of decision mraking.
priori models ofthe situation of interest. Level 1 is object Economic decision making models represent values in

terms of both utility (or value) functions and relative
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importance weights (or tradeoffs) to distinguish competing covariance matrix of a Kalman filter. While utility theory
evaluation criteria. [10] Such an example is subjective has attributes for user refinement, it is still subject to data
evaluation utility (SEU) theor, which allows user to and information reliability constraints. If the data is bad,
make decisions. Human factors, medical diagnosis, and humans make errors:
infornation fusion have adopted the model. SEU makes
four basic assumptions about decision makers: Error will be taken as a generic term to encompass all those

occasions in which a planned sequence of actions fails to
(a) They have a clearly defined utility function which achieve its intended outcome and when these failures cannot

allows them to assign a preference for outcomes. be attributed to the intervention ofsome chance agency. [14]
(b) They possess a clear and exhaustive view of the

possible alternative strategies available to them. Errors were attributed either to irrationality or to
(c) They create a consistent joint probability distribution unawareness on the part of the perceiver. Thus, human

of future scenarios associated with each strategy. beings are assumed to make decisions according to SEU
(d) They will choose strategies in order to maximize their Theory, to draw inferences from evidence in accordance

subjective expected utility, with logical Bayes principles and to make uncertain
judgments.

SEU assumes that decision makers have an undisturbed As Hall states, "the utility of a fusion system must be
view of all possible scenarios of action. The formal theory measured by the extent to which the system supports the
requires that the decision maker comprehend an entire intended decision process." [15] A fusion system must
range of possible alternatives, both now and in the future. reduce uncertainty by increasing the reliability of the data.
In actuality, human beings do not work out detailed future This paper proposes a reliability metric based on
scenarios, each complete with conditional probability dis- confidence, accuracy, and timeliness. Section 2 details the
tributions. Rather, the decision maker is likely to user-fusion interaction with resource reliability (R2) and
contemplate only a few of the available altematives. user utility (U2). Section 3 derives the reliability metric.
Moreover, there is a wealth of evidence to show that when Section 4 shows a specific example and Section 5 draws
people consider action options, they often neglect conclusions.
seemingly obvious candidates. In addition, they are
relatively insensitive to the number and importance of 2 User-Fusilon Interaction
these omitted altematives. [11]
SEU assumes a well-defined set of subjective values that The user-fusion interaction is the processing, interpretation

are consistent across all aspects of the world. Subjective and use of data from multiple sources. Both the user and
utilities vary from one type of decision to the next and the machine have capabilities and limitations. The human
users will vary their strategies that appear inconsistent. is attention limited, but can reason over reliable data. The
human decision making is severely constrained by its fusion system can process large quantities of data, reduce
'keyhole' view of the problem space, or what Simon [12] dimensionality, and provide data uncertainty estimates to
has dubbed bounded rationality: provide reliable information to the user. With reliable

estimates, the user can reason over the utility of actions for
The capacity of the human mind for formulating and solving sensor management and data collections. Figure 2
complex problems is very small compared with the size of the illustrates the relationship between the user and the
problems whose solution is required for objectively rational machine. The human expects reliable data to perform a
behavior in the real world or even for a reasonable utility analysis and sensor allocation refinement.
approximation of such objective rationality. Data Orient Situational

This fundamental limitation upon human information Accuracy
processing gives rise to sattsficing behavior - the tendency Machine Timeliness
to settle for satisfactory rather than optimal courses of Confidence
action. This is true both for individual and for collective Observe Reliability \
decision making. SEU has also been addressed by ti
engineers. Pi-ority Decidle
Blackman [13] has outlined a utility theory approachclue /

