D	Title	Authors	Year	Abstract	ArticleURL
	A COMPARATIVE ANALYSIS OF	Sudharson, K.; Alekhya, B. A.	2023	The vast amount of data generated by various applications necessitates the need for advanced computing capabilities to process,	https://www.rintonpress.com/xxqic23/qic-23-910/0783-0813.pdf
	QUANTUM-BASED APPROACHES	D., I		analyze and extract insights from it. Quantum computing, with its ability to perform complex operations in parallel, holds immense	
F	FOR SCALABLE AND EFFICIENT			promise for data mining in cloud environments. This article examines cutting-edge methods for using quantum computing for data	
ſ	DATA MINING IN CLOUD			mining. The paper analyzes several key quantum algorithms, including Grover's search algorithm, quantum principal component	
	ENVIRONMENTS			analysis (QPCA), and quantum support vector machines (QSVM). It delyes into the details of these algorithms, exploring their	
	Environmento			principles, applications, and potential benefits in various domains. We also done the comparative analysis of various algorithms and	
				principles, applications, and potential benefities in various domains, we also done the comparative analysis of various algorithms and discussed about the difficulties of using quantum computing for data mining, such as the requirement for specialized knowledge,	
-		Rajaei, Arezoo; Houshmand,	2023		
			2023	Quantum computing is an emerging technology that harnesses the laws of quantum mechanics to solve some problems much faster	http://dx.doi.org/10.1007/s11128-023-04112-z
		Mahboobeh; Hosseini,		than classical computers. Quantum-logic synthesis refers to converting a given quantum gate into a set of gates that can be	
C	quantum circuits	Seyyed Abed		implemented in quantum technologies and primarily focuses on decreasing the number of CNOT gates. Of the most well-known	
				quantum-logic synthesis methods are cosine-sine decomposition (CSD) and quantum Shannon decomposition (QSD), each with their	
				distinct advantages. This study aims to present a multi-objective quantum-logic synthesis to optimize three evaluation criteria of the	
				synthesized circuit, namely, the number of CNOT gates, the total number of gates, and the depth simultaneously. The proposed	
				method involves constructing a solution space by exploring various combinations of CSD and QSD. Then, utilizing a bottom-up	
8/	A Generic IoT Quantum-Safe	Michael Eckel, Tanja	2023	This paper presents a quantum-safe watchdog timer protocol designed and implemented using various guantum-safe digital signature	https://dl.acm.org/doi/10.1145/3600160.3605169
		Gutsche, Hagen Lauer, and	2020	algorithms. The protocol is specifically tailored to be used in the context of the Internet of Things (IoT) to address the security risks	
	watchdog filler i fotocol	André Rein		agonitants. The protocol is appendixed and the be used in the context of the mathematical management of the second second response of the data	
		Andre Kein			
				protocol, which ensures that an IoT device's communication channels remain secure from adversarial attacks. To demonstrate the	
				effectiveness of our proposed protocol, we develop a proof-of-concept (PoC) implementation using an actor framework in Python. We	
				evaluate the performance impact of the proposed protocol based on several loT scenarios. We also compare the performance of	
				different quantum-safe algorithms using measurements of CPU cycles, and quantitatively evaluate the results using statistical	
	A New Heuristic for N-Dimensional	Kole, Abhoy; Datta, Kamalika;	2018	One of the main challenges in quantum computing is to ensure error-free operation of the basic quantum gates. There are various	http://dx.doi.org/10.1109/TCAD.2017.2693284
	Nearest Neighbor Realization of a	Sengupta, Indranil		implementation technologies of quantum gates for which the distance between interacting qubits must be kept within a limit for reliable	
C	Quantum Circuit			operation. This leads to the so-called requirement of neighborhood arrangements of the interacting qubits, often referred to as nearest	
				neighbor (NN) constraint. This is typically achieved by inserting SWAP gates in the guantum circuits, where a SWAP gate between	
				two qubits exchanges their states. Minimizing the number of SWAP gates to provide NN compliance is an important problem to solve.	
				A number of approaches have been proposed in this regard, based on local and global ordering techniques. In this paper, a	
				energialized approach for combined local and global ordering of gubits have been proposed that is based on an improved heuristic for	
40	A new post-quantum voting protocol	Sun, Zeyu; Gao, Wenhua;	2022	generalized approach for combined rocar and global ordening of quotis nave been proposed that is based on the assumption of certain difficult	http://dx.doi.org/10.1007/s11128-022-03628-0
			2022		niip.//dx.doi.org/10.1007/S11126-022-03626-0
	based on physical laws	Dong, Hua; Xie, Huiqin; Yang,		computational problems, which cannot be solved by classical computers and have also not been solved by effective quantum	
		Li		algorithms until now. However, these voting protocols are still at risk of compromise with the development of quantum computing, and	
				we call them passive defense voting protocols. By making use of the encrypted three-pass protocol configured by taking physical	
				limits of quantum computing into account and the message authentication code with information theory security, we propose a new	
				post-quantum voting (NPQV) protocol. The proposed protocol exhibits the following advantages: (1) The post-quantum security of	
				NPQV protocol depends on the physical limits that are inherent to quantum computers, so NPQV remains secure with the	
14 /	A Novel Hierarchical Security	Cultice, Tyler: Clark, Joseph:	2023	As the popularity of 3D printing or additive manufacturing (AM) continues to increase for use in commercial and defense supply	http://dx.doi.org/10.3390/s23249886
5	Solution for Controller-Area-Network-	Yang, Wu; Thapliyal,		chains, the requirement for reliable, robust protection from adversaries has become more important than ever. Three-dimensional	
		Himanshu		printing security focuses on protecting both the individual Industrial Internet of Things (I-IoT) AM devices and the networks that	
	Quantum World	i initianona		connect hundreds of these machines together. Additionally, rapid improvements in quantum computing demonstrate a vital need for	
È	Quantum wond			connect manufactorial of an application and an analysis and an ana	
				defense industries. In this paper, we discuss the attack surface of adversarial data manipulation on the physical inter-device	
	A		0000	communication bus, Controller Area Network (CAN). We propose a novel, hierarchical tree solution for a secure, post-quantum-	
	A quantum deep convolutional	Li, YaoChong; Zhou, Ri-Gui;	2020	Deep learning achieves unprecedented success involves many fields, whereas the high requirement of memory and time efficiency	http://dx.doi.org/10.1088/2058-9565/ab9f93
r	neural network for image recognition	Xu, RuQing; Luo, Jia; Hu,		tolerance have been the intractable challenges for a long time. On the other hand, quantum computing shows its superiorities in some	
		WenWen		computation problems owing to its intrinsic properties of superposition and entanglement, which may provide a new path to settle	
				these issues. In this paper, a quantum deep convolutional neural network (QDCNN) model based on the quantum parameterized	
				circuit for image recognition is investigated. In analogy to the classical deep convolutional neural network (DCNN), the architecture	
				that a sequence of quantum convolutional layers followed by a quantum classified layer is illustrated. Inspired by the variational	
				quantum algorithms, a quantum-classical hybrid training scheme is demonstrated for the parameter updating in the QDCNN. The	
17	A quantum inspired hybrid SSA-	Jain, Richa: Sharma, Neelam	2023	Software as a service (SaaS) provider hires resources from an infrastructure as a Service (laaS) provider and provides these sharable	http://dx.doi.org/10.1007/s10586-022-03740-x
	GWO algorithm for SLA based task		1010	resources to user's applications on lease. However, it is becoming a more challenging issue for SaaS providers to meet user's Quality	
	scheduling to improve QoS			of Service (QoS) Parameter and maximize profit from cloud infrastructure. This proposed work satisfies both the user and the service	
F	parameter in cloud computing			provider by fulfilling service level agreement (SLA), user's QoS requirement, and increasing profit with efficient resources utilization.	
				This paper proposes an Improved Quantum Salp Swarm Algorithm (IQSSA), which improves the Salp Swarm algorithm by	
				incorporating the principles of Quantum computing to increase the convergence rate. Further, Quantum-inspired Salp Swarm Grey	
				Wolf Algorithm (QSSGWA) embeds SSA with Grey Wolf Optimizer (GWO) to improve the global optimum solution, and quantum	
18 /	A quantum-classical cloud platform	Karalekas, Peter J.; Tezak,	2020	In order to support near-term applications of quantum computing, a new compute paradigm has emerged-the quantum-classical cloud-	http://dx.doi.org/10.1088/2058-9565/ab7559
	optimized for variational hybrid	Nikolas A.; Peterson, Eric C.;	-	in which quantum computers (QPUs) work in tandem with classical computers (CPUs) via a shared cloud infrastructure. In this work,	
	algorithms	Ryan, Colm A.; da Silva,		we enumerate the architectural requirements of a quantum-classical cloud platform, and present a framework for benchmarking its	
ľ	algonamo	Marcus P.; Smith, Robert S.		runtime performance. In addition, we walk through two platform-level enhancements, parametric compilation and active qubit reset,	
		marous F., Offini, Robelt S.		that specifically optimize a quantum-classical architecture to support variational hybrid algorithms, the most promising applications of	
				near-term quantum hardware. Finally, we show that integrating these two features into the Rigetti Quantum Cloud Services platform	
				results in considerable improvements to the latencies that govern algorithm runtime.	1

N			0000		
		W Yu, Y Chen, C Zhang, Y	2023	In the current Noisy Intermediate-Scale Quantum (NISQ) era, despite quantum computing is challenged by scale limitations and noise,	https://www.researchsquare.com/article/rs-3562680/latest
	Achine Learning Platform in Noisy Intermediate-Scale Quantum Era	Chen, H Wei, Z Chen		it still holds immense potential to accelerate machine learning for specific problems. However, we have found that existing machine	
1	itermediate-Scale Quantum Era			learning platforms do not adequately take into account the properties of quantum computing, resulting in a lack of an integrated quantum machine learning environment. Therefore, this article proposes a software architecture specifically designed for quantum	
				machine learning platform, which aims to provide development tools that offer full life-cycle support for quantum machine learning. We	
				first analyze the software requirements of quantum machine learning platform by using user story method, and then construct the	
				platform architecture blueprint by using multi-view software architecture method. To validate the effectiveness of the architecture we	
22 1	software methodology for	T Häner, DS Steiger, K	2018	platering account of the second	https://iopscience.iop.org/article/10.1088/2058-9565/aaa5cc/meta
	ompiling quantum programs	Svore	2010	quantum computers promise to transform our notions of computation by offening a completely new paradigm. To achieve scalable quantum computation, optimizing compilers and a corresponding software design flow will be essential. We present a software	milps://iopscience.iop.org/anicle/10.1000/2000-3000/addocc/meta
C	ompliing quantum programs	3v0re		quantum computation, optimizing complets and a corresponding software design now win be essential, we present a software architecture for compiling quantum programs from a high-level language program to hardware-specific instructions. We describe the	
				anomecute company quantum programs non a ngri-reven anguage program on andware-specific instructions. We describe the necessary layers of abstraction and their differences and similarities to classical layers of a computer-aided design flow. For each	
				layer of the stack, we discuss the underlying methods for compilation and optimization. Our software methodology facilitates more	
				rapid innovation among quantum algorithm designers, quantum hardware engineers, and experimentalists. It enables scalable	
				compliation of complex quantum algorithms and can be targeted to any specific quantum hardware implementation.	
24 A	Third-Party Mobile Payment	Xia, Yunhao; Ying, Chun; Lin,	2019	Mobile devices now serve to pay for goods and services by means of the transmission of data, a system known as mobile payments.	http://dx.doi.org/10.1109/ACCESS.2019.2911363
		Guofeng; Sun, Zhixin		Mobile payment is receiving growing attention globally, from consumers to merchants, as an alternative to using cash, check, or credit	
	Quantum Attacks			cards. Most encryption techniques applied in mobile payment are based on traditional public key infrastructure. However, the	
1				traditional public key encryption algorithm has higher requirements for hardware, which is not suitable for mobile terminals of limited	
				computing resources. In addition, these public key encryption algorithms are vulnerable to quantum computing attacks and the	
				availability of practical quantum computer is approaching faster than previously believed. Since mobile payment is facing more and	
				more security issues, how to complete the payment process effectively and securely becomes a problem urgently to be solved. In this	
26 A	ccelerating HPC With Quantum	Schulz, Martin; Ruefenacht,	2022	With quantum computing (QC) maturing, high-performance computing (HPC) centers are already preparing to host early-phase	http://dx.doi.org/10.1109/MCSE.2022.3221845
		Martin; Kranzlmueller, Dieter;		production versions of such systems. Unlike their experimental predecessors in physics laboratories, with a very small and dedicated	
		Schulz, Laura Brandon		user community, this next generation of systems needs to serve a wider user community and must work in concert with existing HPC	
ľ	÷			systems and software stacks. This article describes our vision for an integrated ecosystem that combines existing HPC and evolving	
				quantum software stacks into a single system to enable a common and continuous user experience. This integration comes with	
				several major challenges as quantum systems pose significantly different requirements including increased need for compilation at	
				run time, long optimization times, statistical evaluations of results, and the need to work with few centralized resources. To overcome	
28 A	gile Meets Quantum: A Novel	AA Khan, MA Akbar, V	2024	Context: Quantum software systems represent a new realm in software engineering, utilizing quantum bits (Qubits) and quantum	https://arxiv.org/abs/2401.08151
C	Senetic Algorithm Model for	Lahtinen, M Paavola		gates (Qgates) to solve the complex problems more efficiently than classical counterparts . Agile software development approaches	
P	redicting the Success of Quantum			are considered to address many inherent challenges in quantum software development, but their effective integration remains	
S	oftware Development Project			unexplored Objective: This study investigates key causes of challenges that could hinders the adoption of traditional agile approaches	
				in quantum software projects and develop an Agile Quantum Software Project Success Prediction Model (AQSSPM). Methodology:	
				Firstly, we identified 19 causes of challenging factors discussed in our previous study, which are potentially impacting agile quantum	
				project success. Secondly, a survey was conducted to collect expert opinions on these causes and applied Genetic Algorithm (GA)	
29 A	gile practices for quantum software	AA Khan, MA Akbar, A	2023	Quantum software engineering is an emerging genre of software engineering that exploit principles of quantum bits (Qubit) and	https://ieeexplore.ieee.org/abstract/document/10234254/
d	evelopment: practitioners'	Ahmad		quantum gates (Qgates) to solve complex computing problems effeciently than their classical counterparts. According to its	
р	erspectives			proponents, agile software development practices have the potential to address many of the problems endemic to the development of	
				quantum software. However, there is a dearth of evidence investigating whether agile practices are suitable for, and can be adopted	
				by, software teams in the context of quantum software development. To address this lack, we conducted an empirical study to	
				investigate the needs and challenges of using agile practices to develop quantum software. While our semi-structured interviews with	
				26 practitioners across 10 countries highlighted the applicability of agile practices in this domain, the interview findings also revealed	
		Macaluso, Antonio; Clissa,	2024	Ensemble methods aggregate predictions from multiple models, typically demonstrating improved accuracy and reduced variance	http://dx.doi.org/10.1049/qtc2.12087
		Luca; Lodi, Stefano; Sartori,		compared to individual classifiers. However, they often come with significant memory usage and computational time requirements. A	
b	agging	Claudio		novel quantum algorithm that leverages quantum superposition, entanglement, and interference to construct an ensemble of	
				classification models using bagging as an aggregation strategy is introduced. Through the generation of numerous quantum	
				trajectories in superposition, the authors achieve B transformations of the training set with only logB \$\mathit{log}\left(B\right)\$	
				operations, allowing an exponential enlargement of the ensemble size while linearly increasing the depth of the corresponding circuit.	
24 4	n enhanced architecture to resolve	S Shamshad, F Riaz, R Riaz,	2022	Moreover, when assessing the algorithm's overall cost, the authors demonstrate that the training of a single weak classifier contributes	https://www.mdpi.com/1424-8220/22/21/8151
		S Shamshad, F Riaz, R Riaz, SS Rizvi, S Abdulla	2022		<u>https://www.mupi.com/14z4-8zz0/zz/z1/8151</u>
	ne internet of things (IoT),	SS RIZVI, S ADUUIIA		IoT model: sensors, networks, cloud, and applications. Considering the significant value of public-key cryptography threats on IoT system confidentiality, it is vital to secure it. One of the potential candidates to assist in securing public key cryptography in IoT is	
	mploying quantum computing				
	upremacy			quantum computing. Although the notion of IoT and quantum computing convergence is not new, it has been referenced in various works of literature and covered by many scholars. Quantum computing eliminates most of the challenges in IoT. This research	
s	upremacy			provides a comprehensive introduction to the Internet of Things and quantum computing before moving on to public-key cryptography	
1				provides a comprehensive introduction to the memory of mings and quantum computing before moving on to public-very cryptography difficulties that may be encountered across the convergence of quantum computing and IOT. An enhanced architecture is then	
	nalysis of physical requirements for	Sobn IlKwon: Tarucha	2017	The implementation of a scalable quantum computer requires quantum error correction (QEC). An important step toward this goal is to	http://dx.doi.org/10.1103/PhysRevA.95.012306
38 A		com, intron, raruona,	2017	demonstrate the effectiveness of QEC where the fidelity of an encoded qubit is higher than that of the physical qubits. Therefore, it is	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.
