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Abstract

For any relation of the noise variance with the gray value, σ2(g), a nonlinear transform h(g) can be applied
so that the variance of the transformed signal h is constant. The number of bits required to represent the
noise-equalized signal is in good approximation equal to the maximum signal/noise ratio (SNRmax). Thus
the noise-equalized signal of any imaging sensor with a full-well capacity of less than 216 can be represented
by only 8 bit or less with only a slight increase in the overall noise level caused by additional quantization
noise. The procedures are illustrated using the pco.edge camera.
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Figure 1: Standard deviation σ as a function of the mean gray value in a double logarithmic graph. The values
for the pco.edge with a perfect linear characteristic curve are taken: σ2 = σ0 + Kg, with K = 2.17DN/e− and
(σ0 = {1.0, 1.4, 2.0, 3.0}e−K (as indicated in the figure legend) and 16 bit quantization.

1 Introduction

Modern high-end cameras show a low dark noise and therefore the variance of the noise increases strongly with
the mean digital value. Any equidistant quantization is a clear mismatch to this situation. The quantization
must be fine enough to resolve the small random fluctuations at low signal levels but is therefore much too
fine at high signal levels. As an illustration the standard deviation of the noise of the pco.edge is shown in
Fig. 1. The standard deviation covers more than two orders of magnitude. It is a little more than two for
the dark image but more than 300 close to saturation.

Thus the question arises, whether it is possible to apply a nonlinear transform in such a way that the
standard deviation in the independent of the gray value. The interesting question is: Given the noise variance
/ gray value relation, what is the minimum number of bits with which a signal can be presented without
any significant loss of information? It would be especially useful, if an 8 bit quantization could be achieved.
Transforming a 16-bit image to an 8-bit image constitutes already a compression factor of 2.

PCO applied already this idea by using a combined linear / square root gray value transform [1, 4]. This
solution is suboptimal in two respects. Firstly, there is a jump in the slope of the nonlinear transform at the
transition from the linear to the square root part of the curve [1, Fig. 1]. Secondly, the standard deviation
is not constant over the whole gray value range.

Here a continuous analytic transformation curve is derived for a given noise variance / gray value relation
In the transformed signal, the standard deviation is constant from the dark signal to saturation. In this way,
an optimal compression of the signal can be reached.

In Section 2 the necessary theoretical background about quantization of noisy signals is addressed. In
particular, an answer is given to the question about the required ratio between the standard deviation of
the noise to the quantization levels. Then in Section 3, the nonlinear transformation for noise equalization
is discussed and it is derived how many bits are required to represent a camera signal in a noise-equalized
signal without significant signal degradation. Finally, Section 4 gives some practical examples, including the
pco.edge sCMOS camera.

2 Quantization of Noisy Signals

Quantization limits the resolution of output values. As simple as it appears at first glance, it is not easy
to describe the effects of quantization theoretically. This is due to the fact that quantization is a nonlinear
function

q = floor

(
g + 0.5

∆g

)
, (1)
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Figure 2: Quantization is a nonlinear staircase function, see Eq. (1).

mapping real numbers g to an integer numbers q. ∆g is the distance between the equidistant quantization
intervals. Quantization results in a staircase function (Fig. 2). Every value g within the the interval
[q∆g − 1/2, q∆g + 1/2[ results in the quantized value q. Only one thing is easy to state, the maximum
error caused by quantization of a signal. It is half of the quantization interval ∆g.

But it is impossible to reconstruct the original values from the quantized values. Interestingly, this is in
contrast to sampling. If a continuous signal is sampled and the conditions of the sampling theorem are met
(in simple terms, every periodic component contained in the signal is sampled at least twice per period),
then it is possible to reconstruct the continuous signal exactly from the sampled signal.

Because of the nonlinear nature of the quantization function in Eq. (1), there is no theorem for quanti-
zation equivalent to the sampling theorem. It is also not necessary, because any real signal is uncertain in
any way by its random nature. Thus the question is rather how fine the quantization must be so that the
statistical properties of the signal are not disturbed. Or in other words, a proper theory of quantization must
answer the question: can we reconstruct the probability density function (PDF) of the continuous signal
from the PDF of the quantized signal? If this is the case, then we can estimate, e. g., the mean and the
variance of the random signal from the quantized signal without any error.