to sensor selection for target tracking. Individual sensors Thret
are allocated to target tracks so as to maximize system Human
uility. The expecte gin in marginal ultilityT assoiatedSnorUe
with the allocation of a particular sensor-to-target track is Management AJRfinement
expressedo as the improvelzmenlt inm the kinematicesotimate
(e.g., the target's range) given a sensor measurement. Figulre 2. lH[uman-Machine Interaction.
Kinematic utlioty iS estimeated usiLng thne prediLctiLon
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The usability of fusion systems is based on increased confidence, (1 - uncertainty). Many methods exists to
capabilities to process large quantities of data with no loss create a belief structure (Bayes, Dempster Shafer, NN, etc)
of functionality or fidelity. The fusion system must use to represent confidence. A reliability of 1 is immediate
high fidelity models that are appropriate to meet results with zero error and perfect confidence, as shown in
information needs. Low fidelity models ignore potentially Figure 4. In the real world, we have some uncertainty in
important features of the problem whereas too much the position, delay time, and quality of the observation.
fidelity makes the system hard to use. The "right" level of
fidelity may vary from one user to another. Functionality Reliabiity
means easy to use, which includes parsimonious ------------

R= ,
information that is timely, accurate, and confident A
presented to the user in an intuitive manner. If the fusion -------------- ---- ----------J / ~~A= areaz\
system is difficult to use, it probably won't be. These

a
i

relationships are shown in Figure 3. iehn I

rD Coifiadece\/

Ease
of Use

\~~~~~~~Frovatmownt

Figure 4. Accuracy, Confidence, and Timing relationship.

In section 3, we seek to combine the quality of service
information into a combined reliability metric for variance

I- = _ _ .~assessment. First, we must assess the utility of reliable
Function-I WilF information.

Figure 3. Ease of Use versus functionality 2.2 User Utility

Intent can be a game-theoretic analysis of an adversary. Judgment and decision making researchers [16] use
Finally, the value associated with the event or object of utility theory to evaluate possible outcomes, (forward-
interest weight the importance of the attribute measured. looking task). To combine the forward-looking user need

for reliable action, we can utilize the fusion system for
backward-chaining information. The interaction between

2.1 Machine-Fusiontl Reliability the forward and backward data reliability data can ensure
Data and information reliability implies minimum that the human has the opportunity for effective decision
uncertainty. Uncertainty can be described in many ways making. The utility a user places on a system is based on
such as signals (i.e. noise and bias) and exploitation (i.e. constraints. These constraints can take on many forms such
confidence). While noise is inherent to the sensor, bias can as: intent, value, and ease of use. Since this is a utility
result through slowly varying parameters. To compensate metric, we can define the multi-attribute utility (MAU) [1]
for bias, robust control can be used; however, sensor noise metric as
is always present. To address data reliability, the fusion
system performance metrics are timeliness, accuracy, and Uk = Ik * Vk * Ek (2)
confidence. For example, in a track and ID system, we
have the expected time (T), accuracy (A), and target ID where I is the intent of the object, V is the value, and E is
confidence (C). A system reliability (R) metric, scaled the ease of use.
from 0 to 1, is a multiple of probabilities. If we desire the user to have a subjective weighted affect

on the fusion system to input their desires, then the
Rk = Ak * Ck * Tk (1) resulting system is:

For timeliness and accuracy, we perform a R * U ACTk * IVEk (3)
sptiotempora association of the expected prediction (or

sensor quality). If the measurement is imtmediate and high or for expected utility RE = ACTIVE. We can model this
accurate, thzen thne values are 1. Thze re liabilty metric iS a in state-space as:
scaled value.