		Seigo: Choi Byung-Soo			
s	imple three-qubit and nine-qubit	Seigo; Choi, Byung-Soo			
si q	imple three-qubit and nine-qubit uantum error correction on	Seigo; Choi, Byung-Soo		important to know the conditions under which QEC code is effective. In this study, we analyze the simple three-qubit and nine-qubit	
si q q	imple three-qubit and nine-qubit uantum error correction on uantum-dot and superconductor	Seigo; Choi, Byung-Soo		important to know the conditions under which QEC code is effective. In this study, we analyze the simple three-qubit and nine-qubit QEC codes for quantum-dot and superconductor qubit implementations. First, we carefully analyze QEC codes and find the specific	
si q q	imple three-qubit and nine-qubit uantum error correction on	Seigo; Choi, Byung-Soo		important to know the conditions under which QEC code is effective. In this study, we analyze the simple three-qubit and nine-qubit QEC codes for quantum-dot and superconductor qubit implementations. First, we carefully analyze QEC codes and find the specific range of memory time to show the effectiveness of QEC and the best QEC cycle time. Second, we run a detailed error simulation of	
si q q	imple three-qubit and nine-qubit uantum error correction on uantum-dot and superconductor	Seigo; Choi, Byung-Soo		important to know the conditions under which QEC code is effective. In this study, we analyze the simple three-qubit and nine-qubit QEC codes for quantum-dot and superconductor qubit implementations. First, we carefully analyze QEC codes and find the specific range of memory time to show the effectiveness of QEC and the best QEC cycle time. Second, we run a detailed error simulation of the chosen error-correction codes in the amplitude damping channel and confirm that the simulation data agreed well with the	
si q q q	imple three-qubit and nine-qubit uantum error correction on uantum-dot and superconductor ubits		2022	important to know the conditions under which QEC code is effective. In this study, we analyze the simple three-qubit and nine-qubit QEC codes for quantum-dot and superconductor qubit implementations. First, we carefully analyze QEC codes and find the specific range of memory time to show the effectiveness of QEC and the best QEC cycle time. Second, we run a detailed error simulation of the chosen error-correction codes in the amplitude damping channel and confirm that the simulation data agreed well with the theoretically predicted accuracy and minimum QEC cycle time. We also realize that since the SWAP gate worked rapidly on the	http://dx.doi.org/10.1145/3530776
si q q q 39 A	imple three-qubit and nine-qubit uantum error correction on uantum-dot and superconductor ubits pproximating Decision Diagrams for	Hillmich, Stefan; Zulehner,	2022	important to know the conditions under which QEC code is effective. In this study, we analyze the simple three-qubit and nine-qubit QEC codes for quantum-dot and superconductor qubit implementations. First, we carefully analyze QEC codes and find the specific range of memory time to show the effectiveness of QEC and the best QEC cycle time. Second, we run a detailed error simulation of the chosen error-correction codes in the amplitude damping channel and confirm that the simulation data agreed well with the theoretically predicted accuracy and minimum QEC cycle time. We also realize that since the SWAP gate worked rapidly on the Quantum computers promise to solve important problems faster than conventional computers ever could. Underneath is a	http://dx.doi.org/10.1145/3530776
si q q q 39 A	imple three-qubit and nine-qubit uantum error correction on uantum-dot and superconductor ubits	Hillmich, Stefan; Zulehner, Alwin; Kueng, Richard;	2022	important to know the conditions under which QEC code is effective. In this study, we analyze the simple three-qubit and nine-qubit QEC codes for quantum-dot and superconductor qubit implementations. First, we carefully analyze QEC codes and find the specific range of memory time to show the effectiveness of QEC and the best QEC cycle time. Second, we run a detailed error simulation of the chosen error-correction codes in the amplitude damping channel and confirm that the simulation data agreed well with the theoretically predicted accuracy and minimum QEC cycle time. We also realize that since the SWAP gate worked rapidly on the Quantum computers promise to solve important problems faster than conventional computers ever could. Underneath is a fundamentally different computational primitive that introduces new challenges for the development of software tools that aid	http://dx.doi.org/10.1145/3530776
si q q q 39 A	imple three-qubit and nine-qubit uantum error correction on uantum-dot and superconductor ubits pproximating Decision Diagrams for	Hillmich, Stefan; Zulehner,	2022	important to know the conditions under which QEC code is effective. In this study, we analyze the simple three-qubit and nine-qubit QEC codes for quantum-dot and superconductor qubit implementations. First, we carefully analyze QEC codes and find the specific range of memory time to show the effectiveness of QEC and the best QEC cycle time. Second, we run a detailed error simulation of the chosen error-correction codes in the amplitude damping channel and confirm that the simulation data agreed well with the theoretically predicted accuracy and minimum QEC cycle time. We also realize that since the SWAP gate worked rapidly on the Quantum computers promise to solve important problems faster than conventional computers ever could. Underneath is a fundamentally different computational primitive that introduces new challenges for the development of software tools that aid designers of corresponding quantum algorithms. The different computational primitives render classical simulation of quantum circuits	http://dx.doi.org/10.1145/3530776
si q q q 39 A	imple three-qubit and nine-qubit uantum error correction on uantum-dot and superconductor ubits pproximating Decision Diagrams for	Hillmich, Stefan; Zulehner, Alwin; Kueng, Richard;	2022	important to know the conditions under which QEC code is effective. In this study, we analyze the simple three-qubit and nine-qubit QEC codes for quantum-dot and superconductor qubit implementations. First, we carefully analyze QEC codes and find the specific range of memory time to show the effectiveness of QEC and the best QEC cycle time. Second, we run a detailed error simulation of the chosen error-correction codes in the amplitude damping channel and confirm that the simulation data agreed well with the theoretically predicted accuracy and minimum QEC cycle time. We also realize that since the SWAP gate worked rapidly on the Quantum computers promise to solve important problems faster than conventional computers ever could. Underneath is a fundamentally different computational primitive that introduces new challenges for the development of software tools that aid designers of corresponding quantum algorithms. The different computational primitives render classical simulation of quantum compatible gate. While the logic simulation of conventional circuits is comparatively simple with linear complexitly with respect	http://dx.doi.org/10.1145/3530776
si q q q 39 A	imple three-qubit and nine-qubit uantum error correction on uantum-dot and superconductor ubits pproximating Decision Diagrams for	Hillmich, Stefan; Zulehner, Alwin; Kueng, Richard;	2022	important to know the conditions under which QEC code is effective. In this study, we analyze the simple three-qubit and nine-qubit QEC codes for quantum-dot and superconductor qubit implementations. First, we carefully analyze QEC codes and find the specific range of memory time to show the effectiveness of QEC and the best QEC cycle time. Second, we run a detailed error simulation of the chosen error-correction codes in the amplitude damping channel and confirm that the simulation data agreed well with the theoretically predicted accuracy and minimum QEC cycle time. We also realize that since the SWAP gate worked rapidly on the Quantum computers promise to solve important problems faster than conventional computers ever could. Underneath is a fundamentally different computational primitive that introduces new challenges for the development of software tools that aid designers of corresponding quantum algorithms. The different computational primitives render classical simulation of quantum circuits	<u>http://dx.doi.org/10.1145/3530776</u>

40	Analaita atuma Da sisiana in Os	MC Alter Dillers M	0000		
	Architecture Decisions in Quantum	MS Aktar, P Liang, M	2023	Quantum computing provides a new dimension in computation, utilizing the principles of quantum mechanics to potentially solve	https://arxiv.org/abs/2312.05421
	Software Systems: An Empirical	Waseem, A Tahir		complex problems that are currently intractable for classical computers. However, little research has been conducted about the	
	Study on Stack Exchange and GitHub			architecture decisions made in quantum software development, which have a significant influence on the functionality, performance, scalability, and reliability of these systems. The study aims to empirically investigate and analyze architecture decisions made during	
	GitHub				
				the development of quantum software systems, identifying prevalent challenges and limitations by using the posts and issues from	
				Stack Exchange and GitHub. We used a qualitative approach to analyze the obtained data from Stack Exchange Sites and GitHub	
		T	0000	projects. Specifically, we collected data from 151 issues (from 47 GitHub projects) and 43 posts (from three Stack Exchange sites)	
	Assertion-Based Optimization of	Haener, Thomas; Hoefler,	2020	Quantum computers promise to perform certain computations exponentially faster than any classical device. Precise control over their	nttp://dx.doi.org/10.1145/3428201
	Quantum Programs	Torsten; Troyer, Matthias		physical implementation and proper shielding from unwanted interactions with the environment become more difficult as the	
				space/time volume of the computation grows. Code optimization is thus crucial in order to reduce resource requirements to the	
				greatest extent possible. Besides manual optimization, previous work has adapted classical methods such as constant-folding and	
				common subexpression elimination to the quantum domain. However, such classically-inspired methods fail to exploit certain	
				optimization opportunities across subroutine boundaries, limiting the effectiveness of software reuse. To address this insufficiency, we	
			0000	introduce an optimization methodology which employs annotations that describe how subsystems are entangled in order to exploit	
	Barriers of adopting quantum	M Alahmari	2023	The advent of quantum technology holds significant transformative potential for blockchain systems, promising new realms of security,	https://link.springer.com/article/10.1007/s00500-023-09433-w
	technology in blockchain: a			speed, and efficiency. However, the lack of clear guidelines for adopting and implementing quantum technology within blockchain	
	prioritization-based framework			presents a critical challenge. This research aims to address this problem, bridging the gap by investigating the essential process areas	
				needing expert attention while integrating quantum technology in the blockchain. To address this study, firstly, we have identified	
				challenging factors of adopting quantum technology in blockchain reported by the existing literature. Secondly, we conducted a	
				questionnaire survey study and get the experts opinions conceding to the criticality of the identified challenges towards adopting	
45	Obelles and Obelles in the internet of the int		00000	quantum technology in blockchain. According to the results of this study, lack of adequate expertise, security concerns and regulatory	
	Challenges and Opportunities in	T Yue, W Mauerer, S Ali, D	2023	Quantum computing is a relatively new paradigm that has raised considerable interest in physics and computer science in general but	https://link.springer.com/chapter/10.1007/978-3-031-36847-9_1
	Quantum Software Architecture	Taibi		has so far received little attention in software engineering and architecture. Hybrid applications that consist of both quantum and	
				classical components require the development of appropriate quantum software architectures. However, given that quantum software	
				engineering (QSE) in general is a new research area, quantum software architecture—a sub-research area in QSE—is also	
				understudied. The goal of this chapter is to provide a list of research challenges and opportunities for such architectures. In addition,	
				to make the content understandable to a broader computer science audience, we provide a brief overview of quantum computing and	
40		Consultant Antonia D	0000	explain the essential technical foundations.	
	Challenges and Opportunities of	Corcoles, Antonio D.;	2020	The concept of quantum computing has inspired a whole new generation of scientists, including physicists, engineers, and computer	http://dx.doi.org/10.1109/JPROC.2019.2954005
	Near-Term Quantum Computing	Kandala, Abhinav; Javadi-		scientists, to fundamentally change the landscape of information technology. With experimental demonstrations stretching back more	
	Systems	Abhari, Ali; McClure, Douglas		than two decades, the quantum computing community has achieved a major milestone over the past few years: the ability to build	
		T.; Cross, Andrew W.;		systems that are stretching the limits of what can be classically simulated, and which enable cloud-based research for a wide range of	
		Temme, Kristan; Nation, Paul		scientists, thus increasing the pool of talent exploring early quantum systems. While such noisy near-term quantum computing	
		D.; Steffen, Matthias;		systems fall far short of the requirements for fault-tolerant systems, they provide unique test beds for exploring the opportunities for	
47	o	Gambetta, Jay M.	0000	quantum applications. Here, we highlight an IBM-specific perspective of the facets associated with these systems, including quantum	
	Challenges in making blockchain	Bansod, Smita; Ragha, Lata	2022	Due to the pandemic, most of the personal transactions relating to finance, commerce and healthcare services have gone online	http://dx.doi.org/10.1007/s12046-022-01931-1
	privacy compliant for the digital			making privacy preservation a critical requirement. Consequently, privacy has been made a critical parameter in Data Protection	
	world: some measures			Regulations leading to the search for such a privacy compliant system which is also resilient to attacks. A detailed analysis of the	
				Blockchain technology, which is becoming popular for secure applications in the finance sector, indicates that there are several	
				challenges relating to user identity, transaction linkability, crypto-keys management, data privacy, usability, interoperability, and post-	
				quantum compliance of privacy regulations which need to be resolved before its widespread adoption. Being a decentralised system,	
50		MA Althen C Defi AA Khan	0000	there is a need to analyse the vulnerability to attacks of each layer in the Blockchain architecture. This paper discusses the	https://liple.com/chartes/40.4007/070.0.004.04000.5.40
	Classical to quantum software	MA Akbar, S Rafi, AA Khan	2022	With recent advances in the development of more powerful quantum computers, the research area of quantum software engineering	https://link.springer.com/chapter/10.1007/978-3-031-21388-5_42
	migration journey begins: a			is emerging. Quantum software plays a critical role in exploiting the full potential of quantum computing systems. As a result, it has	
	conceptual readiness model			been drawing increasing attention recently to provide concepts, principles, and guidelines to address the ongoing challenges of	
				quantum software development. The importance of the topic motivated us to voice out a call for action to develop a readiness model	
				that will help an organization assess its capability of migration from classic software engineering to quantum software engineering.	
				The proposed model will be based on the existing multivocal literature, industrial empirical study, understanding of the process areas,	
				challenging factors and enablers that could impact the quantum software engineering process. We believe that the proposed model	
	Comparative analysis of classical	MD Noel, OV Waziri, MS	2020	The use of public key cryptosystems ranges from securely encrypting bitcoin transactions and creating digital signatures for non-	https://ieeexplore.ieee.org/abstract/document/9257656/
	and post-quantum digital signature	Abdulhamid		repudiation. The cryptographic systems security of public key depends on the complexity in solving mathematical problems. Quantum	
				computers pose a threat to the current day algorithms used. This research presents analysis of two Hash-based Signature Schemes	
	algorithms used in Bitcoin				
	algorithms used in Bitcoin transactions			(MSS and W-OTS) and provides a comparative analysis of them. The comparisons are based on their efficiency as regards to their	
				(MSS and W-OTS) and provides a comparative analysis of them. The comparisons are based on their efficiency as regards to their key generation, signature generation and verification time. These algorithms are compared with two classical algorithms (RSA and	
				(MSS and W-OTS) and provides a comparative analysis of them. The comparisons are based on their efficiency as regards to their key generation, signature generation and verification time. These algorithms are compared with two classical algorithms (RSA and ECDSA) used in bitcoin transaction security. The results as shown in table II indicates that RSA key generation takes 0.2012s,	
	transactions			(MSS and W-OTS) and provides a comparative analysis of them. The comparisons are based on their efficiency as regards to their key generation, signature generation and verification time. These algorithms are compared with two classical algorithms (RSA and ECDSA) used in bitcoin transaction security. The results as shown in table II indicates that RSA key generation takes 0.2012s, signature generation takes 0.0778s and signature verification is 0.0040s. ECDSA key generation is 0.1378s, signature generation	
62	transactions Continuous-Variable Deep Quantum	Basani, Jasvith Raj;	2021	(MSS and W-OTS) and provides a comparative analysis of them. The comparisons are based on their efficiency as regards to their key generation, signature generation and verification time. These algorithms are compared with two classical algorithms (RSA and ECDSA) used in bitcoin transaction security. The results as shown in table II indicates that RSA key generation takes 0.2012s, signature generation takes 0.0778s and signature verification is 0.0040s. ECDSA key generation is 0.1378s, signature generation Quantum computation using optical modes has been well-established in its ability to construct deep neural networks. These networks	http://dx.doi.org/10.4208/cicp.OA-2020-0173
62	transactions Continuous-Variable Deep Quantum Neural Networks for Flexible	Basani, Jasvith Raj; Bhattacherjee, Aranya	2021	(MSS and W-OTS) and provides a comparative analysis of them. The comparisons are based on their efficiency as regards to their key generation, signature generation and verification time. These algorithms are compared with two classical algorithms (RSA and ECDSA) used in bitcoin transaction security. The results as shown in table II indicates that RSA key generation takes 0.2012s, signature generation takes 0.0778s and signature verification is 0.004os. ECDSA key generation is 0.1378s, signature generation Quantum computation using optical modes has been well-established in its ability to construct deep neural networks. These networks have been shown to be flexible both architecturally as well as in terms of the type of data being processed. We leverage this property	http://dx.doi.org/10.4208/cicp.OA-2020-0173
62	transactions Continuous-Variable Deep Quantum Neural Networks for Flexible Learning of Structured Classical		2021	(MSS and W-OTS) and provides a comparative analysis of them. The comparisons are based on their efficiency as regards to their key generation, signature generation and verification time. These algorithms are compared with two classical algorithms (RSA and ECDSA) used in bitcoin transaction security. The results as shown in table II indicates that RSA key generation takes 0.2012s, signature generation takes 0.0778s and signature verification is 0.0040s. ECDSA key generation takes 0.1378s, signature generation Quantum computation using optical modes has been well-established in its ability to construct deep neural networks. These networks have been shown to be flexible both architecturally as well as in terms of the type of data being processed. We leverage this property of the Continuous-Variable (CV) model to construct stacked single mode networks that are shown to learn structured classical	http://dx.doi.org/10.4208/cicp.OA-2020-0173
62	transactions Continuous-Variable Deep Quantum Neural Networks for Flexible		2021	(MSS and W-OTS) and provides a comparative analysis of them. The comparisons are based on their efficiency as regards to their key generation, signature generation and verification time. These algorithms are compared with two classical algorithms (RSA and ECDSA) used in bitcoin transaction security. The results as shown in table II indicates that RSA key generation takes 0.2012s, signature generation takes 0.0778s and signature verification is 0.040s. ECDSA key generation is 0.1378s, signature generation Quantum computation using optical modes has been well-established in its ability to construct deep neural networks. These networks have been shown to be flexible both architecturally as well as in terms of the type of data being processed. We leverage this property of the Continuous-Variable (CV) model to construct stacked single mode networks that are shown to learn structured classical information, while placing no restrictions on the size of the network, and at the same time maintaining it's complexity. The hallmark of	http://dx.doi.org/10.4208/cicp.OA-2020-0173