This problem has been studied in detail by Widrow and Kollar [5] and resulted in quantization theorems
that are very similar to the sampling theorem if we replace the continuous signal g by its PDF. There are
actually several quantization theorems [5, Section 4.3]. The first states the condition that the continuous
PDF can be exactly reconstructed from the PDF of the quantized signal, the second states the condition
that only the moments of the continuous PDF can be exactly reconstructed from the PDF of the quantized
signal. The latter conditions are less stringent and are of more importance, because the PDF normally is
known and all what we need to know is the mean and the variance of the signal. The conditions for exact
reconstruction require that the PDF is bandlimited, for details see Widrow and Kollar [5, Section 4.3]. If
these conditions are meet the mean of the quantized signal is exactly the mean of the original signal and
the quantization adds pseudo noise (PQN model, [5, Section 4.2]) to the quantized signal with a uniform
distribution and a variance

σ2
q =

1

12
(∆g)2. (2)

The variance of the original signal, σ2
g , is then given from the measured variance of the quantized signal, σ2

q ,
by

σ2
g = σ2

q −
1

12
(∆g)2. (3)

The big difference to sampling is that this condition is, unfortunately, never met exactly, neither by the
normal distribution nor by the Poison distribution. Therefore Eq. (3) will only be an approximation. The
question is just, how fine the quantization must be so that the error is negligible. This is discussed in detail
by Widrow and Kollar [5, Chapter 5]. The answer is surprising: Widrow and Kollar [5, Section 5.5] come to
the conclusion that the errors both in the mean and the variance computed by Eq. (3) are negligible when

∆g ≤ 2σg or σg ≥ ∆g/2. (4)
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Figure 3: Results from Monte Carlo simulations for the estimation of a the mean value and b the standard deviation
of the digital gray value as a function of the standard deviation in units of digital numbers [DN] in the range between
0 and 1.

This means that the standard deviation of the noise σg can be as low as half of the quantization resolution
∆g.

We verified these theoretical results by independent numerical Monte-Carlo simulations. For the sim-
ulations 201 mean gray values equally distributed between 0 and 1 were taken and zero-mean normally
distributed noise was added to the values. The estimated mean and variances were averaged over 900 000
realizations of each value. Finally, the deviations in the estimations were averaged over all 201 values.

The results are shown in the range for σg/∆g = [0.3, 1] in Fig. 3. The mean gray value can be estimated
with a maximum error of less than 0.014 DN even for standard deviations as low as 0.4 DN (Fig. 3b). The
maximum error of the estimate of the standard deviation remains below 0.04 even for standard deviations
as low as 0.4.

Therefore the Monte Carlo simulations fully agree with the theoretical results from Widrow and Kollar
[5]. For the nonlinear transform this means that we can apply it in such a way that the (constant) standard
deviation in the nonlinear signal h is 0.5 DN.

3 Noise Variance Equalization

3.1 General Solution for Noise Variance Equalization

As already stated in Section 1, the variance σ2
g(g) is a function of the mean gray value. We start with any

arbitrary function to show that it is possible for almost any function σ2
g(g) to device a nonlinear gray value

transfer so that the standard deviation is constant in the transformed signal h. This procedure has first been
proposed by [2]. It is derived in the following.

By the laws of error propagation (see, e. g., [3, Section 3.2], the variance of h(g) is given in first order by

σ2
h ≈

(
dh

dg

)2

σ2
g(g) (5)

If we set σ2
h to be constant, we can rearrange Eq. (5) to

dh =
σh√
σ2(g)

dg.

Integration yields

h(g) = σh

g∫
0

dg′√
σ2(g′)

. (6)

The integration constant is chosen in such a way that h(0) = 0. Equation (6) clearly says that an analytical
solution exists for any function σ2

g(g) for which the integral can be expressed by an analytic function. If this
is not the case, we can still solve Eq. (6) numerically.
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3.2 Specific Solution for Linear Camera Model

No we can derive the specific solution for the linear sensor model. Then the variance increases linearly with
the mean gray value:

σ2
g(g) = σ2

0 +Kg (7)

The following equations become simpler, if we introduce the new variable

g̃ =
g

gmax
and h̃ =

h

hmax
(8)

as the fraction of saturation of gray values in the range [0, gmax] and [0, hmax], respectively, and the maximum
variance as

σ2
max = σ2

g(gmax) (9)