For the analysis, we need to develop model of
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Ak+ i] Pia Pie Pit -Ak] FVkl appropriate considerations ofwho (I), how much (V), and
Ck+1 Pva Pvc Pvt Ck.+Wk (4) how (B), respectively.
Tk+ I Pea Pec Pet Tk Zk 2.4 Multiple Attlribute Reliability-Utility

To evaluate the "best" altemative, multiple measures ofwhere the sum of the columns add to 1. lHLence the user can.. ...
weight the reliability of information based on the utility merit and multiple conditions can provide y complex

combinations of results. Measures of performance and adesired. If the user wants high accuracy, they must wait an single offeciveess Measure oE ardefind f
infinite amount of time and get high confidence. Likewise, evaluating the alternatives. [1]
immediate results incurs low accuracy or confidence. One e tho oftecnanalysi h n d
way to model the utility-reliability tradeoff is to perform prob s o evaluat antitave amon andid to

an assignmentanalysis. ~~~problems to evaluate quantitatively among candidates to
an assignment analysis. determine their worth we use a Multiple attribute

2.3 Assignment reliability-utility (MARU) analysis. This technique, based
Typical performance measures [1] for sensor-target paring on MAU, develops a hierarchical structure that allows the

have been expressed in an assignment matrix. Using the decision maker to quantify the effectiveness of each factor

probability matrix P, the set of weight decisions, d in the evaluation.
where i,j 1, 2, ... n of integers defines all possible means
by which the matrix elements may be chosen to select Le1rl- Information Fusion UTILITY
utility-reliability parings. The overall objective function or (Go1a)
measure of performance, M, for any set of n pairs is

Level 2 - Cost Effectiveness Efficiency
(Objectives)

M = PUm. di. = PuR-DIJ (5)
i; j = t Level3-..LJ Scenario 1 Scenario 2 Scenario 3

subject to i= and j = 1 constraints.
The permutations for the 3 x 3 example may be Levl 4 - Threa Value Priority

exhaustively computed as: (a, i = ; c, v = 2; t, e = 3) (Assessniet) T a Pit

MOP1, diI + d22 + d33 MOP4 = d12 + d23 + d3l Levl5 -
MOP2 = di 1 + d23 + d32 MOP5 d13 + d21 + d32 (ceri Performance Effectiveness
MOP3=d12 + d2l +d33 MOP6=d3+ d22+ d3l

Nash [17] has formulated the general assignment MOPs MOEs Reliabilty
approach that considers the use of multiple sensors against
individual targets as well as the constraints of sensor
capacity and required target coverage. For our general User utility is decomposed into a hierarchy to provide a
case, we use to the reliability-utility matrix to perforn the
assignment. The objective function for assignment is a set stpictu thAt evaluate meauesof me figur 5
of parametric values that provide measures of cost that can
be combined (in a weighted product) to form a single
objective function to be optimized for assignment. ee

1 reresents the sngle goal parameter that
Blackman [13] has described the use of marginal utility as neasures total system worth.
the assignment objective function. Utility is defined as the

b
Level 2 corresponds to three evaluation objectives to

ratio of current perfornance (i.e. tracking accuracy, beused: cost, effectiveness, andefficiency.
measured as estimation error standard deviation) to desired * Level 3 represents the scenarios under which each
performance. The desired performance is a standard candidate plan must be evaluated.
criteria established by the data fusion system. Marginal * Level 4 represents the utility assessment for a given
utility is defined as the difference between current utility environmental context.
and the expected utility that would be achieved if the * Level 5 represents the individual measures of merit
metric is allocated to the utility function. Expected utility provided by the simulation of the RU matrix and the
requires a model of sensor performance to predict sensor associated reliability of the data.
reliability for assignment to each candidate utility function.
For a simple example: if p ia P Pet = 1, then The arrows depict one path through the hierarchy by

which a measure of merit can be related to total worth.
M =p iaA+ P y C+ p et T (6) Conditioning variables (e. g. scenario contexts) over

altemnatives and the measurable variables (MOPs, MOBs,
whcmCatches where (A,what (C) and when( WLevu1ACT) wth the MORs) are based on measured and estimated functions for
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U-R probabilities. hypotheses over another. For a summary of utility
The decision-making process includes weighted U-R functions for SDT, see Fishbum [18]. As many of these

conditions that contribute to overall value based on user utility approaches are powerful, they can only be
utility and resource reliability. The propagation of appropriate if the data is reliable. We have combined
measures of merit, upward through utility functions and reliability and utility in a fusion scenario based on user
weights, provides a single quality value for decision refinement strategies and we next show how to model the
making. When properly structured, the resulting scores can reliability uncertainty.
be ranked to compare the altematives.