62	transactions Continuous-Variable Deep Quantum Neural Networks for Flexible Learning of Structured Classical		2021	(MSS and W-OTS) and provides a comparative analysis of them. The comparisons are based on their efficiency as regards to their key generation, signature generation and verification time. These algorithms are compared with two classical algorithms (RSA and ECDSA) used in bitcoin transaction security. The results as shown in table II indicates that RSA key generation takes 0.2012s, signature generation takes 0.0778s and signature verification is 0.040s. ECDSA key generation is 0.1378s, signature generation Quantum computation using optical modes has been well-established in its ability to construct deep neural networks. These networks have been shown to be flexible both architecturally as well as in terms of the type of data being processed. We leverage this property of the Continuous-Variable (CV) model to construct stacked single mode networks that are shown to learn structured classical information, while placing no restrictions on the size of the network, and at the same time maintaining it's complexity. The hallmark of the CV model is its ability to forge non-linear functions using a set of gates that allows it to remain completely unitary. The proposed	http://dx.doi.org/10.4208/cicp.OA-2020-0173
62	transactions Continuous-Variable Deep Quantum Neural Networks for Flexible Learning of Structured Classical		2021	(MSS and W-OTS) and provides a comparative analysis of them. The comparisons are based on their efficiency as regards to their key generation, signature generation and verification time. These algorithms are compared with two classical algorithms (RSA and ECDSA) used in bitcoin transaction security. The results as shown in table II indicates that RSA key generation takes 0.2012s, signature generation takes 0.0778s and signature verification is 0.0040s. ECDSA key generation takes 0.1378s, signature generation Quantum computation using optical modes has been well-established in its ability to construct deep neural networks. These networks have been shown to be flexible both architecturally as well as in terms of the type of data being processed. We leverage this property of the Continuous-Variable (CV) model to construct stacked single mode networks that are shown to learn structured classical information, while placing no restrictions on the size of the network, and at the same time maintaining it's complexity. The hallmark of the CV model is its ability to forge non-linear functions using a set of gates that allows it to remain completely unitary. The proposed model exemplifies that the appropriate photonic hardware can be integrated with present day optical communication systems to meet	http://dx.doi.org/10.4208/cicp.OA-2020-0173
62	transactions Continuous-Variable Deep Quantum Neural Networks for Flexible Learning of Structured Classical Information	Bhattacherjee, Aranya		(MSS and W-OTS) and provides a comparative analysis of them. The comparisons are based on their efficiency as regards to their key generation, signature generation and verification time. These algorithms are compared with two classical algorithms (RSA and ECDSA) used in bitcoin transaction security. The results as shown in table II indicates that RSA key generation takes 0.2012s, signature generation takes 0.0778s and signature verification is 0.0040s. ECDSA key generation takes 0.1378s, signature generation Quantum computation using optical modes has been well-established in its ability to construct deep neural networks. These networks have been shown to be flexible both architecturally as well as in terms of the type of data being processed. We leverage this property of the Continuous-Variable (CV) model to construct stacked single mode networks that are shown to learn structured classical information, while placing no restrictions on the size of the network, and at the same time maintaining it's complexity. The hallmark of the CV model is its ability to forge non-linear functions using a set of gates that allows it to remain completely unitary. The proposed model exemplifies that the appropriate photonic hardware can be integrated with present day optical communication systems to meet our information processing requirements. In this paper, using the Strawberry Fields software library on the MNIST dataset of hand-	
62	transactions Continuous-Variable Deep Quantum Neural Networks for Flexible Learning of Structured Classical Information Control and Readout Software for		2021	(MSS and W-OTS) and provides a comparative analysis of them. The comparisons are based on their efficiency as regards to their key generation, signature generation and verification time. These algorithms are compared with two classical algorithms (RSA and ECDSA) used in bitcoin transaction security. The results as shown in table II indicates that RSA key generation takes 0.2012s, signature generation takes 0.0778s and signature verification is 0.0040s. ECDSA key generation takes 0.1378s, signature generation Quantum computation using optical modes has been well-established in its ability to construct deep neural networks. These networks have been shown to be flexible both architecturally as well as in terms of the type of data being processed. We leverage this property of the Continuous-Variable (CV) model to construct stacked single mode networks that are shown to learn structured classical information, while placing no restrictions on the size of the network, and at the same time maintaining it's complexity. The hallmark of the CV model is its ability to forge non-linear functions using a set of gates that allows it to remain completely unitary. The proposed model exemplifies that the appropriate photonic hardware can be integrated with present day optical communication systems to meet	http://dx.doi.org/10.4208/cicp.OA-2020-0173 http://dx.doi.org/10.1109/TNS.2019.2920337
62	transactions Continuous-Variable Deep Quantum Neural Networks for Flexible Learning of Structured Classical Information Control and Readout Software for Superconducting Quantum	Bhattacherjee, Aranya Guo, Cheng; Liang, Futian; Lin, Jin; Xu, Yu; Sun, Lihua;		(MSS and W-OTS) and provides a comparative analysis of them. The comparisons are based on their efficiency as regards to their key generation, signature generation and verification time. These algorithms are compared with two classical algorithms (RSA and ECDSA) used in bitcoin transaction security. The results as shown in table II indicates that RSA key generation takes 0.2012s, signature generation takes 0.0778s and signature verification is 0.0040s. ECDSA key generation takes 0.1378s, signature generation Quantum computation using optical modes has been well-established in its ability to construct deep neural networks. These networks have been shown to be flexible both architecturally as well as in terms of the type of data being processed. We leverage this property of the Continuous-Variable (CV) model to construct stacked single mode networks that are shown to learn structured classical information, while placing no restrictions on the size of the network, and at the same time maintaining it's complexity. The hallmark of the CV model is its ability to forge non-linear functions using a set of gates that allows it to remain completely unitary. The proposed model exemplifies that the appropriate photonic hardware can be integrated with present day optical communication systems to meet our information processing requirements. In this paper, using the Strawberry Fields software library on the MNIST dataset of hand-	
62	transactions Continuous-Variable Deep Quantum Neural Networks for Flexible Learning of Structured Classical Information Control and Readout Software for	Bhattacherjee, Aranya Guo, Cheng; Liang, Futian;		(MSS and W-OTS) and provides a comparative analysis of them. The comparisons are based on their efficiency as regards to their key generation, signature generation and verification time. These algorithms are compared with two classical algorithms (RSA and ECDSA) used in bitcoin transaction security. The results as shown in table II indicates that RSA key generation takes 0.2712s, signature generation takes 0.0778s and signature verification is 0.040s. ECDSA key generations to 0.1378s, signature generation Quantum computation using optical modes has been well-established in its ability to construct deep neural networks. These networks have been shown to be flexible both architecturally as well as in terms of the type of data being processed. We leverage this property of the Continuous-Variable (CV) model to construct stacked single mode networks that are shown to learn structured classical information, while placing no restrictions on the size of the network, and at the same time maintaining it's complexity. The proposed model exemplifies that the appropriate photonic hardware can be integrated with present day optical communication systems to meet our information processing requirements. In this paper, using the Strawberry Fields software library on the MNIST dataset of hand- Being important parts of the superconducting quantum computer, the high-speed arbitrary waveform generator (AWG), ultraprecision	
62	transactions Continuous-Variable Deep Quantum Neural Networks for Flexible Learning of Structured Classical Information Control and Readout Software for Superconducting Quantum	Bhattacherjee, Aranya Guo, Cheng; Liang, Futian; Lin, Jin; Xu, Yu; Sun, Lihua;		(MSS and W-OTS) and provides a comparative analysis of them. The comparisons are based on their efficiency as regards to their key generation, signature generation and verification time. These algorithms are compared with two classical algorithms (RSA and ECDSA) used in bitcoin transaction security. The results as shown in table II indicates that RSA key generation takes 0.2012s, signature generation takes 0.0778s and signature verification is 0.0040s. ECDSA key generation is 0.1378s, signature generation Quantum computation using optical modes has been well-established in its ability to construct deep neural networks. These networks have been shown to be flexible both architecturally as well as in terms of the type of data being processed. We leverage this property of the Continuous-Variable (CV) model to construct stacked single mode networks that are shown to learn structured classical information, while placing no restrictions on the size of the network, and at the same time maintaining it's complexity. The hallmark of the CV model is its ability to forge non-linear functions using a set of gates that allows it to remain completely unitary. The proposed model exemplifies that the appropriate photonic hardware can be integrated with present day optical communication systems to meet our information processing requirements. In this paper, using the Strawberry Fields software library on the MNIST dataset of hand- Being important parts of the superconducting quantum computer, the high-speed arbitrary waveform generator (AWG), ultraprecision dc source, and high-speed digitizer are used to manipulate the qubit. The complexity of an experimental setup increases rapidly as	
62	transactions Continuous-Variable Deep Quantum Neural Networks for Flexible Learning of Structured Classical Information Control and Readout Software for Superconducting Quantum	Bhattacherjee, Aranya Guo, Cheng: Liang, Futian; Lin, Jin; Xu, Yu; Sun, Lihua; Liu, Weiyue; Liao, Shengkai;		(MSS and W-OTS) and provides a comparative analysis of them. The comparisons are based on their efficiency as regards to their key generation, signature generation and verification time. These algorithms are compared with two classical algorithms (RSA and ECDSA) used in bitcoin transaction security. The results as shown in table II indicates that RSA key generation takes 0.2012s, signature generation takes 0.0778s and signature verification is 0.0040s. ECDSA key generation takes 0.2012s, signature generation takes 0.0778s and signature verification is 0.0040s. ECDSA key generation is 0.1378s, signature generation Quantum computation using optical modes has been well-established in its ability to construct deep neural networks. These networks have been shown to be flexible both architecturally as well as in terms of the type of data being processed. We leverage this property of the Continuous-Variable (CV) model to construct stacked single mode networks that are shown to learn structured classical information, while placing no restrictions on the size of the network, and at the same time maintaining it's complexity. The hallmark of the CV model is its ability to forge non-linear functions using a set of gates that allows it to remain completely unitary. The proposed model exemplifies that the appropriate photonic hardware can be integrated with present day optical communication systems to meet our information processing requirements. In this paper, using the Strawberry Fields software library on the MNIST dataset of hand- Being important parts of the superconducting quantum computer, the high-speed arbitrary waveform generator (AWG), ultraprecision dc source, and high-speed digitizer are used to manipulate the qubit. The complexity of an experimental setup increases rapidly as the number of qubits grows. Cumbersome instrument management, distortion of signals, and inefficiency of data transmission are	
62	transactions Continuous-Variable Deep Quantum Neural Networks for Flexible Learning of Structured Classical Information Control and Readout Software for Superconducting Quantum	Bhattacherjee, Aranya Guo, Cheng: Liang, Futian; Lin, Jin; Xu, Yu; Sun, Lihua; Liu, Weiyue; Liao, Shengkai;		(MSS and W-OTS) and provides a comparative analysis of them. The comparisons are based on their efficiency as regards to their key generation, signature generation and verification time. These algorithms are compared with two classical algorithms (RSA and ECDSA) used in bitcoin transaction security. The results as shown in table II indicates that RSA key generation takes 0.2712s, signature generation takes 0.0778s and signature verification is 0.040s. ECDSA key generations to 0.1378s, signature generation Quantum computation using optical modes has been well-established in its ability to construct deep neural networks. These networks have been shown to be flexible both architecturally as well as in terms of the type of data being processed. We leverage this property of the Continuous-Variable (CV) model to construct stacked single mode networks that are shown to learn structured classical information, while placing no restrictions on the size of the network, and at the same time maintaining it's complexity. The proposed model exemplifies that the appropriate photonic hardware can be integrated with present day optical communication systems to meet our information processing requirements. In this paper, using the Strawberry Fields software library on the MNIST dataset of hand- Being important parts of the superconducting quantum computer, the high-speed arbitrary waveform generator (AWG), ultraprecision dc source, and high-speed digitzer are used to manipulate the qubit. The complexity of an experimental setup increases rapidly as the number of qubits grows. Cumbersome instrument management, distortion of signals, and inefficiency data transmission are gradually highlighted and become the bottlenecks in scaling up the number of qubits. In addition, fault-tolerant quantum computing	

No. No. 200 Proc. Casabit. Jumm. Parket Proc. Sample of a more predime spatial more integrating apple to the base and spatial more predime. Spatial more predime spatial more predime spatial more predime spatial more predime spatial more predime. Spatial more predime spatial more predime. Spatial more predime spatial more predima more predima more predime spatial more predime spatial more pr						
Image: Section of the sectio			R Pérez-Castillo, M Piattini	2022		https://link.springer.com/article/10.1007/s00607-022-01091-4
Image: Control Section Section Section Section Section Section 10 Section Se		with UML				
Image: Control in the second						
Image: context in the second						
Experiment prior Experiment prior<						
GP Planetary method <						
minimum progene April: Self-Sep: Function Biological Programmer Self-Sep: Functon Biological Programmer Self-Sep: Fu	05	Engineering the development of	Diago Alonso, Bodro	2022		https://www.sciencedirect.com/science/article/pii/S0065007822001211
Prob Plabb				2022		mups.//www.sciencedirect.com/science/anticle/pii/30903997822001211
Instrume						
Image: Second		the boolean satisfiability problem	Rubio			
Image: Control in the contrel in the contrel in the contre						
Image: Security Description An Abstanti Control Control <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td></th<>						
F Encarge In Teaching Langes 14 Makanin 2024 The mode growth of the finance of three points prevation is an exceeded and prevation of the prevation is an exceeded and prevation in the prevation of the prevation is an exceeded and prevation in the prevation of the prevation is an exceeded and prevation in the prevation is an exceeded and prevation of the prevation is an exceeded and prevation of the prevation is an exceeded and prevation in the prevation of the prevation is an exceeded and prevation of the prevation is an exceeded and prevation of the prevation of the prevation of the prevation is an exceeded and prevation of the prevat						
Level Resilence again Treas meet is signand particle. This treagence is service. The combined of part meets to select status provides with a local surface comparison of the service is the service. The combined of part developed particle is and surface comparison of the service. The combined of part developed particle is and surface combined of particle is and surface comparison of the service. The combined of particle is and surface combined of particle	87	Enhancing IoT Security: Quantum-	H Alhakami	2024		https://cdn.techscience.cn/files/cmc/2024/TSP_CMC-78-
Image: Section of the sectio						
Image: Instrume and the section of the sectin of the secti		3				
Image: Construction of the output of the standy for meta-anima, Construct, which is a granter and prophographic petotosis provides and construction of the standy for the index of the standy for the standy for the index of the standy for the index of the standy for the standy for the index of the standy for the standy for the index of the standy for t					privacy and security problems. This study examines the critical need to prevent potential security concerns from quantum computing in	
Image: Construction of the second o					IoT applications. We investigate the incorporation of quantum computing approaches within IoT security frameworks, with a focus on	
Best Construction					developing effective security mechanisms. Our research, which uses quantum algorithms and cryptographic protocols, provides a	
writing writing bosen by the futures/ toxes, the out excessing how each industry into control to be wy childraging in prun times generating in prun times generatingenerating in prun times generating in prun times g					unique solution to protecting sensitive information and assuring the integrity of IoT systems. We rigorously analyze critical quantum	
wing wing end wetfailing and wote privacy. Untorkained, it tures out to wet y-table graphet is end or guarant means pripates in the stance, where privacy is the stance is end or guarant means privacy. In the stance, is appended appendent is to the stance of the stance is privacy. The stance is appended appendent is to the stance of the stance is appended appendent is to the stance of the stance is appended. Stance is appended appendent is to the stance is appended appendent is to the stance is appended appendent is to the stance is appended. Instance is appended appendent is appendent is appended appendent is app			X Boyen, T Haines, J Müller	2021		https://ieeexplore.ieee.org/abstract/document/9581185/
Image: Second		verifiable post-quantum-secure e-				
Image: Section	ľ	voting				
Image: Construction Constr	1					
B Beginnmental study on the quantum search algorithm over structured datestic is propeed. Subsequence and refinent search algorithm over structured datestic is propeed. Subsequence and sequence on search and multiput search algorithm over structured datestic is propeed. Subsequence and sequence on security of the algorithm is executed on a refinent search algorithm over structured datestic is propeed. Subsequence and sequence on security of the algorithm is executed on a refinent security of the algorithm over structured datestic is propeed. Subsequence and sequence on security of the structure datestic is propeed. Subsequence on security of the algorithm is executed on a refinent anel/statistic process to reach the search key or solution with the propeed security of the algorithm is executed on a refinent anel/statistic process to reach the read diplicing. If means structured datestes is propeed from developed by BM, is used algorithm is effort anel/statistic process to reach the read diplicing. If means structured datestes is propeed from developed by BMD. The result is stoped that the read diplicing. If means stoped that the read diplicing is and annotation of doverdeg about process the lower algorithm and therpad BMD. The results is stoped that the read diplicing is annotation of doverdeg about process the lower algorithm and therpad BMD. The results is stoped that the read diplicing is annotation of doverdeg about process the lower algorithm and therpad BMD. The results is stoped that the read diplicing is annotation of doverdeg about process the lower algorithm and therpad BMD. The results is algorithm is the read diplicing is all state algorithm is therpad BMD. The results is algorithm is algorithm i						
Bog Experimental study on the quantum search algorithm over structured datasets using IBMC appenence Das, Kunal, Sadhu, Anidam 2022 In this sork, a quantum statema appendix the proposed. Subsequently, the algorithm in the state and coupling the ML super Set of the quantum statema appendix of the the statematic of the statematic of the statematic of the statematic of the statematic on the sta						