Then Eq. (7) can be written as
σ2
g(g) = σ2

0 + (σ2
max − σ2

0)g̃ (10)

With the linear variance function Eq. (10), the integral in Eq. (6) yields

h(g) =
2σh
K

(√
σ2

0 +Kg − σ0

)
. (11)

We use the free parameters σh to map the values of h into the interval [0, hmax]. This implies the
conditions h(gmax) = hmax and we obtain

h̃ =

√
σ2

0 + (σ2
max − σ2

0)g̃ − σ0

σmax − σ0
, σh =

hmax

2
· σmax + σ0

gmax
. (12)

Now we can use this equation to answer the important question how many bits are required to quantize
the equalized signal h. This is given by the value of hmax, which can be expressed by

hmax = 2σh ·
gmax

σmax + σ0
= 2σh · SNRmax

/(
1 +

σ0

σmax

)
. (13)

This equation gives an important result. Because the dark noise σ0 is much smaller than the maximum noise
σmax for high-end cameras, the correction by σ0 is very small. It makes the number of required bits, hmax,
anyway only smaller. Using the threshold for the standard deviation of the noise, σh = 0.5, derived at the
end of Section 2, yields

hmax ≤ SNRmax. (14)

This means that the number of required bits depends in first order only on the maximum SNR. For any
camera with a full-well capacity of less than 216 = 65 536 electrons, the SNRmax is smaller than 28 and thus
only 8 bits are required to quantize the noise-equalized signal without any significant loss of signal quality.

Replacing gmax in Eq. (13) using Eq. (7), hmax can also be related to the system gain K:

hmax = 2σh ·
σmax − σ0

K
. (15)

3.3 Inverse Relation, Interval Widths, and Resolution

In order to convert the noise-equalized signal back to the original signal, it is required to know the inverse
relation to Eq. (12). This is given by

g̃ = h̃ · h̃(σmax − σ0) + 2σ0

σmax + σ0
. (16)

Another important question is the width of the intervals in the original signal, ∆g, as a relation to the
constant unit interval width of h. This relation can be derived by differentiating Eq. (16) and using Eq. (12),
resulting in

∆g =
σ0 + h̃(σmax − σ0)

σh
=

√
σ2

0 + (σ2
max − σ2

0)g̃

σh
, ∆g ∈

[
σ0

σh
,
σmax

σh

]
. (17)

The intervals ∆g in the original signal space g are well adapted to the standard deviation σg. Inserting
Eq. (10) into Eq. (17) yields

∆g =
σg
σh

or σg = σh∆g. (18)

In the limiting case of σh = 0.5, the standard deviation is half the interval width and a variation of the signal
in a range of 6σg is just 3 bins wide. This is just enough to sample the distribution into three to for bins
from which the standard deviation and mean values can be estimated with sufficient accuracy as described
in Section 2.
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Figure 4: Nonlinear noise-equalizing forward transform for the pco.edge camera with the same parameters as in
Fig. 1: a whole gray value range, b small section close to saturation, and c 5% section close to the dark value
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curve) with a ± one sigma margin σg according to Eq. (7). Because σh = 0.5 was chosen, the values between the
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3.4 Computation of LUTs

The computation of the lookup tables for the forward and backward transform can directly be derived from
Eqs. (12) and (16):

Forward h =
hmax

σmax − σ0

(√
σ2

0 + (σ2
max − σ2

0)g/gmax − σ0

)
= 2σh ·

√
σ2

0 +Kg − σ0

K
,

Backward g =
h

hmax
·
(

2σ0 + (σmax − σ0)
h

hmax

)
/(σmax + σ0) =

h

σh
·
(
σ0 +

Kh

4σh

)
.

(19)

In the rightmost version of the equations in Eq. (12), only two camera parameters are required to compute
the transforms:

• standard deviations of the dark noise σ0

• camera system gain K (DN/e−)

The parameter σh determines the compression ratio. For optimal compression σh = 0.5 should be used
as discussed in Section 2. For an adjustable σh, its value can be computed using Eq. (13):

σh =
hmax

2 SNRmax

(
1 +

σ0

σmax

)
=

1

2
· hmaxK√

σ2
0 +Kgmax − σ0

. (20)

The correct implementation of Eq. (19) can easily be checked with the values h(0) = 0, h(gmax) = hmax,
g(0) = 0, g(hmax) = gmax For an unbiased computation, it is required to round correctly of the floating point
values x from Eq. (19) to integer values, i. e., the integer value q is given by q = floor(x+ 0.5).