2.4 Decilsilon Rules 3 Reliability Modeling
In decision making, there are many ways to evaluate the In many fusion systems, we are interested in modeling
altematives based on reliability or utility. Expected Multi- the spatiotemporal aspects of the system. The spatial-
attribute reliability-utility theory basically weight the temporal component is a continuous variable while the
desired outcomes for decision making. If R is the data confidence can be of discrete type. The system reliability
reliability, U the utility desired, and m is the metric, then can be a fusion of the timeliness, spatial and temporal
we can use these decision rules [15] accuracy, and information confidence. For the accuracy

and confidence we use the belief filter [19] approach as

1. Maximum a posteriori: Accepts the hypothesis Ro as was demonstrated for simultaneous tracking and
being true if the probability of Ro given observation in identification. For the information timeliness, we model
[P(Ro in)], is greater than the probability of R1 given the usefulness of the information as the inverse of the
[P(R1 im)]. failure possibilities. For the information confidence, we

2. Maximum Likelihood: Accepts hypothesis R0 as true if use an information theoretic analysis. Combining the three
the a priori probability Ro [P(Ro in)], multiplied by P(im probabilities in this first cut to the model, can be a metric
Ro) is greater than P(R1). P(mI R1). of data reliability for decision making. In the next sections,

3. Neyman- Pearson: Accepts the hypothesis Rl if the we describe the confidence as a binomial system, a
ratioof the likelihood function for Rrto the lie timeliness metric based on the exponential, and theratio of the likelihLoodt function for Ro to the likelihLood

acurc asaGusaXytm
function for R1 is less than or equal to a constant C. The
constant C is chosen to give the desired significance
level. 3.1 Accuracy

4. Minimax: A utility (cost) function is established that Statistical phenomena [20] can be presented by a
quantifies the gain (risk) associated with choosing a probability distribution, P(x), and a probability density
hypothesis or its altemative. (i.e. choosing the correct functionp(x).
sensor-target assignment). The minimax approach
selects Ro such that the maximizes the utility function or x

minimizes the cost function. P(x) ff p(x) dx (9)
5. Bayes: A cost function (C) is established that provides a -
measure of the consequences of choosing hypothesis Ro
versus R1. A typical cost function is given by The benefit of using a probability model is that many

systems are effectively described in terms of only two
C COOP(RO)Pa+ COIP(Ro)Pb+ CIOP(RI)Pc+ CO0P(RI)Pd (7) parameters - a mean p and a variance, (j)12. For

communication reasons, being able to model the target or

where P(Ro) and P(Ri) are the a priori probabilities of clutter with only two parameters is highly desirable.
hypotheses Ro and R1, respectively. Pa through Pd To model the noise, we use a Gaussian model, where
correspond to the probability of a sensor assignment under the mean noise is 0, (i.e. no bias):
four possible conditions:

exp (1 0)Pa llP RO I m b P fR V1 mI 8)p(x y

Pc J 1 I m d J 1 I
For the accuracy model, we assess the spatial covariance

Hence, Pa and Pc are detection probabilities, while Pb and information. We can use the belief filter which is able to
Pd represent the probability of false alarms. The constants model a confidence (Dempster-Shafer) function with a
C jare arbitrarily chosen constants. The Bayes7 decision Bayesian belief in a method akin to Kalman filtering.
criteria selects R. over R, to mlnImize th-e cost function C Assuming a normal distribution over the system, we can
Or maximize the gain function. [15]. assess the covariance matrix as a accuracy reliability.