seisch abgrittim vier structureid datasets using EMQ experience genann computer developed by EM Cuantum experience (BMQ). DISkt, the software platform developed by BM. Lisued for the interpresentation of the approxemation and anglitude the proceed base h algorithm. Thereforms a plates and the other intel size and conducts a start time-radius and anglitude the proceed base h algorithm. Thereforms a plates and the other intel size and conducts a start time-radius and anglitude the proceed base h algorithm. Thereforms a plates and the other intel size and conducts a start time-radius and anglitude the proceed base h algorithm. Thereforms a plates and conducts a start time-radius and anglitude the proceed base h algorithm. Thereforms a plates and conducts a start time-radius and anglitude the proceed base halgorithm. Thereforms a plates and conducts a start time-radius and anglitude the proceed base halgorithm. Thereforms a plates and conducts a start time-radius and time plates and there and time plates and there are breaching interpreters. You there are breaching interpreters and there are breaching int						
datasets using IBMC experience mipmentation of this agointm. Quantum interpress, quantum supproposition, and p phase shift of the quantum state are applied in the proposed experiance datasets. The proposed quantum algointm is an experiance dataset. The proposed quantum algointm is the proposed quantum algointm is the proposed quantum algointm. Quantum interpretence datasets. The proposed quantum algointm is the proposed quantum algointm is the proposed quantum algointm is the proposed quantum algointm. Quantum interpretence datasets. The proposed quantum algointm is the proposed quantum algointm is the proposed quantum algointm is the proposed quantum algointm. Quantum interpretence datasets. The proposed quantum algointm is the quantum step and proposed quantum algointm. Quantum interpretence datasets. The proposed quantum algointm is the proposed quantum algointm is the quantum step and proposed quantum algointm is the quantum algointm is quantum algointm is the quantum algointm			Das, Kunal; Sadhu, Arindam	2022		http://dx.doi.org/10.1016/j.jksuci.2022.01.012
http://document.org/lines/seaseases/seases/seases/seases/seases/seases/seases/seases/seases/sea						
Image: Section of the sectin of the section of the section		datasets using IBMQ experience				
Image: second using the GKR4 SDK kozth backerd black sD						
Image: Section quantum sensing potential BKM. The results suggest that the real chaption (6, methoungs is compelied by quantum sensing potential) Head (methous) 94 Exploring quantum sensing potential BKM. The results suggest that the real chaption (1, methous) In explore the competing of the sensition (1, methous) In explore the sensition (1, methous)						
194 Exploring quantum sensing potential for systems applications Rantespokey, LAW, R Wetzfeld, E. Bords 2023 The current rise of quantum technology is compelled by quantum sensing research tabs are developing and testing a storad range of sensor prototypes. However, there is a lack of howoledge about specific applications of densor drugs of storad range of sensor prototypes. The storad range of sensor prototypes reports, we determined four groups opcifica and performance. Based on the review of own quantum sensing prototype reports, we determined four groups opcifica and performance. Based on the review of own quantum sensor prototypes reports, we determined four groups opcifica and performance. Based on the review of own quantum sensor prototypes reports, we determined four groups opcifica and performance. Based on the review of own quantum sensor prototypes reports, we determined four groups opcifica and performance. Based on the review of own quantum sensor prototypes reports, we determined four groups opcifica and the most advances densing technologies with endicital performance. Based on the review of own review of own review of own review tables on sensor the review of own r						
In or systems applications Weitzfeld, E. Bordo Iseling a broad range of sensor protopose, These sensors will be most advances to comprehensive event of quantum sensing systems is seded. A provides a detailed analysis of how quantum sensing overcomes the existing limitations of sensor-driven agroups of quantum sensors and decursed over advances of quantum sensors and decursed over advances. These sensors will be most advances in sensors of quantum sensors overcomes the existing limitations of sensor-driven agroups of quantum sensors and decursed over advances of quantum magnetometry and ventors and decursed them is advance messils. In turn turn magnetometry and quantum magnetometry and quantum magnetometry and quantum magnetometry and quantum magnetometry. Sensors, turn turn magnetometry and quantum magnetometry and quantum magnetometry and quantum magnetometry. Sensors, will be most advance advance results. In turn turn magnetometry and quantum magnetometry. Sensors, will be most advance advance results in turn turn magnetometry and quantum magnetometry. Sensors, will be most advance advelopment indiviry tervers and decursed will be quantum magnetometry and pagnets. The magnetized of the sensors advance advelopment indiviry tervers and decursed will be quantum magnetometry and pagnets. The magnetized of the sensors advance advelopment indiviry tervers and weight for advance advelopment indiviry tervers and decursed of the sensors. The magnetized of the sensors advance advelopment indite covers magnet indiviry tervers and the sensors advan						
cases where the benefits of these sensions will be most pronounced. This study presents a comprehensive review of quantum sensing state-drynatics. It also states of hore review of over 500 quantum sensing overcomes the existing influtions of sension-three of quantum sensions and accompositions of sension details and status of best sensition influtions of sension details and status of best sensition influtions of sension details of senset detailsen details of sension details of sension details of se	04	Evoluting quantum consing potential	R Kantaanalaku I Aviiv R	2022		https://ioooyplato.jooo.org/obstract/document/10082125/
state-of-practice. It also provides a detailed analysis of how quantum sensing overcomes the existing limitations of sensor-driven systems in precision and performance. Based on the review of over 500 quantum assorp prototype reports, we determined for groups of quantum meansors and discussed there admess for commercial usage. We concluded that quantum magnetements and quantum meansors and discussed there admess for commercial usage. We concluded that quantum magnetements and quantum meansors and discussed provem results. In them, quantum timing and kinetices are still in the functions. Computers With Qurints Advanced ensity for the result of over 500 quantum sensity provem results. In them, quantum timing and kinetices are still in the functions of the device of a fundamental different way to perform quantum computation by using three-level qurits instated of qubits. In the study is ingortee-level qurits instated of qubits. In the study is ingortee-level qurits instated of quantum for the device of the study over the qubits. The study is ingortee-level quantum for quantum computations by exploiting a dispatchmic running dispatchmic quantum for qua				2023	The current rise of quantum technology is compelled by quantum sensing research. Thousands of research labs are developing and	https://ieeexplore.ieee.org/abstract/document/10083135/
Image: system procession and performance. Based on the review of over 500 quantum sensor prototype reports, we determined four groups of quantum sensor prototype reports, we determined four groups of quantum sensor prototype reports, we determined four groups of quantum sensor prototype reports. In turn, quantum timing and kinetics are still in the local dual dual dual dual dual dual dual du				2023	The current rise of quantum technology is compelled by quantum sensing research. Thousands of research labs are developing and testing a broad range of sensor prototypes. However, there is a lack of knowledge about specific applications and real-world use	https://ieeexplore.ieee.org/abstract/document/10083135/
Image: since in the second state in the second state is a second state second state second state is a second state is a second state				2023	The current rise of quantum technology is compelled by quantum sensing research. Thousands of research labs are developing and testing a broad range of sensor prototypes. However, there is a lack of knowledge about specific applications and real-world use cases where the benefits of these sensors will be most pronounced. This study presents a comprehensive review of quantum sensing	https://ieeexplore.ieee.org/abstract/document/10083135/
encode copies are the most advanced serving technologies with empirically proven results. In turn, quantum turnig and therites are still in the 96 Extending the Fondier of Quantum Computers With Quirtis Quantum Quantum Casesy: Chong. Frederici T: Brown, Kenneth R; Brown, Natale C. 2020 We advocate for a fundamentally different way to perform quantum computations by exploiting a third state for temporary variables (ancills) in quantum circuits. Past work with quirtis to achieve a logarithmic runtime log2(3) binary-to-temary compression factor. We present a novel technique using quirtis to achieve a logarithmic runtime log2(3) binary-to-temary compression factor. We present a novel technique using quirtis to achieve a logarithmic runtime log2(3) binary-to-temary compression factor. We present a novel technique using quirtis to achieve a logarithmic runtime log2(3) binary-to-temary compression factor. We present a novel technique using quirtis to achieve a logarithmic runtime log2(3) binary-to-temary compression factor. We present a novel technique using quirtis to achieve a logarithmic runtime log2(3) binary-to-temary compression factor. We present a novel technique using quirtis to achieve a logarithmic runtime log2(3) binary-to-temary compression factor. We present a novel technique using quirtis to achieve a logarithmic runtime log2(3) binary-to-temary compression factor. We present a novel technique using quirtis to achieve a logarithmic runtime log2(3) binary-to-temary compression factor. We present a novel technique using quirtis to achieve a logarithmic runtime log2(3) binary-to-temary compression factor. We present a novel technique using quirtis to achieve a logarithmic runtime log2(3) binary-to-temary compression factor. Memory temporality distribution distribution distribution distechnica logarithmic runtime log2(3) binary-to-temary compression				2023	The current rise of quantum technology is compelled by quantum sensing research. Thousands of research labs are developing and testing a broad range of sensor prototypes. However, there is a lack of knowledge about specific applications and real-world use cases where the benefits of these sensors will be most pronounced. This study presents a comprehensive review of quantum sensing state-of-practice. It also provides a detailed analysis of how quantum sensing overcomes the existing limitations of sensor-driven	https://ieeexplore.ieee.org/abstract/document/10083135/
Computers With Qutrits Jonathan M.; Duckering, Caesey: Chong, Fredrik I.; Brown, Kenneth R.; Brown, Natalie C. particular, we substantially in quantum circuits. Past work with utilts has demonstrated only compresents. A durity thas demonstrated only compresents. The prospect of the generalized Tools and labor in provements or the best qubit-only equivalent. Our approach features a 70x improvement in total two-qutit gate count over the qubit-only decomposition. This results in improvements or the bog2(3) binary-to-temary compression factor. We present a novel technique using qutrits to achieve a logarithmic runtime decomposition of the Generalized Toflog gate using no ancillane approache la increave or 90% mean reliability https://www.intonpress.com/wsgic24/qle-24-120071-0088.pdf 109 GUIDELINES TO USE THE INCRENENTAL COMMITTENT SPIRAL MODEL FOR DEVELOPING QUANTUM-CLASSICAL SYSTEMS R PÉREZ-CASTLLO, MA SPIRAL MODEL FOR DEVELOPING SPIRAL				2023	The current rise of quantum technology is compelled by quantum sensing research. Thousands of research labs are developing and testing a broad range of sensor prototypes. However, there is a lack of knowledge about specific applications and real-world use cases where the benefits of these sensors will be most pronounced. This study presents a comprehensive review of quantum sensing state-of-practice. It also provides a detailed analysis of how quantum sensing overcomes the existing limitations of sensor-driven systems' precision and performance. Based on the review of over 500 quantum sensor prototype reports, we determined four groups	https://ieeexplore.ieee.org/abstract/document/10083135/
Labels Casesy: Chong, Frederic T.; Brown, Kenneth R.; Brown, Natale C. Variables (ancilla) in quantum circuits. Past work with quitts has demonstrated only constant factor. Improvements, owing to the doc)2(3) binary-to-temary compression factor. We present a novel tenchique using quintifies to achieve a dopartimic runnime decomposition of the Generalized Toffoil gate using no ancillaan exponential improvement over the best quibi-only equivalent. Our approach features a 70 kimprovement in total two-quidy decomposition. This results in improvements of best quibi-only equivalent. Our approach features a 70 kimprovement in total two-quivelepment that with prossible to solve those insoftant algorithms for antimetic and Quid gate count over the quibi-londy decomposition. This results in improvement voer the guib-londy decomposition. This results in improvement reliability. https://www.initonpress.com/xxgic24/gic-24-12/0071-0088.pdf 109 GUIDELINES TO USE THE INCREAL MODEL FOR DEVELOPING QUANTUM-CLASSICAL SYSTEMS PréREZ-CASTILLO, MA SERRANO 2024 Quantum consulta disacieal computing, Just as in other milestones in the history of software development, such as the adoption of object-oriented systems, where are software development processes and new life cycles energed, with the quantum computing revolution, a new life cycle for quantum and hybrid software systems is needed. Although there are some life cycle proposals for quantum adopted proposal is presented adopted from the intermental Commitment Spinital and example of tause is presented. https://www.initonpress.com/xxgic24/gic-24-12/0071-0088.pdf 1118 Hybrid Quantum-Classical Optimization Fan, Lei; Han, Zhu 2022 Furue communication networks will require increased flexib				2023	The current rise of quantum technology is compelled by quantum sensing research. Thousands of research labs are developing and testing a broad range of sensor prototypes. However, there is a lack of knowledge about specific applications and real-world use cases where the benefits of these sensors will be most pronounced. This study presents a comprehensive review of quantum sensing state-of-practice. It also provides a detailed analysis of how quantum sensing overcomes the existing limitations of sensor-driven systems' precision and performance. Based on the review of over 500 quantum sensor prototype reports, we determined four groups of quantum sensors and discussed their readiness for commercial usage. We concluded that quantum magnetometry and quantum	
Brown, Kenneth R.; Brown, Natale C. Sprikation	1	for systems applications	Weitzfeld, E Bordo		The current rise of quantum technology is compelled by quantum sensing research. Thousands of research labs are developing and testing a broad range of sensor prototypes. However, there is a lack of knowledge about specific applications and real-world use cases where the benefits of these sensors will be most pronounced. This study presents a comprehensive review of quantum sensing state-of-practice. It also provides a detailed analysis of how quantum sensing overcomes the existing limitations of sensor-driven systems' precision and performance. Based on the review of over 500 quantum sensor prototype reports, we determined four groups of quantum sensors and discussed their readiness for commercial usage. We concluded that quantum magnetometry and quantum optics are the most advanced sensing technologies with empirically proven results. In turn, quantum timing and kinetics are still in the	
Image: Natalie C. decomposition of the Generalized Toffoli gate using no anclilaan exponential improvement over the best qubit-only equivalent. Our approach features a 70x improvement in total who-qudit gate count over the qubit-only decomposition. This results in improvements for important algorithms for arithmetic and QRAM. Simulation results under realistic noise models indicate over 90% mean reliability https://www.intonpress.com/xxqic24/qic.24+12/0071-0088.pdf 109 GUIDELINES TO USE THE INCREMENTAL COMMITMENT SPIRAL MODEL FOR DEVELOPING QUANTUM-CLASSICAL SYSTEMS RPÉRZ-CASTILLO, MA SERANO… 2024 Quantum computing is the turning point that represents a revolution in software development that will make it possible to solve those adoption of object-oriented systems, where new software development processes and new life cycles emerged, with the quantum computing revolution, a new life cycle or quantum and hydrid software systems is needed. Although there are some life cycles or quantum file cycle proposal is presented adapted from the ncremental Commitment Spiral Model (ICSM) and an example of the growing number of service demands. Advanced mixed-integer network resource optimization models and digorithm sate requirements. The purpose of this arcide is to introduce a hybrid quantum-classical computing for Future Network Optimization. Of the massively paralelism. Following that, we discuss in detail the hybrid quantum-classical computing growing number of service demands. Advanced mixed-integer network resource optimization inclution intuatization (NFV), multicon virtuatization (NFV), multicon virtuatizaticaces and ged oremputin//dydol/doud morputer, descrots the difficul	95	for systems applications	Weitzfeld, E Bordo Gokhale, Pranav; Baker, Jonathan M.; Duckering,		The current rise of quantum technology is compelled by quantum sensing research. Thousands of research labs are developing and testing a broad range of sensor prototypes. However, there is a lack of knowledge about specific applications and real-world use cases where the benefits of these sensors will be most pronounced. This study presents a comprehensive review of quantum sensing state-of-practice. It also provides a detailed analysis of how quantum sensing overcomes the existing limitations of sensor-driven systems' precision and performance. Based on the review of over 500 quantum sensor prototype reports, we determined four groups of quantum sensors and discussed their readiness for commercial usage. We concluded that quantum magnetometry and quantum optics are the most advanced sensing technologies with empirically proven results. In turn, quantum timing and kinetics are still in the We advocate for a fundamentally different way to perform quantum computation by using three-level qutrits instead of rubits. In particular, we substantially reduce the resource requirements of quantum computations by exploiting a third state for temporary	
Image: Construction approach features a 70x improvement in total two-quidt gate count over the qubit-only decomposition. This results in improvements for important algorithms for artification results under relatistic noise models indicate over 90% mean reliability. Improvement in total two-quidt gate count over the qubit-only decomposition. This results in improvements for important algorithms for artification results under relatistic noise models indicate over 90% mean reliability. Improvements for important algorithms for artification results under relatistic noise models indicate over 90% mean reliability. Improvements for important algorithms for artification results under relatistic noise models indicate over 90% mean reliability. Improvements for important set in the interport of software development such as the adoption of object-oriented systems, where new software development processes and new iffe cycles merged, with the quantum computing revolution, a new life cycle for quantum and hybrid software systems is needed. Although there are some life cycle proposals for quantum software systems, most of them do not comprehensively address the specific needs of these systems. In this paper, a quantum till e cycle proposal is presented adapted from the incremental Commitment Spiral Model (ICSM) and an example of the submit of to the growing number of service demands. Advanced mixed integer needs of these systems is needs. Advanced mixed index-integer network resource optimization models and algorithms are required to meet these requirements. The purpose of this article is to introduce a hybrid quantum-classical computing framework function with unalization (NFV), multi-access the potential applications of the proposed parading for network function with unalization (NFV), multi-access edge computing divides on the massively parallelis multing or an intereasing durum models for the mosespode parading for	95	for systems applications	Weitzfeld, E Bordo Gokhale, Pranav; Baker, Jonathan M.; Duckering, Casey; Chong, Frederic T.;		The current rise of quantum technology is compelled by quantum sensing research. Thousands of research labs are developing and testing a broad range of sensor prototypes. However, there is a lack of knowledge about specific applications and real-world use cases where the benefits of these sensors will be most pronounced. This study presents a comprehensive review of quantum sensing state-of-practice. It also provides a detailed analysis of how quantum sensing overcomes the existing limitations of sensor-driven systems' precision and performance. Based on the review of over 500 quantum sensor prototype reports, we determined four groups of quantum sensors and discussed their readiness for commercial usage. We concluded that quantum magnetometry and quantum optics are the most advanced sensing technologies with empirically proven results. In turn, quantum timing and kinetics are still in the We advocate for a fundamentally different way to perform quantum computations by exploiting a third state for dupbics. In particular, we substantially reduce the resource requirements of quantum computations by exploiting a third state for temporary variables (ancilla) in quantum circuits. Past work with qutrits has demonstrated only constant factor improvements, owing to the	