Equation (13) does not consider values smaller than the mean dark value. These values occur however
due to noise. If we assume to take values down to m times the standard deviation σh, also the h values get
an offset. For values smaller than the dark value g0, a linear relation is proposed, which has the same slope
as Eq. (19) for g = 0. Then we end up with the modifed LUT

h = mσh +


2σh

√
σ2

0 +K(g−g0)− σ0

K
g ≥ g0

σh
σ0

(g − g0) g < g0

0 h < 0

(21)

The inverse LUT is given by

g = g0 +


2σh

h−mσh
σh

(
σ0 +

K(h−mσh)

4σh

)
h ≥ mσh

σ0

σh
(h−mσh) h < mσh

(22)
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Figure 6: Nonlinear backward transformations for the pco.edge with a dark noise of 1.4 e−: a Whole range, b small
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b small sector at dark value.

4 Examples

4.1 PCO.edge

As an illustrative example, we take the pco.edge camera with the parameters as shown in Fig. 1. Its original
linear output signal has 16 bits (gmax = 216) and with a full well capacity of 30 000 (almost 215, the noise-
equalized signal can be expressed according to Eq. (14) with a maximum digital value of hmax = 171 ≈ 27.5

using σh = 0.5. Therefore only 7.5 bits are required to represent the noise-equalized signal. The nonlinear
noise-equalizing transform curves are shown in Fig. 4, the backward transform in Fig. 6.

Figure 5 illustrates which intervals of g-values close to the dark vale are mapped into one unit interval of
the noise equalized signal h and how the interval width is related to the standard deviation σg of the original
singal g.

Figure 7 directly shows the interval widths of g that are mapped to one value in the noise equalized signal
h. It can be seen that at least 6 values are mapped to one h value. Therefore no significant rounding errors
should occur. This could be verified by computing histograms of the noise-equalized signal h.

4.2 Test with EMVA 1288 standard

Because it appears hard to believe that the signal of a camera with a high dynamic range can just be
represented by 8 bits, a practical test was performed. A pco.edge camera (SN 1013) was measured according
to the EMVA 1288 standard. The results are contained in the first row of Table 1. These values where taken
to compute a compresion LUT with 216 entries and 8 bit values according to Eq. (21) with σh = 0.67 and
m = 6. The value 0.67 was chosen for σh so that the complete range of 16 bit for the values of g can be
covered, see Eq. (20).

After applying the non-linear compression LUT, almost constant, signal independent noise is achieved



tr-hci01e B. Jähne Compression by Noise Equalization 9

Table 1: Verification of the compression by EMVA 1288 measurements. The upper row

η σ0 (DN) σ0 (e−) K (DN/e−) g0 (DN) SNRmax DR

Direct (m0387) 0.454 3.91 1.97 1.975 96.32 185 12570

σh = 0.67 DN (m0389) 0.385 4.36 1.86 2.334 96.15 172 11530

corrected 0.455 4.36 2.21 1.975 96.15 172 11530

Noise equalization m0388, 525nm, 23.06.2013
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Figure 8: Measured temporal noise in the compressed signal h.

Fig. 8. The measured standard deviation is slightly higher than 0.67, because of the additional quantization
noise with a variance of 1/12. Addition of the variances yields a resulting standard deviation of 0.73 DN,
which is 8.9% higher and in good agreement with the measured values, shown in Fig. 8.

The influence of the compressing LUT to the EMVA 1288 parameters was tested in the following way.
Firstly, the nonlinear compression LUT is applied using Eq. (21), then the inverse LUT after Eq. (22). These
two processing steps result again in 16 bit values, but now at most 256 values are occupied in the 16-bit
space, as illustrated in Fig. 9. With images processed in this way, a second EMVA 1288 measurements is
performed. The results are shown in the second row of Table 1.