Minimax approaches may use complex cost or utility
functions. These unctions attempbt to develop measures of
the cost (liability) or benefit (utility) of choosing one

277



3.2 Timel'iness Models In such a case for timelines, we are interested in
associating the quality of the data with an exponential

Thmpereda mn casesmise whic opratimeliness anlysi distribution in which data that is received quicker is

completedsist socterm winethe operine. o a sysutem assumed more useful to the user (hence, making correctTimeliness~~~ ~~isascae ihue ns,Teasmto decisions over the interval from which action iS required).
is that at some point the data will not be useful and the Ie let the in formationbeasiaed
human will make an incorrect decision (failure or wit soe time onstant rand othe appopiate
decision-error analysis). In actuality, the human will not wCX -ct
an incorrect decision, but an ignorant decision over the proportionalityfix) = c e , then F(t) 1I - e and
information available to them. - cx

We shall use the term system to identify the fusion f(x x > t) = c f(x - t) (15)
process and user in combination (FUS) which is to make a e
decision over some function. We are interested in the
cases in which the user is an active participant This shows that the probability that a system functioning at
(INTERACTION). We call the time interval from the time t fails in the interval (x, x + dx) depends only on the
moment the system is in operation until it fails (where the difference x - t as shown in Figure 6.
user makes an incorrect decision) the time to failure.
[Note: if a user makes a correct decision, he succeeds. If
the user makes no decision, then either the fusion system
makes the decision (monitoring) or the user is passively f fx > )
taking no action]. However, it is assumed that the user
must approve or disprove sensor schedules. This interval
is, in general, is random, which can be modeled as a --=
random variable x . 0. The distribution F(t) = P{x . t} of 0 t X

this random variable is the probability that the system falls Figure 6. Reliability Timeliness Window.
prior to time t where we assume that t = 0 is the moment
the system is starts to received data The difference Conditional Timeliness Rate. The conditional densityj(x

x > t) is a function of x and t. Its value at x = t is a
R(t) =1L - F(t) = P{x > t} (I 1) function only of t. This function is denoted by f(t) and is

called the conditional timeliness rate of the system.
is the system timeliness reliability. It equals the probability
that the system functions at time t. To assess the reliability f(t) f(x x > t) F(t)(16)
timeliness, we must assess the point at which the data is
not useful.

The mean time or reliability timeliness of a system is The product f(t) dt is the probability that a system
the mean of x. Since F(x) = 0 for x < 0, we conclude that functioning at time t fails in the interval (t, t + dt). We

interpret the function 3(t) as the expected timeliness rate.
oll 00 From above

E{x} ff x f(x) dx = f R(t) dt (12) ce ct
o o c13(t)-ct (17)

1-(1-e )
The probability that a system functioning at time t falls
prior to time x > t equals It follows that

..x. x>t) P x<x xt> t F(x) -F(t) F'(t) R'(F(xlx>t) P{x> t} 1-F(t) (13) 3(t) -I-F(t) R(t) (8

Differentiating with respect to x, we obtain We shall use this relationship to express the distribution of
x in terms of the function j(t). Integrating from 0 to x and

f(x) ~~~~~~~~~usingthe fact that in lR(0) = O, we obtainf(x |x >t) =1- Ft (1L4)
x

The product fx x > t) dx equals the probability that the - f 0(t) dt= Ln R(x) (19)
system falls in the interval (x, x ± dx), assuming that it°

function at tim t. Hence lR(x) =1 -F(x) =expl -r W t)dt k (20)
lHuman decision making (Fitt's Law [21]) develops a v

time interval over an exponential / lognormal distribution.°
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And sincej(x) F'(x), this yields slightly accurate, the human can see the pattem which is
happening and correct for the positional errors. However,

x

1 if the update rate is slow, then a high-confident positionalf(x _ (x expA f P(t)) d+t (2 1f(X) -WVx) exp) - Jl Wt)dt{J (2L1) information is desired. The problem is to address the
L° timeliness of measurements in a track and ID system. For

the scenario of interest, we have sensors that can track the
3.3 Informat'ion Content two targets and the variability of update rates is