Important algorithms for arithmetic and QRAM. Simulation results under realistic noise models indicate over 90% mean reliability 109 GUIDELINES TO USE THE INCREMENTAL COMMITMENT SPIRAL MODEL FOR DEVELOPING QUANTUM-CLASSICAL SYSTEMS PÉREZ-CASTILLO, MA SERRANO 2024 Quantum computing in the turning point that represents a revolution in software development in suith make it possible to solve those problems unsolvable with classical computing. Just as in other milestones in the history of software development, such as the adoption of object-coinented systems, where new software development processes and new life cycle semerged, with the quantum computing revolution, a new life cycle or quantum and hybrid software systems is needed. Although there are some life cycle proposals for quantum mol hybrid software systems is needed. Although there are some life cycle proposals for quantum and hybrid software systems is needed. Although there are some life cycle proposals for quantum and hybrid software development processes and new life cycle semerged, with the quantum computing revolution, a new life cycle proposal is presented adapted from the Incremental Commitment Spiral Model (ICSM) and an example of its use is presented adapted from the Incremental Commitment Spiral Model (ICSM) and an example of the use is presented. http://dx.doi.org/10.1109/MNET.001.2200150 http://dx.doi.org/10.1109/MNET.001.2200150 118 Hybrid Quantum-classical Computing for Future Network Optimization Fan, Lei; Han, Zhu 2022 Future communication network welcows in detail the hybrid quantum-classical computing ramework for addressing future network resource optimization insues. We begin by discussing the fundamentals of quantum computers is parallelism. Floring/log/cloud computing, an	95	for systems applications	Weitzfeld, E Bordo Gokhale, Pranav; Baker, Jonathan M.; Duckering, Casey; Chong, Frederic T.; Brown, Kenneth R.; Brown,		The current rise of quantum technology is compelled by quantum sensing research. Thousands of research labs are developing and testing a broad range of sensor prototypes. However, there is a lack of knowledge about specific applications and real-world use cases where the benefits of these sensors will be most pronounced. This study presents a comprehensive review of quantum sensing state-of-practice. It also provides a detailed analysis of how quantum sensing overcomes the existing limitations of sensor-driven systems' precision and performance. Based on the review of over 500 quantum sensor prototype reports, we determined four groups of quantum sensing the most advanced sensing technologies with empirically proven results. In turn, quantum timing and kinetics are still in the We advocate for a fundamentally different way to perform quantum computation by using three-level qutrits instead of qubits. In particular, we substantially reduce the resource requirements of quantum computation by exploiting a third state for temporary variables (ancilla) in quantum circuits. Past work with qutrits has demonstrated only constant factor improvements, owing to the log2(3) binary-to-temary compression factor. We present a novel technique using qutrits to achieve a logarithmic runtime	
109 GUIDELINES TO USE THE INCREMENTAL COMMITMENT SPIRAL MODEL FOR DEVELOPING R PÉREZ-CASTILLO, MA SERRANO 2024 Quantum computing is the turning point that represents a revolution in software development that will make it possible to solve those problems unsolvable with classical computing. Just as in other milestones in the history of software development, such as the problems unsolvable with classical computing. Just as in other milestones in the history of software development, such as the problems unsolvable with classical computing. Just as in other milestones in the history of software development, such as the adoption of object-oriented systems, where new software development processes and new life cycles emerged. Although there are some life cycle proposals for quantum software systems, most of them do not comprehensively address the specific needs of these systems. In this paper, a quantum life cycle proposal is presented adapted from the Incremental Commitment Spiral Model (ICSM) and an example of its use is presented. https://www.intonpress.com/xxqic24/qic-24-12/0071-0088.pdf 118 Hybrid Quantum-Classical Computing for Future Network Optimization Fan, Lei; Han, Zhu 2022 Future communication networks will require increased flexibility, scalability, and data computation capabilities to adequately respond to the growing number of service demands. Advanced mixed-integer network resource optimization issues. We begin by discussing the fundamentals of quantum computing and its parallelism. Following that, we discuss in detail the hybrid quantum-classical computing paradigm. Then, we discuss the potential applications of the proposed paradigm for network resource optimization, including network function virtualization (NFV), multi-access edge computing/fog/cloud computing, and cloud radio access networks (C-RANAS). Finally,	95	for systems applications	Weitzfeld, E Bordo Gokhale, Pranav; Baker, Jonathan M.; Duckering, Casey; Chong, Frederic T.; Brown, Kenneth R.; Brown,		The current rise of quantum technology is compelled by quantum sensing research. Thousands of research labs are developing and testing a broad range of sensor prototypes. However, there is a lack of knowledge about specific applications and real-world use cases where the benefits of these sensors will be most pronounced. This study presents a comprehensive review of quantum sensing state-of-practice. It also provides a detailed analysis of how quantum sensing overcomes the existing limitations of sensor-driven systems' precision and performance. Based on the review of over 500 quantum sensor prototype reports, we determined forur groups of quantum sensors and discussed their readiness for commercial usage. We concluded that quantum magnetometry and quantum optics are the most advanced sensing technologies with empirically proven results. In turn, quantum timing and kinetics are still in the We advocate for a fundamentally different way to perform quantum computation by using three-level qutrits instead of qubits. In particular, we substantially reduce the resource requirements of quantum computations by exploiting a third state for temporary variables (ancilla) in quantum circuits. Past work with quirtis has demonstrated only constant factor improvements, owing to the log2(3) binary-to-ternary compression factor. We present a novel technique using qutrits to achieve a logarithmic runtime decomposition of the Generalized Toffoli gate using no ancillaan exponential improvement over the best qubit-only equivalent. Our	
INCREMENTAL COMMITTEENT SPIRAL MODEL FOR DEVELOPING QUANTUM-CLASSICAL SYSTEMS SERRANO problems usolvable with classical computing. Just as in other milestones in the history of software development, such as the adoption of object-oriented systems, where new software development processes and new life cycles emerged. Although there are some life cycle proposals for quantum software systems, most of them do not comprehensively address the specific needs of these systems. In this adoption of object-oriented systems, most of them do not comprehensively address the specific needs of these systems. In this adoption of object-oriented systems, most of them do not comprehensively address the specific needs of these systems. In this adoption of object-oriented systems, most of them do not comprehensively address the specific needs of these systems. In this apper, a quantum life cycle proposal is presented adapted from the Incremental Commitment Spiral Model (ICSM) and an example of its use is presented. http://dx.doi.org/10.1109/MNET.001.2200150 118 Hybrid Quantum-Classical Computing for Future Network Optimization Fan, Lei; Han, Zhu 202 Future networks will require increased flexibility, sclability, sclability, and data computing intramework for addressing future network resource optimization issues. We begin by discussing the fundamentals of quantum classical computing and its applications of the proposed paradigm Ten the work function virtualization (NFV), multi-access edge computing/ofcloud computing, and cloud radio access networks (C-RANS). Finally, we discuss the difficult evers ago, is used to benchmark various gate-based quantum algorithms on some of the most powerful supercomputers that exist today. Adaptive mending of the wave function reduces the memory requirement by a factor of eight, making it possible to date. Adaptive discuss	95	for systems applications	Weitzfeld, E Bordo Gokhale, Pranav; Baker, Jonathan M.; Duckering, Casey; Chong, Frederic T.; Brown, Kenneth R.; Brown,		The current rise of quantum technology is compelled by quantum sensing research. Thousands of research labs are developing and testing a broad range of sensor prototypes. However, there is a lack of knowledge about specific applications and real-world use cases where the benefits of these sensors will be most pronounced. This study presents a comprehensive review of quantum sensing state-of-practice. It also provides a detailed analysis of how quantum sensing overcomes the existing limitations of sensor-driven systems' precision and performance. Based on the review of over 500 quantum sensors prototype reports, we determined four groups of quantum sensors and discussed their readiness for commercial usage. We concluded that quantum magnetometry and quantum optics are the most advanced sensing technologies with empirically proven results. In turn, quantum timing and kinetics are still in the We advocate for a fundamentally different way to perform quantum computation by using three-level qutrits instead of qubits. In particular, we substantially reduce the resource requirements of quantum computations by exploiting a third state for temporary variables (ancilla) in quantum circuits. Past work with qutrits has demonstrated only constant factor improvements, owing to the log2(3) binary-to-temary compression factor. We present a novel technique using qutrits to achieve a logarithmic runtime decomposition of the Generalized Toffoli gate using no ancillaan exponential improvement over the best qubit-only equivalent. Our approach features a 70x improvement in total two-qudit gate count over the qubit-only decomposition. This results in improvements for	
SPIRAL MODEL FOR DEVELOPING QUANTUM-CLASSICAL SYSTEMS adoption of object-oriented systems, where new software development processes and new life cycles emerged, with the quantum computing revolution, a new life cycle for quantum and hybrid software systems is needed. Although there are some life cycles proposals for quantum software systems, most of them do not comprehensively address the specific needs of these systems. In this paper, a quantum life cycle proposal is presented adapted from the Incremental Commitment Spiral Model (ICSM) and an example of its use is presented. 118 Hybrid Quantum-Classical Computing for Future Network Optimization Fan, Lei; Han, Zhu 2022 Future communication networks will require increased flexibility, scalability, and data computing into the groups of this article is to infrade insticle is to infrade quantum-classical computing framework for addressing future network resource optimization including network resource optimization issues. We begin by discussing the fundamentals of quantum-classical computing pranadijum. Fmajer sing future network resource optimization, including network function virtualization (NFV), multi-access edge computing/fog/cloud computing, and cloud radio access networks (C-RANs). Finally, we discuss the potential applications of the proposed paradigm for network resource optimization, including network function virtualization (NFV), multi-access edge computing/fog/cloud computing, and cloud radio access networks (C-RANs). Finally, we discuss the disting asponters the specific networks to dad Adaptive mencoding of the wave function reduces the memory requirement by factor of eight, making it possible constal the divid quantum computer, for eight, making it possible constal to adaptive and addressing future network trave function reduces the memory requirement by factor of eight, making it possible constal to adaptive m	95	for systems applications	Weitzfeld, E Bordo Gokhale, Pranav; Baker, Jonathan M.; Duckering, Casey; Chong, Frederic T.; Brown, Kenneth R.; Brown, Natalie C.	2020	The current rise of quantum technology is compelled by quantum sensing research. Thousands of research labs are developing and testing a broad range of sensor prototypes. However, there is a lack of knowledge about specific applications and real-world use cases where the benefits of these sensors will be most pronounced. This study presents a comprehensive review of quantum sensing state-of-practice. It also provides a detailed analysis of how quantum sensing overcomes the existing limitations of sensor-driven systems' precision and performance. Based on the review of over 500 quantum sensor prototype reports, we determined four groups of quantum sensors and discussed their readiness for commercial usage. We concluded that quantum magnetometry and quantum optics are the most advanced sensing technologies with empirically proven results. In turn, quantum timing and kinetics are still in the We advocate for a fundamentally different way to perform quantum computation by using three-level qutrits instead of qubits. In particular, we substantially reduce the resource requirements of quantum computation by exploiting a third state for temporary variables (ancilla) in quantum circuits. Past work with qutrits has demonstrated only constant factor improvements, owing to the log2(3) binary-to-temary compression factor. We present a novel technique using qutrits to achieve a logarithmic runtime decomposition of the Generalized Toffoli gate using no ancillaan exponential improvement over the best qubit-only equivalent. Our approach features a 70x improvement in total two-qudit gate count over the qubit-only decomposition. This results in improvements for improvements for arithmetic and QRAM. Simulation results under realistic noise models indicate over 90% mean reliability	http://dx.doi.org/10.1109/MM.2020.2985976
QUANTUM-CLASSICAL SYSTEMS computing revolution, a new life cycle for quantum and hybrid software systems is needed. Although there are some life cycle computing cycle for quantum software systems, most of them do not comprehensively address the specific needel (ICSM) and an example of http://dx.doi.org/10.1109/IMNET.001.2200150 118 Hybrid Quantum-Classical Computing for Future Network Optimization Fan, Lei; Han, Zhu 2022 Future communication networks will require increased flexibility, scalability, scalability, scalability, and data computation computing and its use is presented. http://dx.doi.org/10.1109/IMNET.001.2200150 140 Massively parallel quantum computer simulator, eleven years later De Raedt, Hans; Jin, Fengping; Willsch, Dennis; Willsch, Madia; Yoshioka, Naoki; Ito, Nobuyasu; Yuan, Shengjun; Michielsen, Kristel 2019 A revised version of the massively parallel simulator of a universal quantum computer, on an IBM Blue Gene/Q, and on the K computer, on an IBM Blue Gene/Q, and on the K computer, on an IBM Blue Gene/Q, and on the K computer, on an IBM Blue Gene/Q, and on the K computer, on an IBM Blue Gene/Q, and on the K computer of the increasing number of aparallelis scalability. http://dx.doi.org/10.1016/j.cpc.2018.11.005	95	for systems applications Extending the Frontier of Quantum Computers With Qutrits GUIDELINES TO USE THE	Weitzfeld, E Bordo Gokhale, Pranav; Baker, Jonathan M.; Duckering, Casey; Chong, Frederic T.; Brown, Kenneth R.; Brown, Natalie C. R PÉREZ-CASTILLO, MA	2020	The current rise of quantum technology is compelled by quantum sensing research. Thousands of research labs are developing and testing a broad range of sensor prototypes. However, there is a lack of knowledge about specific applications and real-world use cases where the benefits of these sensors will be most pronounced. This study presents a comprehensive review of quantum sensing state-of-practice. It also provides a detailed analysis of how quantum sensing overcomes the existing limitations of sensor-driven systems' precision and performance. Based on the review of over 500 quantum sensor prototype reports, we determined foru groups of quantum sensors and discussed their readiness for commercial usage. We concluded that quantum magnetometry and quantum optics are the most advanced sensing technologies with empirically proven results. In turn, quantum timing and kinetics are still in the We advocate for a fundamentally different way to perform quantum computation by using three-level qutrits instead of qubits. In particular, we substantially reduce the resource requirements of quantum computations by exploiting a third state for temporary variables (ancilla) in quantum circuits. Past work with quirtis has demonstrated only constant factor improvements, owing to the log2(3) binary-to-ternary compression factor. We present a novel technique using qutrits to achieve a logarithmic runtime decomposition of the Generalized Toffoli gate using no ancillaan exponential improvement over the best qubits in improvements for important algorithms for arithmetic and QRAM. Simulation results under realistic noise models indicate over 90% mean reliability Quartum computing is the turning point that represents a revolution in software development that will make it possible to solve those	http://dx.doi.org/10.1109/MM.2020.2985976
Image: specific s	95	for systems applications Extending the Frontier of Quantum Computers With Qutrits GUIDELINES TO USE THE INCREMENTAL COMMITMENT	Weitzfeld, E Bordo Gokhale, Pranav; Baker, Jonathan M.; Duckering, Casey; Chong, Frederic T.; Brown, Kenneth R.; Brown, Natalie C. R PÉREZ-CASTILLO, MA	2020	The current rise of quantum technology is compelled by quantum sensing research. Thousands of research labs are developing and testing a broad range of sensor prototypes. However, there is a lack of knowledge about specific applications and real-world use cases where the benefits of these sensors will be most pronounced. This study presents a comprehensive review of quantum sensing state-of-practice. It also provides a detailed analysis of how quantum sensing overcomes the existing limitations of sensor-driven systems' precision and performance. Based on the review of over 500 quantum sensors prototype reports, we determined four groups of quantum sensors and discussed their readiness for commercial usage. We concluded that quantum magnetometry and quantum optics are the most advanced sensing technologies with empirically proven results. In turn, quantum timing and kinetics are still in the We advocate for a fundamentally different way to perform quantum computations by exploiting a third state for temporary variables (ancilla) in quantum circuits. Past work with qutrits has demonstrated only constant factor improvements, owing to the log2(3) binary-to-temary compression factor. We present a novel technique using qutrits to achieve a logarithmic runtime decomposition of the Generalized Toffoli gate using no ancillaan exponential improvement over the best qubit-only equivalent. Our approach features a 70x improvement in total two-qudit gate count over the qubit-only decomposition. This results in improvements for important algorithms for arithmetic and QRAM. Simulation results under realistic noise models indicate over 90% mean reliability Quantum computing is the turning point that represents a revolution in software development that will make it possible to solve those problems unsolvable with classical computing. Just as in other milestones in the history of software development, such as the	http://dx.doi.org/10.1109/MM.2020.2985976
Image:	95	Extending the Frontier of Quantum Computers With Qutrits GUIDELINES TO USE THE INCREMENTAL COMMITMENT SPIRAL MODEL FOR DEVELOPING	Weitzfeld, E Bordo Gokhale, Pranav; Baker, Jonathan M.; Duckering, Casey; Chong, Frederic T.; Brown, Kenneth R.; Brown, Natalie C. R PÉREZ-CASTILLO, MA	2020	The current rise of quantum technology is compelled by quantum sensing research. Thousands of research labs are developing and testing a broad range of sensor prototypes. However, there is a lack of knowledge about specific applications and real-world use cases where the benefits of these sensors will be most pronounced. This study presents a comprehensive review of quantum sensing state-of-practice. It also provides a detailed analysis of how quantum sensing overcomes the existing limitations of sensor-driven systems' precision and performance. Based on the review of over 500 quantum sensor prototype reports, we determined four groups of quantum sensors and discussed their readiness for commercial usage. We concluded that quantum magnetometry and quantum optics are the most advanced sensing technologies with empirically proven results. In turn, quantum timing and kinetics are still in the We advocate for a fundamentally different way to perform quantum computation by using three-level qutrits instead of qubits. In particular, we substantially reduce the resource requirements of quantum computations by exploiting a third state for temporary variables (ancilla) in quantum circuits. Past work with qutrits has demonstrated only constant factor improvements, owing to the log2(3) binary-to-ternary compression factor. We present a novel technique using qutrits to achieve a logarithmic runtime decomposition of the Generalized Toffoli gate using no ancillaan exponential improvement over the best qubit-only equivalent. Our approach features a 70x improvement in total two-qudit gate count over the qubit-only decomposition. This results in improvements for important algorithms for arithmetic and QRAM. Simulation results under realistic noise models indicate over 90% mean reliability Quantum computing is the turning point that represents a revolution in software development that will make it possible to solve those problems unsolvable with classical computing. Just as in other milestones in the history of software develo	http://dx.doi.org/10.1109/MM.2020.2985976