The influence of the additional quantization noise results in a higher gain value K. Because k scales
with the variance, it should be 18.6% higher. The measurements show that it is 18.1% higher, which is an
excellent agreement. If the correct gain is used, see third row in Table 1, the same quantum efficiency is
computed as with the unprocessed images (row one in Table 1). The values of dark noise σ0 will remain
lower, the maximum SNR and dynamic range DR lower by the same factor, because of the additional noise
caused by quantization. These values should also be 8.9% higher, because they scale with the standard
deviation. The measured values are 11.5%, 7.6%, and 9.0%, respectively. Given the deviations from linear
camera response and a linear photon transfer curve, the agreement is very good.

4.3 Test of simplified LUT Version 1, implemented in pco.edge

In the first version of a new firmware, PCO implemented a simplified version of the nonlinear LUT with
fixed gain and no initial linear part:

h =
√
g − goffs. (23)

A comparison to Eq. (21) gives

σh =

√
K

2
and g0 = goffs +

√
σ2

0

K
. (24)
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Figure 9: Cumulative histogram of an EMVA 1288 measurement using 200 low-irradiation steps and 200 high-
irradiation steps. Only 256 values in the 16-bit space are occupied after decompression: a full range and b small
section with low irradiation.
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Figure 10: Temporal noise in the compressed signal h with the simplified LUT and offsets as indicated.

This means that the simplified LUT correctly maps the exact equation with the exception that the gain
is fixed. The question remains, however, whether the missing linear part of Eq. (21), which was introduced
to handle values below the mean dark values, remains a problem. From Eq. (24) it is obvious that no values
lower than σ2

0/K below the mean dark value can be handled. With a typical K = 2 and σ2
0 = 4, this is not

sufficient. Thus the only way to artifically lower the offset value.

For this purpose, a series of EMVA 1288 measurements applying the nonlinear LUT according to Eq. (23)
with different offsets. As expected, the dependence of the estimated standard deviation is limited to low
mean gray values (Fig. 10). If no offset is used, the standard deviation drops to values of 0.5 and lower,
which is not acceptable. But for offsets in the range between 60 to 90, the dependency is really weak.

More significant effects can be seen for the DSNU histograms in Fig. 11. All distributions become oblique
and the computed spatial DSNU standard deviations strongly depend on the chosen offset. As compared to
the ideal LUT (Fig. 11a), offset values between 80 and 85, i.e. , about 10 to 15 gray values below the mean
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dark value seem to be best.
In summary, the simplified LUT seems to be a good compromise between functionality and complexity.

The only missing feature is a variable gain for a better sampling with lower additional quantization noise if
for an application the full range of gray values is not required or used. Therefore the following modification
is suggested:

h = a
√
g − goffs, (25)

where a is a gain factor with values between one and a given maximum value. An efficient FPGA imple-
mentation could be

h′ =
√
g − goffs , h = h′ + [(bh′) >> 3] with 0 ≤ b < 256. (26)

Thus b = 8(a − 1) would be an 8-bit multiplication factor for a maximum gain of close to 33. The gain
a = 1 + b/8.

5 Conclusions and Outlook

Noise equalization proofs to be a valuable processing step to represent images with fewer bits even for cameras
with a high dynamic range. Even images from sCMOS cameras such as the pco.edge can be compressed to
8 bits. The price to be paid is only that dark noise, maximum SNR and dynamic range are at most 10%
higher. If a smaller gray value range is required for low-light imaging applications, a higher value of σh can
be chosen and these effects become much lower. If, for instance, only 14 bit are required (half the maximum
SNR), σh = 1.34 can be chosen, and the increase in the standard deviation of dark noise and the decrease
in the maximum SNR and dynamic range will be reduced to a negligible 2.3%.

Therefore, it is proposed to alter the firmware of the pco.edge in such a way that the 16-bit LUT with
8-bit values can be loaded into the edge. The following steps are required to compute this LUT:

1. Determine the gray value range, gmax, required by the application.

2. Perform an EMVA 1288 measurement of the target camera to determine the dark noise value σ0 and the
gain K in the operation mode, the camera should be used.

3. Choose a value for m, the range of values below the mean dark value, measured in units of σh. Typically,
a value of m = 6 should be appropriate.

4. Use Eq. (20) to compute σh.

5. Use Eq. (21) to compute the LUT.

6. If the inverse LUT is required, use Eq. (22) to compute it.
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Figure 11: Histogram of the dark signal nonuniformity with a the LUT according to Eq. (21) and the LUT according
to Eq. (23) with offsets b 0, c 80, d 85, e 88, and f 90. The mean dark value is about 96.3.
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