The information content is modeled as a Binomial trail undeternined. For the track system, we use the belief filter
with the probability being the measured value from a with state and measurement equations for all targets as:
classifier. We use a Bemoulli trail where the information

AA
content (or value) is related to the confidence in the x(k± 1 k) =F(x) x(kI k) (22)
reported information. The inverse represents the A(k+ 1 k) H(k+1) (k+ 1 k) (23)
uncertainty, or unsuredness of the information content.

with no bias (slowly time varying) error. For the scenario,
3.4 Reliability Assessment we are interested in the update rate. If we have a high-
For the ACT reliability above, we have [20] update and low accuracy, we get Figure 7.

Object 2 trajectory
Variable fx(x) Mean Variance Object 1

Gaussian e- (x )/2 1 1 , ,

Exponential c e~ 2 >

E(c) x20,c>0 ' -j;

nt K X L n-L p
/*BiXnomixal p q np np L r . X

L M vtXI|Weasi-irements Object I

/ \ \. 4 X * IvI~~~~~~~~~~~~~~easurements - Object 2

B(n, p) L 0O,,... n; p+q timk/ 2 tOek tim .- .,, . ,-SSlt . li ek ' \ it.,9.it.oR Pr rliu-e.-arge-lecr:-lc~~~~~~~~~~~~~~~Prdiced argt lcaton

Olbjectl ltrajectLory (D TJpdated target locations

Where L is the number of looks to establish the probability Kanematic Gate 0..T... datedta..Predition
Update

of ID and f x(x) is the probability density function. To Figure 7. High Update Low Accuracy
determine the probabilities associated together in the
ACT*IVE system, we have to normalize the values to and with the chance of timely confident classification
determine the weighted probabilities. We can utilize a
Kalman filter to update the state based on measurement
information compared to the predicted reliability state.

ObJect

Fk+ 1 Pia Pic Pit Ak vk Object IUaectimcia
Ck+1 P a Pvc Pvt Ck Ma+LWkcc a o

L Tk+1 j L Pea Pec P_et L TkjL Zk J

where,vkeCyn Wkw1l/ct andzk n p L.
m0cc eacac 01c2o
F.rcdk ic tXFFK0>10f h ils

S S ~ ~~~~~~~~~~~~ ~ ~~~~~~~~ighrk~2iitne kI bea e k 0 Onfletsug 23Xl0g14 Problem Descr'ipt'ion
Object 2 Meaanremerats kbMAea.at UPa&*

We seek to have a metric of reliability to determine
whether or not the system is utilizing the fusion Figure 8. Low Update High Accuracy
information in a proper way. Since the goal of the system
is to make accurate and timely decisions, we need to Where PFA is Poisson distribution, mean number of FAs
address whether or not the fusion-user system is making per frame, and PD depends on signal/noise ratio which
the correct decision. A threshold can be set from the fusion varies with target range as 1 / r 4 (active) or 1 / r 2 (passive)
system_as to the quality of the input data; however, the [speciy range r for PD = .8].
combined analysis needs to stress te impo ance of te
data. If a high confident accurate value is late, it still may 05 Results
be of use, just as a timely some-what confident data is,

In a tracking scenario, if the data is coming fast and Figulre 9 shows a two-track system with ID confidence

279



and positional accuracy. The results we run using an 6 Conclusiions
exponential timeliness variance to allow the user strategy
to select the expected combination of reliability metrics. We have presented a fusion reliability metric that

combines accuracy, confidence, and timeliness. Typically,
oo Ot IDS the user reliability information is not address in fusion

systems and the analysis allows the user to refine the
fusion process based on reliability constraints. The results
show that the user selected the maximum utility based on
the revisit rate of the sensors over the target in the search
area based on a performance model of the prediction of the

2013 Tl sensor reliabilities.
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