Image: Instrume Classical Computing for Future Network Fan, Lei; Han, Zhu 2022 Future communication networks will require increased flexibility, scalability, and data computation capabilities to adequately respond to the growing number of service demands. Advanced mixed-integer network resource optimization models and algorithms are required to meet these requirements. The purpose of this article is to introduce a hybrid quantum-classical computing framework for addressing future network resource optimization, including network function virtualization (NFV), multi-access edge computing/fog/cloud computing, and cloud radio access networks (C-RANs). Finally, we discuss the difficulties associated with simulator, eleven years later http://dx.doi.org/10.1109/MNET.001.2200150 140 Massively parallel quantum computer shares later De Raedt, Hans; Jin, Fengping; Willsch, Dennis; Willsch, Madita; Yoshioka, Naoki; Ito, Nobuyasu; Yuan, Shengjun; Michielsen, Kristel 2019 A revised version of the massively parallel simulator of a universal quantum computer, descrif lay, making it possible to simulate universal quantum computers that exist today. Adaptive encoding of the wave function reduces the memory requirement by a factor of eight, making it possible to simulate universal quantum computer, descrif lay, making it possible to simulate universal quantum computer of high making it possible to simulate or weak-scaling behavior on the Sunway TaihuLight and on the K computer. The simulator exhibits. Results of http://dx.doi.org/10.1016/j.cpc.2018.11.005	95	Extending the Frontier of Quantum Computers With Qutrits GUIDELINES TO USE THE INCREMENTAL COMMITMENT SPIRAL MODEL FOR DEVELOPING	Weitzfeld, E Bordo Gokhale, Pranav; Baker, Jonathan M.; Duckering, Casey; Chong, Frederic T.; Brown, Kenneth R.; Brown, Natalie C. R PÉREZ-CASTILLO, MA	2020	The current rise of quantum technology is compelled by quantum sensing research. Thousands of research labs are developing and testing a broad range of sensor prototypes. However, there is a lack of knowledge about specific applications and real-world use cases where the benefits of these sensors will be most pronounced. This study presents a comprehensive review of quantum sensing state-of-practice. It also provides a detailed analysis of how quantum sensing overcomes the existing limitations of sensor-driven systems' precision and performance. Based on the review of over 500 quantum sensors prototype reports, we determined foru groups of quantum sensors and discussed their readiness for commercial usage. We concluded that quantum magnetometry and quantum optics are the most advanced sensing technologies with empirically proven results. In turn, quantum timing and kinetics are still in the We advocate for a fundamentally different way to perform quantum computations by exploiting a third state for temporary variables (ancilla) in quantum circuits. Past work with quirits has demonstrated only constant factor improvements, owing to the log2(3) binary-to-ternary compression factor. We present a novel technique using qutrits to achieve a logarithmic runtime decomposition of the Generalized Toffoli gate using no ancillaan exponential improvement over the best qubits in improvements for important algorithms for arithmetic and QRAM. Simulation results under realistic noise models indicate over 90% mean reliability Quantum computing is the turning point that represents a revolution in software development that will make it possible to solve those problems unsolvable with classical computing. Just as in other milestones in the history of software development, such as the adoption of object-oriented systems, where new software development trocesses and new life cycles emerged, with the quantum computing revolution, a new life cycle for quantum development processes and new life cycles emerged, with the quantum comput	http://dx.doi.org/10.1109/MM.2020.2985976
118 Hybrid Quantum-Classical Computing for Future Network Fan, Lei; Han, Zhu 2022 Future communication networks will require increased flexibility, scalability, and data computation capabilities to adequately respond Computing for Future Network http://dx.doi.org/10.1109/MNET.001.2200150 118 Hybrid Quantum-Classical Computing for Future Network Fan, Lei; Han, Zhu 2022 Future communication networks will require increased flexibility, scalability, and data computation capabilities to adequately respond to the growing number of service demands. Advanced mixed-integer network resource optimization models and algorithms are required to meet these requirements. The purpose of this article is to introduce a hybrid quantum computing paradigm. Then, we discuss the potential applications of the proposed paradigm for network resource optimization, including network from virtualization (NFV), multi-access edge computing/log/cloud computing, and cloud radio access networks (C-RANs). Finally, we discuss the difficulties associated with applications of the proposed paradigm for network resource optimization computer, described in this journal eleven years ago, is simulator, eleven years later http://dx.doi.org/10.1016/j.cpc.2018.11.005 140 Massively parallel quantum computer simulator, eleven years later De Raedt, Hans; Jin, Fengping; Willsch, Dennis; Willsch, Madita; Yoshioka, Naoki; Ito, Nobuyasu; Yuan, Shengjun; Michielsen, Kristel 2019 A revised version of the massively parallel simulator of a universal quantum algorithms on some of the most powerful superconded in this jupper shall be avain on the X computer. The simulator exhibits close-to-ideal weak-scaling computers with up to 48 qubits on the Sunway TaihuLight and	95	Extending the Frontier of Quantum Computers With Qutrits GUIDELINES TO USE THE INCREMENTAL COMMITMENT SPIRAL MODEL FOR DEVELOPING	Weitzfeld, E Bordo Gokhale, Pranav; Baker, Jonathan M.; Duckering, Casey; Chong, Frederic T.; Brown, Kenneth R.; Brown, Natalie C. R PÉREZ-CASTILLO, MA	2020	The current rise of quantum technology is compelled by quantum sensing research. Thousands of research labs are developing and testing a broad range of sensor prototypes. However, there is a lack of knowledge about specific applications and real-world use cases where the benefits of these sensors will be most pronounced. This study presents a comprehensive review of quantum sensing state-of-practice. It also provides a detailed analysis of how quantum sensing overcomes the existing limitations of sensor-driven systems' precision and performance. Based on the review of over 500 quantum sensors prototype reports, we determined four groups of quantum sensors and discussed their readiness for commercial usage. We concluded that quantum magnetometry and quantum optics are the most advanced sensing technologies with empirically proven results. In turn, quantum timing and kinetics are still in the We advocate for a fundamentally different way to perform quantum computations by exploiting a third state for temporary variables (ancilla) in quantum circuits. Past work with quirits has demonstrated only constant factor improvements, owing to the log2(3) binary-to-temary compression factor. We present a novel technique using quirtes to achieve a logarithmic runtime decomposition of the Generalized Toffoli gate using no ancillaan exponential improvement over the best qubit-only equivalent. Our approach features a 70x improvement in total two-quidt gate count over the qubit-only decomposition. This results in improvements for important algorithms for arithmetic and QRAM. Simulation results under realistic noise models indicate over 90% mean reliability Quantum computing is the turning point that represents a revolution in software development that will make it possible to solve those problems unsolvable with classical computing. Just as in other milestones in the history of software development, such as the adoption of object-oriented systems, where new software development processes and new life cycles emerged, with the	http://dx.doi.org/10.1109/MM.2020.2985976
Computing for Future Network Optimization Computing for Future Network to the growing number of service demands. Advanced mixed-integer network resource optimization models and algorithms are required to meet these requirements. The purpose of this article is to introduce a hybrid quantum-classical computing framework for addressing future network resource optimization issues. We begin by discussing the fundamentals of quantum morputing and its application issues. We begin by discussing the fundamentals of quantum morputing and its applications of the proposed paradigm for network resource optimization, including network (C-RANS). Finally, we discuss the optential applications of the proposed paradigm for network resource optimization, (INFV), multi-access edge computing/qoldoud computing, and cloud radio access networks (C-RANS). Finally, we discuss the difficulties associated with Fengping; Willsch, Dennis; Willsch, Madita; Yoshioka, Naoki; Ito, Nobuyasu; Yuan, Shengjun; Michielsen, Kristel 2019 A revised version of the massively parallel simulator of a universal quantum doprithms on some of the most powerful to advort excess the toxis. Ito day. Adaptive encoding of the wave function reduces the memory requirement by a factor of eight, making it possible to simulate universal quantum computers with up to 48 qubits on the Sunway TaihuLight and on the K computer. The simulator exhibits cose-to-ideal weak-scaling behavior on the Sunway TaihuLight, on the K computer, on an IBM Blue Gene/Q, and on IBM Blue Gene/Q, and on miler Xenibits. Resource of the toxic scaling due to the increasing number of qubits. Resources of the computer, on an IBM Blue Gene/Q, and on the K computers of the toxic scaling due to the increasing number of qubits. Resources of the comparison of parallelization of parallelization of parallelization of parallelization and hardware can track the exponential scaling due to the increasing number of qubits.	95	Extending the Frontier of Quantum Computers With Qutrits GUIDELINES TO USE THE INCREMENTAL COMMITMENT SPIRAL MODEL FOR DEVELOPING	Weitzfeld, E Bordo Gokhale, Pranav; Baker, Jonathan M.; Duckering, Casey; Chong, Frederic T.; Brown, Kenneth R.; Brown, Natalie C. R PÉREZ-CASTILLO, MA	2020	The current rise of quantum technology is compelled by quantum sensing research. Thousands of research labs are developing and testing a broad range of sensor prototypes. However, there is a lack of knowledge about specific applications and real-world use cases where the benefits of these sensors will be most pronounced. This study presents a comprehensive review of quantum sensing state-of-practice. It also provides a detailed analysis of how quantum sensing overcomes the existing limitations of sensor-driven systems' precision and performance. Based on the review of over 500 quantum sensor prototype reports, we determined four groups of quantum sensors and discussed their readiness for commercial usage. We concluded that quantum magnetometry and quantum optics are the most advanced sensing technologies with empirically proven results. In turn, quantum timing and kinetics are still in the We advocate for a fundamentally different way to perform quantum computation by using three-level qutrits instead of qubits. In particular, we substantially reduce the resource requirements of quantum computations by exploiting a third state for temporary variables (ancilla) in quantum circuits. Past work with qutrits has demonstrated only constant factor improvements, owing to the log2(3) binary-to-temary compression factor. We present a novel technique using qutrits to achieve a logarithmic runtime decomposition of the Generalized Toffoli gate using no ancillaan exponential improvemention. This results in improvements for important algorithms for arithmetic and QRAM. Simulation results under realistic noise models indicate over 90% mean reliability Quantum computing is the turning point that represents a revolution in software development, such as the adoption of object-oriented systems, where new software development processes and new life cycles emerged, with the quantum computing revolution, a new life cycle for quantum and hybrid software systems in the site or discustence of these systems. In this paper, a quantum ti	http://dx.doi.org/10.1109/MM.2020.2985976
Optimization required to meet these requirements. The purpose of this article is to introduce a hybrid quantum-classical computing framework for addressing future network resource optimization issues. We begin by discussing the fundamentals of quantum computing and its parallelism. Following that, we discuss in detail the hybrid quantum-classical computing metwork function virtualization (NFV), multi-access edge computing/fog/cloud computing, and cloud radio access networks (C-RANS). Finally, we discuss the potential on (NFV), multi-access edge computing/fog/cloud computing, and cloud radio access networks (C-RANS). Finally, we discuss the difficulties associated with http://dx.doi.org/10.1016/j.cpc.2018.11.005 140 Massively parallel quantum computer simulator, eleven years later Fengping; Willsch, Dennis; Willsch, Dennis; Willsch, Madita; Yoshioka, Naoki; Ito, Nobuyasu; Yuan, Shengjun; Michielsen, Kristel 2019 A revised version of the wave function reduces the memory requirement by a factor of eight, making it possible to simulate universal quantum computer, descuber or biem sate boased quantum algorithms on some of the most powerful supervalues (cose-to-ideal weak-scaling behavior on the Sunway TaihuLight and on the K computer. The simulator exhibits cose-to-ideal weak-scaling behavior on the Sunway TaihuLight, on the K computer, on an IBM Blue Gene/Q, and on Intel Xeaoing number of quisits. Results of http://dx.doi.org/10.1016/j.cpc.2018.11.005	95 109 1	Extending the Frontier of Quantum Computers With Qutrits GUIDELINES TO USE THE INCREMENTAL COMMITMENT SPIRAL MODEL FOR DEVELOPING QUANTUM-CLASSICAL SYSTEMS	Weitzfeld, E Bordo Gokhale, Pranav; Baker, Jonathan M.; Duckering, Casey; Chong, Frederic T.; Brown, Kenneth R.; Brown, Natalie C. R PÉREZ-CASTILLO, MA SERRANO	2020	The current rise of quantum technology is compelled by quantum sensing research. Thousands of research labs are developing and testing a broad range of sensor prototypes. However, there is a lack of knowledge about specific applications and real-world use cases where the benefits of these sensors will be most pronounced. This study presents a comprehensive review of quantum sensing state-of-practice. It also provides a detailed analysis of how quantum sensing overcomes the existing limitations of sensor-driven systems' precision and performance. Based on the review of over 500 quantum sensors prototype reports, we determined forung groups of quantum sensors and discussed their readiness for commercial usage. We concluded that quantum magnetometry and quantum optics are the most advanced sensing technologies with empirically proven results. In turn, quantum timing and kinetics are still in the We advocate for a fundamentally different way to perform quantum computations by exploiting a third state for temporary variables (ancilla) in quantum circuits. Past work with qutrits has demonstrated only constant factor improvements, owing to the log2(3) binary-to-ternary compression factor. We present a novel technique using qutrits to achieve a logarithmic runtime decomposition of the Generalized Toffoi gate using no ancillaan exponential improvement over the best qubit-only equivalent. Our approach features a 70x improvement in total two-qudit gate count over the qubitory decomposition. This results in improvements for important algorithms for arithmetic and QRAM. Simulation results under realistic noise models indicate over 90% mean reliability Guantum computing is the turning point that represents a revolution in software development that will make it possible to solve those problems unsolvable with classical computing. Just as in other milestones in the history of software development, such as the adoption of object-oriented systems, most of them do not comprehensively address the specific needs of these systems	http://dx.doi.org/10.1109/MM.2020.2985976 https://www.rintonpress.com/xxqic24/qic-24-12/0071-0088.pdf
140 Massively parallel quantum computer De Raedt, Hans; Jin, 2019 A revised version of the massively parallel simulator of a universal quantum computer, descuss the difficulties associated with http://dx.doi.org/10.1016/j.cpc.2018.11.005 140 Massively parallel quantum computer De Raedt, Hans; Jin, 2019 A revised version of the massively parallel simulator of a universal quantum computer, descuss the difficulties associated with http://dx.doi.org/10.1016/j.cpc.2018.11.005 140 Massively parallel quantum computer De Raedt, Hans; Jin, 2019 A revised version of the massively parallel simulator of a universal quantum computer, descuted in this juteral elvern years ago, is used to benchmark various gate-based quantum algorithms on some of the most porcerol eight, making it possible to simulate universal quantum computer, descute weak-scaling behavior on the Sunway TaihuLight and on the K computer. The simulator exhibits cose-to-ideal weak-scaling computers, implying that the computer, on an IBM Blue Gene/Q, and on the IX computer of qubits. Results of	95 109 118	for systems applications Extending the Frontier of Quantum Computers With Qutrits GUIDELINES TO USE THE INCREMENTAL COMMITMENT SPIRAL MODEL FOR DEVELOPING QUANTUM-CLASSICAL SYSTEMS Hybrid Quantum-Classical	Weitzfeld, E Bordo Gokhale, Pranav; Baker, Jonathan M.; Duckering, Casey; Chong, Frederic T.; Brown, Kenneth R.; Brown, Natalie C. R PÉREZ-CASTILLO, MA SERRANO	2020	The current rise of quantum technology is compelled by quantum sensing research. Thousands of research labs are developing and testing a broad range of sensor prototypes. However, there is a lack of knowledge about specific applications and real-world use cases where the benefits of these sensors will be most pronounced. This study presents a comprehensive review of quantum sensing state-of-practice. It also provides a detailed analysis of how quantum sensing overcomes the existing limitations of sensor-driven systems' precision and performance. Based on the review of over 500 quantum sensors prototype reports, we determined four groups of quantum sensors and discussed their readiness for commercial usage. We concluded that quantum magnetometry and quantum optics are the most advanced sensing technologies with empirically proven results. In turn, quantum timing and kinetics are still in the We advocate for a fundamentally different way to perform quantum computation by using three-level quirts instead of qubits. In particular, we substantially reduce the resource requirements of quantum computations by exploiting a third state for temporary variables (ancilla) in quantum circuits. Past work with quirits has demonstrated only constant factor improvements, owing to the log2(3) binary-to-temary compression factor. We present a novel technique using quirts to achieve a logarithmic runtime decomposition of the Generalized Toffoli gate using no ancillaan exponential improvement over the best qubit-only equivalent. Our approach features a 70x improvement in total two-quidt gate count over the qubit-only decomposition. This results in improvements for important algorithms for arithmetic and QRAM. Simulation results under realistic noise models indicate over 90% mean reliability Quantum computing is the turning point that represents a revolution in software development that will make it possible to solve those problems unsolvable with classical computing. Just as in other milestones in the history of software develop	http://dx.doi.org/10.1109/MM.2020.2985976 https://www.rintonpress.com/xxqic24/qic-24-12/0071-0088.pdf
Image: simulator, eleven years later De Raedt, Hans; Jin, Simulator, eleven years later De Raedt, Hans; Vin, Shengjun; Wilchelsen, Kristel 2019 A revised version of the massively parallel simulator of a universal quantum computer, described in the yon or the most your reduces the more yrequirement by a factor of eight, making it possible to simulate universal quantum omputers, Willsch, Madita; Yoshioka, Naoki; Ito, Nobuyasu; Yuan, Shengjun; Michielsen, Kristel 2019 A revised version of the massively parallel simulator of a universal quantum computer, described in this justice of the most yrequirement by a factor of eight, making it possible to simulate universal quantum omputers with up to 48 qubits on the Sunway TaihuLight and on the K computer. The simulator exhibits close-to-ideal weak-scaling behavior on the Sunway TaihuLight, on the K computer, on an IBM Blue Gene/Q, and on IBM Blue Gene/Q, and on mere of qubits. Results of http://dx.doi.org/10.1016/j.cpc.2018.11.005	95 109 1118	for systems applications Extending the Frontier of Quantum Computers With Qutrits GUIDELINES TO USE THE INCREMENTAL COMMITMENT SPIRAL MODEL FOR DEVELOPING QUANTUM-CLASSICAL SYSTEMS Hybrid Quantum-Classical Computing for Future Network	Weitzfeld, E Bordo Gokhale, Pranav; Baker, Jonathan M.; Duckering, Casey; Chong, Frederic T.; Brown, Kenneth R.; Brown, Natalie C. R PÉREZ-CASTILLO, MA SERRANO	2020	The current rise of quantum technology is compelled by quantum sensing research. Thousands of research labs are developing and testing a broad range of sensor prototypes. However, there is a lack of knowledge about specific applications and real-world use cases where the benefits of these sensors will be most pronounced. This study presents a comprehensive review of quantum sensing state-of-practice. It also provides a detailed analysis of how quantum sensing overcomes the existing limitations of sensor-driven systems' precision and performance. Based on the review of over 500 quantum sensor prototype reports, we determined four groups of quantum sensing technologies with empirically proven results. In turn, quantum timing and kinetics are still in the We advocate for a fundamentally different way to perform quantum computation by using three-level qutrits instead of qubits. In particular, we substantially reduce the resource requirements of quantum computations by exploiting a third state for temporary variables (ancilla) in quantum circuits. Past work with qutrits has demonstrated only constant factor improvements, owing to the log2(3) binary-to-temary compression factor. We present a novel technique using qutrits to achieve a logarithmic runtime decomposition of the Generalized Toffoli gate using no ancillaan exponential improvement over the best qubit-only equivalent. Our approach features a 70x improvement in total two-qudit gate count over the qubit-only decomposition. This results in improvements for important algorithms for arithmetic and QRAM. Simulation results under realistic noise models indicate over 90% mean reliability. Quantum computing is the turning point that represents a revolution in software development, such as the adoption of object-oriented systems, where new software development processes and new life cycles emerged, with the quantum computing revolution, a new life cycle for quantum and hybrid software systems is needed. Although there are some life cycle proposal is presented adap	http://dx.doi.org/10.1109/MM.2020.2985976 https://www.rintonpress.com/xxqic24/qic-24-12/0071-0088.pdf
Image: simulator, eleven years later Fengping; Willsch, Dennis; Willsch, Madita; Yoshioka, Naoki; Ito, Nobuyasu; Yuan, Shengjun; Michielsen, Kristel 2019 2014 A revised to benchmark various gate-based quantum algorithms on some of the most yequirement by a factor of eight, making it possible to simulate universal quantum application of the wave function reduces the memory requirement by a factor of eight, making it possible to simulate universal quantum behavior on the Sunway TaihuLight on the K computer. The simulator exhibits cose-to-ideal weak-scaling behavior on the Sunway TaihuLight, on the K computer, on an IBM Blue Gene/Q, and on Intel Xeon puter of qubits. Results of http://dx.doi.org/10.1016/j.cpc.2018.11.005	95 109 1118	for systems applications Extending the Frontier of Quantum Computers With Qutrits GUIDELINES TO USE THE INCREMENTAL COMMITMENT SPIRAL MODEL FOR DEVELOPING QUANTUM-CLASSICAL SYSTEMS Hybrid Quantum-Classical Computing for Future Network	Weitzfeld, E Bordo Gokhale, Pranav; Baker, Jonathan M.; Duckering, Casey; Chong, Frederic T.; Brown, Kenneth R.; Brown, Natalie C. R PÉREZ-CASTILLO, MA SERRANO	2020	The current rise of quantum technology is compelled by quantum sensing research. Thousands of research labs are developing and testing a broad range of sensor prototypes. However, there is a lack of knowledge about specific applications and real-world use cases where the benefits of these sensors will be most pronounced. This study presents a comprehensive review of quantum sensing state-of-practice. It also provides a detailed analysis of how quantum sensing overcomes the existing limitations of sensor-driven systems' precision and performance. Based on the review of over 500 quantum sensors prototype reports, we determined forung groups of quantum sensors and discussed their readiness for commercial usage. We concluded that quantum magnetometry and quantum optics are the most advanced sensing technologies with empirically proven results. In turn, quantum timing and kinetics are still in the We advocate for a fundamentally different way to perform quantum computations by exploiting a third state for temporary variables (ancilla) in quantum circuits. Past work with qutrits has demonstrated only constant factor improvements, owing to the log2(3) binary-to-ternary compression factor. We present a novel technique using qutrits to achieve a logarithmic runtime decomposition of the Generalized Toffoli gate using no ancillaan exponential improvement over the best qubit-only equivalent. Our approach features a 70x improvement in total two-qudit gate count over the qubitory of software development, such as the adoption of object-oriented systems, where new software development that will make it possible to solve those problems unsolvable with classical computing is to revise site and the duantum and hybrid software systems is needed. Although there are some life cycle proposal is presented adapted from the Incremental Commitment Spiral Model (ICSM) and an example of its use is presented.	http://dx.doi.org/10.1109/MM.2020.2985976 https://www.rintonpress.com/xxqic24/qic-24-12/0071-0088.pdf
Image: simulator, eleven years later Fenging; Willsch, Dennis; Willsch, Madita; Yoshioka, Naoki; Ito, Nobuyasu; Yuan, Shengjun; Michielsen, Kristel 2019 A revised version of the massively parallel simulator of a universal quantum computer, descuise the difficulties associated with a various gate-based quantum algorithms on some of the most powerful supercomputers that exist today. Adaptive encoding of the wave function reduces the memory requirement by a factor of eight, making it possible to simulate universal quantum omputer, descuised constraints on some of the most powerful supercomputers that exist today. Adaptive encoding of the wave function reduces the memory requirement by a factor of eight, making it possible to simulate universal quantum behavior on the Sunway TaihuLight and on the K computer. The simulator exhibits close-to-ideal weak-scaling behavior on the Sunway TaihuLight, on the K computer, on an IBM Blue Gene/Q, and on Itel Xeaoning number of qubits. Results of http://dx.doi.org/10.1016/i.cpc.2018.11.005	95 109 1118	for systems applications Extending the Frontier of Quantum Computers With Qutrits GUIDELINES TO USE THE INCREMENTAL COMMITMENT SPIRAL MODEL FOR DEVELOPING QUANTUM-CLASSICAL SYSTEMS Hybrid Quantum-Classical Computing for Future Network	Weitzfeld, E Bordo Gokhale, Pranav; Baker, Jonathan M.; Duckering, Casey; Chong, Frederic T.; Brown, Kenneth R.; Brown, Natalie C. R PÉREZ-CASTILLO, MA SERRANO	2020	The current rise of quantum technology is compelled by quantum sensing research. Thousands of research labs are developing and testing a broad range of sensor prototypes. However, there is a lack of knowledge about specific applications and real-world use cases where the benefits of these sensors will be most pronounced. This study presents a comprehensive review of quantum sensing state-of-practice. It also provides a detailed analysis of how quantum sensing overcomes the existing limitations of sensor-driven systems' precision and performance. Based on the review of over 500 quantum sensors prototype reports, we determined four groups of quantum sensors and discussed their readiness for commercial usage. We concluded that quantum magnetometry and quantum optics are the most advanced sensing technologies with empirically proven results. In turn, quantum timing and kinetics are still in the We advocate for a fundamentally different way to perform quantum computation by using three-level qutrits instead of qubits. In particular, we substantially reduce the resource requirements of quantum computations by exploiting a third state for temporary variables (ancilla) in quantum circuits. Past work with qutrits has demonstrated only constant factor improvements, owing to the log2(3) binary-to-temary compression factor. We present a novel technique using qutrits to achieve a logarithmic runtime decomposition of the Generalized Toffoli gate using no ancillaan exponential improvement over the best qubit-only equivalent. Our approach features a 70x improvement in total two-qudit gate count over the qubit-only decomposition. This results in improvements for important algorithms for arithmetic and QRAM. Simulation results under realistic noise models indicate over 90% mean reliability Quantum computing is the turning point that represents a revolution in software development that will make it possible to solve those problems unsolvable with classical computing. Just as in other milestones in the history of software devel	http://dx.doi.org/10.1109/MM.2020.2985976 https://www.rintonpress.com/xxqic24/qic-24-12/0071-0088.pdf
140 Massively parallel quantum computer simulator, eleven years later De Raedt, Hans; Jin, Fengping; Willsch, Dennis; Willsch, Madita; Yoshioka, Naoki; Ito, Nobuyasu; Yuan, Shengjun; Michielsen, Kristel 2019 A revised version of the massively parallel simulator of a universal quantum computer, described in this journal eleven years ago, is used to benchmark various gate-based quantum algorithms on some of the most powerful supercomputers that exist today. Adaptive encoding of the wave function reduces the memory requirement by a factor of eight, making it possible to simulate universal quantum naoki; Ito, Nobuyasu; Yuan, Shengjun; Michielsen, Kristel 2019 A revised version of the massively parallel simulator of a universal quantum computer, described in this journal eleven years ago, is used to benchmark various gate-based quantum algorithms on some of the most powerful supercomputers that exist today. Adaptive encoding of the wave function reduces the memory requirement by a factor of eight, making it possible to simulate universal quantum computers with up to 48 qubits on the Sunway TaihuLight and on the K computer, on an IBM Blue Gene/Q, and on Intel Xeon based clusters, implying that the combination of parallelization and hardware can track the exponential scaling due to the increasing number of qubits. Results of	95 109 1118	for systems applications Extending the Frontier of Quantum Computers With Qutrits GUIDELINES TO USE THE INCREMENTAL COMMITMENT SPIRAL MODEL FOR DEVELOPING QUANTUM-CLASSICAL SYSTEMS Hybrid Quantum-Classical Computing for Future Network	Weitzfeld, E Bordo Gokhale, Pranav; Baker, Jonathan M.; Duckering, Casey; Chong, Frederic T.; Brown, Kenneth R.; Brown, Natalie C. R PÉREZ-CASTILLO, MA SERRANO	2020 2024 2022	The current rise of quantum technology is compelled by quantum sensing research. Thousands of research labs are developing and testing a broad range of sensor prototypes. However, there is a lack of knowledge about specific applications and real-world use cases where the benefits of these sensors will be most pronounced. This study presents a comprehensive review of quantum sensing state-of-practice. It also provides a detailed analysis of how quantum sensing overcomes the existing limitations of sensor-driven systems' precision and performance. Based on the review of over 500 quantum sensors prototype reports, we determined four groups of quantum sensors and discussed their readiness for commercial usage. We concluded that quantum magnetometry and quantum optics are the most advanced sensing technologies with empirically proven results. In turn, quantum timing and kinetics are still in the We advocate for a fundamentally different way to perform quantum computation by using three-level qutrits instead of qubits. In particular, we substantially reduce the resource requirements of quantum computations by exploiting a third state for temporary variables (ancilla) in quantum circuits. Past work with qutrits has demonstrated only constant factor improvements, owing to the log2(3) binary-to-temary compression factor. We present a novel technique using qutrits to achieve a logarithmic runtime decomposition of the Generalized Toffoli gate using no ancillaan exponential improvement over the best qubit-only equivalent. Our approach features a 70x improvement in total two-qudit gate count over the qubit-only decomposition. This results in improvements for important algorithms for arithmetic and QRAM. Simulation results under realistic noise models indicate over 90% mean reliability. Quantum computing is the turning point that represents a revolution in software development that will make it possible to solve those problems usolvable with classical computing. Just as in other milestones in the history of software devel	http://dx.doi.org/10.1109/MM.2020.2985976 https://www.rintonpress.com/xxqic24/qic-24-12/0071-0088.pdf
simulator, eleven years later Fengping; Willsch, Dennis; Willsch, Nadita; Yoshioka, Naoki; Ito, Nobuyasu; Yuan, Shengjun; Michielsen, Kristel encoding of the wave function reduces the memory requirement by a factor of eight, making it possible to simulate universal quantum behavior on the Sunway TaihuLight and on the K computer. The simulator exhibits close-to-ideal weak-scaling behavior on the Sunway TaihuLight, on the K computer, on an IBM Blue Gene/Q, and on Intel Xeers, implying that the combination of parallelization and hardware can track the exponential scaling due to the increasing number of qubits. Results of	95 109 1118	for systems applications Extending the Frontier of Quantum Computers With Qutrits GUIDELINES TO USE THE INCREMENTAL COMMITMENT SPIRAL MODEL FOR DEVELOPING QUANTUM-CLASSICAL SYSTEMS Hybrid Quantum-Classical Computing for Future Network	Weitzfeld, E Bordo Gokhale, Pranav; Baker, Jonathan M.; Duckering, Casey; Chong, Frederic T.; Brown, Kenneth R.; Brown, Natalie C. R PÉREZ-CASTILLO, MA SERRANO	2020 2024 2022	The current rise of quantum technology is compelled by quantum sensing research. Thousands of research labs are developing and testing a broad range of sensor prototypes. However, there is a lack of knowledge about specific applications and real-world use cases where the benefits of these sensors will be most pronounced. This study presents a comprehensive review of quantum sensing state-of-practice. It also provides a detailed analysis of how quantum sensing overcomes the existing limitations of sensor-driven systems' precision and performance. Based on the review of over 500 quantum sensors prototype reports, we determined forur groups of quantum sensors and discussed their readiness for commercial usage. We concluded that quantum magnetometry and quantum optics are the most advanced sensing technologies with empirically proven results. In turn, quantum timing and kinetics are still in the We advocate for a fundamentally different way to perform quantum computations by exploiting a third state for temporary variables (ancilla) in quantum circuits. Past work with qutrits has demonstrated only constant factor improvements, owing to the log2(3) binary-to-ternary compression factor. We present a novel technique using qutrits to achieve a logarithmic runtime decomposition of the Generalized Toffoli gate using no ancillaan exponential improvement that will make it possible to solve those problems unsolvable with classical computing is to achieve a evelopment that trapresents a revolution in software development that will make it possible to solve those problems unsolvable with classical computing. Just as in other milestones in the history of software development, such as the adoption of object-oriented systems, most of them do not comprehensively address the specific needs of these systems. In this paper, a quantum life cycle proposal is presented adapted from the Incremental Commitment Spiral Model (ICSM) and an example of its use is presented.	http://dx.doi.org/10.1109/MM.2020.2985976 https://www.rintonpress.com/xxqic24/qic-24-12/0071-0088.pdf
Willsch, Madita; Yoshioka, encoding of the wave function reduces the memory requirement by a factor of eight, making it possible to simulate universal quantum Naoki; Ito, Nobuyasu; Yuan, computers with up to 48 qubits on the Sunway TaihuLight and on the K computer. The simulator exhibits close-to-ideal weak-scaling Shengjun; Michielsen, Kristel behavior on the Sunway TaihuLight, on the K computer, on an IBM Blue Gene/Q, and on Intel Xeon fuel view of qubits. Results of	95 109 1118 1	for systems applications Extending the Frontier of Quantum Computers With Qutrits GUIDELINES TO USE THE INCREMENTAL COMMITMENT SPIRAL MODEL FOR DEVELOPING QUANTUM-CLASSICAL SYSTEMS Hybrid Quantum-Classical Computing for Future Network Optimization	Weitzfeld, E Bordo Gokhale, Pranav; Baker, Jonathan M.; Duckering, Casey; Chong, Frederic T.; Brown, Kenneth R.; Brown, Natalie C. R PÉREZ-CASTILLO, MA SERRANO Fan, Lei; Han, Zhu	2020 2024 2022	The current rise of quantum technology is compelled by quantum sensing research. Thousands of research labs are developing and testing a broad range of sensor prototypes. However, there is a lack of knowledge about specific applications and real-world use cases where the benefits of these sensors will be most pronounced. This study presents a comprehensive review of quantum sensing state-of-practice. It also provides a detailed analysis of how quantum sensing overcomes the existing limitations of sensor-driven systems' precision and performance. Based on the review of over 500 quantum sensors prototype reports, we determined four groups of quantum sensors and discussed their readiness for commercial usage. We concluded that quantum magnetometry and quantum optics are the most advanced sensing technologies with empirically proven results. In turn, quantum timing and kinetics are still in the We advocate for a fundamentally different way to perform quantum computation by using three-level qutrits instead of qubits. In particular, we substantially reduce the resource requirements of quantum computations by exploiting a third state for temporary variables (ancilla) in quantum circuits. Past work with qutrits has demonstrated only constant factor improvements, owing to the log2(3) binary-to-temary compression factor. We present a novel technique using qutrits to achieve a logarithmic runtime decomposition of the Generalized Toffoli gate using no ancillaan exponential improvement over the best qubit-only equivalent. Our approach features a 70x improvement in total two-qudit gate count over the qubit-only decomposition. This results in improvements for important algorithms for arithmetic and QRAM. Simulation results under realistic noise models indicate over 90% mean reliability Quantum computing is the turning point that represents a revolution in software development that will make it possible to solve those problems unsolvable with classical computing. Just as in other milestones in the history of software devel	http://dx.doi.org/10.1109/MM.2020.2985976 https://www.rintonpress.com/xxqic24/gic-24-12/0071-0088.pdf http://dx.doi.org/10.1109/MNET.001.2200150
Shengjun; Michielsen, Kristel behavior on the Sunway TaihuLight, on the K computer, on an IBM Blue Gene/Q, and on Intel Xeon based clusters, implying that the combination of parallelization and hardware can track the exponential scaling due to the increasing number of qubits. Results of	95 109 1118 1118 1118	for systems applications Extending the Frontier of Quantum Computers With Qutrits GUIDELINES TO USE THE INCREMENTAL COMMITMENT SPIRAL MODEL FOR DEVELOPING QUANTUM-CLASSICAL SYSTEMS Hybrid Quantum-Classical Computing for Future Network Optimization Massively parallel quantum computer	Weitzfeld, E Bordo Gokhale, Pranav: Baker, Jonathan M.; Duckering, Casey; Chong, Frederic T.; Brown, Kenneth R.; Brown, Natalie C. R PÉREZ-CASTILLO, MA SERRANO Fan, Lei; Han, Zhu De Raedt, Hans; Jin, Fengping; Willsch, Dennis;	2020 2024 2022	The current rise of quantum technology is compelled by quantum sensing research. Thousands of research labs are developing and testing a broad range of sensor prototypes. However, there is a lack of knowledge about specific applications and real-world use cases where the benefits of these sensors will be most pronounced. This study presents a comprehensive review of quantum sensing state-of-practice. It also provides a detailed analysis of how quantum sensing overcomes the existing limitations of sensor-driven systems' precision and performance. Based on the review of over 500 quantum sensors prototype reports, we determined four groups of quantum sensors and discussed their readiness for commercial usage. We concluded that quantum magnetometry and quantum sensors and discussed their readiness for commercial usage. We concluded that quantum magnetometry and quantum sensors and discussed their readiness for commercial usage. We concluded that quantum magnetometry and quantum sensors and bis setting the resource requirements of quantum computations by exploiting a third state for temporary variables (ancilla) in quantum circuits. Past work with qutrits has demonstrated only constant factor improvements, owing to the log2(3) binary-to-temary compression factor. We present a novel technique using qutrits to achieve a logarithmic runtime decomposition of the Generalized Toffoli gate using no ancillaan exponential improvement over the best qubit-only equivalent. Our approach features a 70x improvement in total two-qudit gate count over the qubit-only decomposition. This results in improvements for important algorithms for arithmetic and QRAM. Simulation results under realistic noise models indicate over 90% mean reliability. Quantum computing is the turning point that represents a revolution in software development that will make it possible to solve those problems usolvable with classical computing. Just as in other milestones in the history of software development, such as the adoption of object-oriented systems	http://dx.doi.org/10.1109/MM.2020.2985976 https://www.rintonpress.com/xxqic24/gic-24-12/0071-0088.pdf http://dx.doi.org/10.1109/MNET.001.2200150
combination of parallelization and hardware can track the exponential scaling due to the increasing number of qubits. Results of	95 109 1118 1118 1118	for systems applications Extending the Frontier of Quantum Computers With Qutrits GUIDELINES TO USE THE INCREMENTAL COMMITMENT SPIRAL MODEL FOR DEVELOPING QUANTUM-CLASSICAL SYSTEMS Hybrid Quantum-Classical Computing for Future Network Optimization Massively parallel quantum computer	Weitzfeld, E Bordo Gokhale, Pranav: Baker, Jonathan M.; Duckering, Casey; Chong, Frederic T.; Brown, Kenneth R.; Brown, Natalie C. R PÉREZ-CASTILLO, MA SERRANO Fan, Lei; Han, Zhu De Raedt, Hans; Jin, Fengping; Willsch, Dennis;	2020 2024 2022	The current rise of quantum technology is compelled by quantum sensing research. Thousands of research labs are developing and testing a broad range of sensor prototypes. However, there is a lack of knowledge about specific applications and real-world use cases where the benefits of these sensors will be most pronounced. This study presents a comprehensive review of quantum sensing state-of-practice. It also provides a detailed analysis of how quantum sensing overcomes the existing limitations of sensor-driven systems' precision and performance. Based on the review of over 500 quantum sensors prototype reports, we determined forung groups of quantum sensors and discussed their readiness for commercial usage. We concluded that quantum magnetometry and quantum optics are the most advanced sensing technologies with empirically proven results. In turn, quantum timing and kinetics are still in the We advocate for a fundamentally different way to perform quantum computation by using three-level qutrits instead of qubits. In particular, we substantially reduce the resource requirements of quantum computations by exploiting a third state for temporary variables (ancilla) in quantum circuits. Past work with qutrits has demonstrated only constant factor improvements, owing to the log2(3) binary-to-ternary compression factor. We present a novel technique using qutrits to achieve a logarithmic runtime decomposition of the Generalized Toffoli gate using no ancilla—an exponential improvement tore the set qubit-only equivalent. Our approach features a 70x improvement in total two-qudit gate count over the qubit-only decomposition. This results in improvements for important algorithms for arithmetic and QRAM. Simulation results under realisity of software development, such as the adoption of object-oriented systems, most of them do not comprehensively address the specific needs of these systems. In this paper, a quantum life cycle for quantum and hybrid software systems is needed. Although there are some life cycle proposal is	http://dx.doi.org/10.1109/MM.2020.2985976 https://www.rintonpress.com/xxqic24/gic-24-12/0071-0088.pdf http://dx.doi.org/10.1109/MNET.001.2200150
	95 109 1118 1118 1118	for systems applications Extending the Frontier of Quantum Computers With Qutrits GUIDELINES TO USE THE INCREMENTAL COMMITMENT SPIRAL MODEL FOR DEVELOPING QUANTUM-CLASSICAL SYSTEMS Hybrid Quantum-Classical Computing for Future Network Optimization Massively parallel quantum computer	Weitzfeld, E Bordo Gokhale, Pranav; Baker, Jonathan M.; Duckering, Casey; Chong, Frederic T.; Brown, Kenneth R.; Brown, Natalie C. R PÉREZ-CASTILLO, MA SERRANO Fan, Lei; Han, Zhu De Raedt, Hans; Jin, Fengping; Willsch, Dennis; Willsch, Madita; Yoshioka, Naoki; Ito, Nobuyasu; Yuan,	2020 2024 2022	The current rise of quantum technology is compelled by quantum sensing research. Thousands of research labs are developing and testing a broad range of sensor prototypes. However, there is a lack of knowledge about specific applications and real-world use cases where the benefits of these sensors will be most pronounced. This study presents a comprehensive review of quantum sensing state-of-practice. It also provides a detailed analysis of how quantum sensing overcomes the existing limitations of sensor-driven systems' precision and performance. Based on the review of over 500 quantum sensors prototype reports, we determined four groups of quantum sensors and discussed their readiness for commercial usage. We concluded that quantum magnetometry and quantum optics are the most advanced sensing technologies with empirically proven results. In turn, quantum timing and kinetics are still in the We advocate for a fundamentally different way to perform quantum computation by using three-level qutrits instead of qubits. In particular, we substantially reduce the resource requirements of quantum computations by exploiting a third state for temporary variables (ancilla) in quantum circuits. Past work with qutrits has demonstrated only constant factor improvements, owing to the log2(3) binary-to-temary compression factor. We present a novel technique using qutrits to achieve a logarithmic runtime decomposition of the Generalized Toffoli gate using no ancillaan exponential improvement that will make it possible to solve those problems unsolvable with classical computing. Just as in other milestones in the history of software development, such as the adoption of object-oriented systems, where new software development processes and new life cycles emerged, with the quantum computing is the turning point that represents a revolution in software system sineeded. Although there are some life cycle proposal is presented adapted from the Incremental Commitment Spiral Model (ICSM) and an example of its use is presented. The pu	http://dx.doi.org/10.1109/MM.2020.2985976 https://www.rintonpress.com/xxqic24/gic-24-12/0071-0088.pdf http://dx.doi.org/10.1109/MNET.001.2200150
executing simple quantum circuits and Shor's factorization algorithm on quantum computers containing up to 48 gubits are presented.	95 109 1118 1118 1118	for systems applications Extending the Frontier of Quantum Computers With Qutrits GUIDELINES TO USE THE INCREMENTAL COMMITMENT SPIRAL MODEL FOR DEVELOPING QUANTUM-CLASSICAL SYSTEMS Hybrid Quantum-Classical Computing for Future Network Optimization Massively parallel quantum computer	Weitzfeld, E Bordo Gokhale, Pranav; Baker, Jonathan M.; Duckering, Casey; Chong, Frederic T.; Brown, Kenneth R.; Brown, Natalie C. R PÉREZ-CASTILLO, MA SERRANO Fan, Lei; Han, Zhu De Raedt, Hans; Jin, Fengping; Willsch, Dennis; Willsch, Madita; Yoshioka, Naoki; Ito, Nobuyasu; Yuan,	2020 2024 2022	The current rise of quantum technology is compelled by quantum sensing research. Thousands of research labs are developing and testing a broad range of sensor prototypes. However, there is a lack of knowledge about specific applications and real-world use cases where the benefits of these sensors will be most pronounced. This study presents a comprehensive review of quantum sensing state-of-practice. It also provides a detailed analysis of how quantum sensing overcomes the existing limitations of sensor-driven systems' precision and performance. Based on the review of over 500 quantum sensor prototype reports, we determined four groups of quantum sensors and discussed their readiness for commercial usage. We concluded that quantum magnetometry and quantum optics are the most advanced sensing technologies with empirically proven results. In turn, quantum timing and kinetics are still in the We advocate for a fundamentally different way to perform quantum computation by using three-level qutrits instead of qubits. In particular, we substantially reduce the resource requirements of quantum computations by exploiting a third state for temporary variables (ancilla) in quantum circuits. Past work with qutrits has demonstrated only constant factor improvements, owing to the log2(3) binary-to-termary compression factor. We present a novel technique using qutrits to achieve a logarithmic runtime decomposition of the Generalized Toffoli gate using no ancillaan exponential improvement over the best qubit-only equivalent. Our approach features a 70x improvement in total two-qudit gate count over the qubitory of software of 90% mean reliability. Quantum computing is the turning point that represents a revolution in software development that will make it possible to solve those problems unsolvable with classical computing. Just as in other milestones in the history of software development, such as the adoption of object-oriented systems, where new software development proceseses an new life cycle proposal is presented. The	http://dx.doi.org/10.1109/MM.2020.2985976 https://www.rintonpress.com/xxgic24/gic-24-12/0071-0088.pdf http://dx.doi.org/10.1109/MNET.001.2200150
	95 109 1118 1118 1118	for systems applications Extending the Frontier of Quantum Computers With Qutrits GUIDELINES TO USE THE INCREMENTAL COMMITMENT SPIRAL MODEL FOR DEVELOPING QUANTUM-CLASSICAL SYSTEMS Hybrid Quantum-Classical Computing for Future Network Optimization Massively parallel quantum computer	Weitzfeld, E Bordo Gokhale, Pranav; Baker, Jonathan M.; Duckering, Casey; Chong, Frederic T.; Brown, Kenneth R.; Brown, Natalie C. R PÉREZ-CASTILLO, MA SERRANO Fan, Lei; Han, Zhu De Raedt, Hans; Jin, Fengping; Willsch, Dennis; Willsch, Madita; Yoshioka, Naoki; Ito, Nobuyasu; Yuan,	2020 2024 2022	The current rise of quantum technology is compelled by quantum sensing research. Thousands of research labs are developing and testing a broat arage of sensor prototypes. However, there is a lack of knowledge about specific applications and real-world use cases where the benefits of these sensors will be most pronounced. This study presents a comprehensive review of quantum sensing state-of-practice. It also provides a detailed analysis of how quantum sensing overcomes the existing limitations of sensor-driven systems' precision and performance. Based on the review of over 500 quantum sensor prototype reports, we determined four groups of quantum sensors and discussed their readiness for commercial usage. We concluded that quantum magnetometry and quantum optics are the most advanced sensing technologies with empirically proven results. In turn, quantum timing and kinetics are still in the We advocate for a fundamentally different way to perform quantum computations by exploiting a third state for temporary variables (ancilla) in quantum circuits. Past work with quirtis has demonstrated only constant factor improvements, owing to the log/(3) binary-to-temary compression factor. We present a novel technique using quirtis to achive a logarithmic runtime decomposition of the Generalized Toffoli gate using no ancillaan exponential improvement over the best qubit-only equivalent. Our approach features a 70x improvement in total two-qudit gate count over the qubit-only decomposition. This results in improvements for important algorithms for arithmetic and QRAM. Simulation results under realistic noise models indicate over 90% mean reliability. Quantum computing is the turning point that represents a revolution in software development, such as the adoption of object-oriented systems, where new software development proceses and new life cycles emerged, with the quantum computing revolution, a new life cycle for quantum and hybrid software systems is needed. Although there are some life cycle proposal is presented ad	http://dx.doi.org/10.1109/MM.2020.2985976 https://www.rintonpress.com/xxgic24/gic-24-12/0071-0088.pdf http://dx.doi.org/10.1109/MNET.001.2200150

-					
143	Minimum hardware requirements for hybrid quantum-classical DMFT Modeling Quantum programs:	Jaderberg, B.; Agarwal, A.; Leonhardt, K.; Kiffner, M.; Jaksch, D. Shaukat Ali and Tao Yue	2020	We numerically emulate noisy intermediate-scale quantum (NISQ) devices and determine the minimal hardware requirements for two- site hybrid quantum-classical dynamical mean-field theory (DMFT). We develop a circuit recompilation algorithm which significantly reduces the number of quantum gates of the DMFT algorithm and find that the quantum-classical algorithm converges if the two-qubit gate fidelities are larger than 99%. The converged results agree with the exact solution within 10%, and perfect agreement within noise-induced error margins can be obtained for two-qubit gate fidelities exceeding 99.9%. By comparison, the quantum-classical algorithm without circuit recompilation requires a two-qubit gate fidelity of at least 99.999% to achieve perfect agreement with the exact solution. We thus find quantum-classical DMFT calculations can be run on the next generation of NISQ devices if combined with Quantum programming languages provide necessary constructs to program quantum computers. To write such programs, one needs	http://dx.doi.org/10.1088/2058-9565/ab972b https://dl.acm.org/doi/10.1145/3412451.3428499
	challenges, initial results, and research directions			to understand the characteristics of quantum computers such as superposition and entanglement, which are novel as compared to programming with classical computers. Understanding these characteristics requires an understanding of quantum physics. Thus, there is a need to build high-level modeling abstractions of quantum programs for software engineers who are used to program on classical computers to understand and model quantum programs at a high-level of abstraction and independent of quantum platforms. To this end, we present some ideas for developing such quantum software modeling languages, by presenting a conceptual model of quantum programs and an example of modeling the state-based behavior of quantum entanglement program. Moreover, we present	
	Navigating the Quantum Threat Landscape: Addressing Classical Cybersecurity Challenges	S Sokol	2023	This research paper analyzes the urgent topic of quantum cybersecurity and the current federal quantum-cyber landscape. Quantum- safe implementations within existing and future Internet of Things infrastructure are discussed, along with quantum vulnerabilities in public key infrastructure and symmetric cryptographic algorithms. Other relevant non-encryption-specific areas within cybersecurity are similarly raised. The evolution and expansion of cyberwarfare as well as new developments in cyber defense beyond post-quantum cryptography and quantum key distribution are subsequently explored, with an emphasis on public and private sector awareness and vigilance in maintaining strong security posture.	https://www.scirp.org/journal/paperinformation?paperid=126059
	Non-Functional Requirements for Quantum Programs.	L Saraiva, EH Haeusler, VG Costa, M Kalinowski	2021	Quantum computing is moving from a purely theoretical area to an area with practical applications, allowing considerable performance efficiency improvements. The goal of this paper is to discuss nonfunctional requirements for quantum programs. Based on experiences developing quantum software for real quantum hardware we analyze hardware-related constraints and derive a set of generic nonfunctional requirements for this type of program. We identified a set of five performance efficiency and reliability related non-functional requirements that should considered when implementing a quantum program for a quantum device. We also discuss available solution options to address the requirements. There are high level solutions to deal with the hardware-related constraints described in our identified requirements. While many of the them are specific to quantum programming languages and technologies,	https://d1wqtxs1xzle7.cloudfront.net/83052130/paper4- libre.pdf?1648843368=&response-content- disposition=inline%38H-filename%3DNon_Functional_Requirements_for_Q uantum.pdf&Expires=1712331863&Signature=gvIroUwCoEx4b1yJHY9vrf2 6dfudX6f9HMli6cA8uxVWKKpzLRvUsruUnktCuD7C3-b8eKeQxUtDhJtj0zE xgBK7CrPszMKiQNCevGglhkjzdB2Npgi- oIPTqTHeG3AzHSRDikVZYV9ITm9h-Rv2mkmKxW12Rtq6PNQdgg-
159	On testing and debugging quantum software	A Miranskyy, L Zhang, J Doliskani	2021	Quantum computers are becoming more mainstream. As more programmers are starting to look at writing quantum programs, they need to test and debug their code. In this paper, we discuss various use-cases for quantum computers, either standalone or as part of a System Sased on these use-cases, we discuss some testing and debugging tactics that one can leverage to ensure the quality of the quantum software. We also highlight quantum-computer-specific issues and list novel techniques that are needed to address these issues. The practitioners can readily apply some of these tactics to their process of writing quantum programs, while researchers can learn about opportunities for future work.	https://arxiv.org/abs/2103.09172
	On the definition of quantum programming modules	P Sánchez Palma, D Alonso Cáceres	2021	There are no doubts that quantum programming and, in general, quantum computing, is one of the most promising areas within computer science and one of the areas where most expectations are being placed in recent years. Although the days when reliable and affordable quantum computers will be available is still a long way off, the explosion of programming languages for quantum programming has grown exponentially in recent years. The software engineering community has been quick to react to the need to adopt and adapt well-known tools and methods for software development, and for the design of new ones tailored to this new programming paradigm. However, many key aspects for its success depend on the establishment of an appropriate conceptual framework for the conception and design of quantum programs. This article discusses the concept of module, key in the software	https://repositorio.upct.es/handle/10317/12992
161	On the Development of a Protection Profile Module for Encryption Key Management Components	Sun, Nan; Li, Chang-Tsun; Chan, Hin; Islam, Md Zahidul; Islam, Md Rafiqul; Armstrong, Warren	2023	The ability of a cryptographic system to protect information from attacks depends on many factors, including the secrecy of the encryption key. A crucial aspect of any cryptosystem is how it manages the encryption keys. Encryption Key Management (EKM) spans the entire life cycle of the key, including the key's generation, usage, distribution, renewal, and destruction. Given the security sensitivity, it is desirable to adopt a widely accepted standard when developing an encryption key management system. Through rigorous development of security requirements and following standardized validation, evaluation, and certification, the consumers' confidence in the security of the EKM system will be enhanced. The Protection Profile (PP), defined in the Common Criteria for Information Technology Security Evaluation (often referred to as Common Criteria or CC), specifies the security tortional and	http://dx.doi.org/10.1109/ACCESS.2023.3239043
162	On the importance of cryptographic agility for industrial automation	Paul, Sebastian; Niethammer, Melanie	2019	Cryptographic primitives do not remain secure, they deteriorate over time. On the one hand increasing computing power leads to more powerful attacks on their underlying mathematical problems. On the other hand quantum computing threatens to break many widely used cryptographic primitives. The main goal of cryptographic agility is to enable an easy transition to alternative cryptographic schemes. Considering the long lifetime of products within industrial automation, we argue that vendors should strive for cryptographic agility in their products. In this work we motivate cryptographic agility by discussing the threat of quantum computers to modern cryptographic, Additionally, we introduce the reader to the concept of post-quantum cryptography. Ultimately, we demonstrate that cryptographic agility requires three elements: 1) cryptographic application programming interfaces, 2) secure update mechanisms and	http://dx.doi.org/10.1515/auto-2019-0019
	Optimizing DevOps Enablers for Quantum Software Development	A AlSanad, M Akbar	2023	In the context of quantum software development, DevOps for quantum software development for quantum software development emerges as a crucial set of collaborative practices geared towards automating the seamless delivery of software updates, all while reducing development cycles and ensuing high-quality products. Yet, the integration of development and operational teams poses unique challenges, demanding the amalgamation of diverse processes, tools, and skill sets. This study undertakes the task of crafting a taxonomy of quantum DevOps for quantum software development for quantum software development thest practices using a multicriteria decision process. Through a systematic literature review, we identify and document these best practices, complemented by industry insights gathered via a questionnaire survey. Employing the fuzzy-AHP technique, we prioritize these practices to	https://www.researchsquare.com/article/rs-3597311/latest
169	Overview and Comparison of Gate Level Quantum Software Platforms	LaRose, Ryan	2019	Quantum computers are available to use over the cloud, but the recent explosion of quantum software platforms can be overwhelming for those deciding on which to use. In this paper, we provide a current picture of the rapidly evolving quantum computing landscape by comparing four software platforms-Forest (pyQuil), Qiskit, ProjecQ, and the Quantum Developer Kit (Q#)-that enable researchers to use real and simulated quantum devices. Our analysis covers requirements and installation, language syntax through example programs, library support, and quantum simulator capabilities for each platform. For platforms that have quantum computer support, we compare hardware, quantum assembly languages, and quantum compilers. We conclude by covering features of each and briefly mentioning other quantum computing software packages.	http://dx.doi.org/10.22331/q-2019-03-25-130

	assword authentication key	Zhao, Zongqu; Ma, Shaoti;	2023	Due to the limitation of the computing power and storage capacity of the device, the authentication key exchange protocol of the	http://dx.doi.org/10.1007/s10586-022-03665-5
	exchange based on key consensus or IoT security	Qin, Panke		Internet of Things has higher requirements on the computation efficiency and communication efficiency. This paper proposes a lattice- based password authentication key exchange protocol based on key consensus, which can greatly reduce the time of key exchange.	
	or for security			The proposed protocol uses the approximate smooth projection hash function and key consensus to design an asymmetric key	
				agreement structure, which enables the device to realize key exchange while storing less authentication information. Compared with	
				the existing password authentication key exchange protocols, the proposed protocol reduces the number of communications and the	
				computation of the device during the protocol operation. In the paper, the computational cost of the prover is reduced to O(mn), and	
		J Alonso, E Ostolaza, B	2023	Background: Current and future key emerging technologies, e.g. quantum computing, augmented human, advanced Artificial	https://d1wqtxts1xzle7.cloudfront.net/109581580/pdf-
	n software technologie s: A multi- actor approach [version 1; peer	Sanchez		Intelligence, sensing and mobility are linked by software technologies. Software is therefore spanning across a huge number of application domains, as it links and connects to diverse digital infrastructures and it opens up significant challenges in terms of	libre.pdf?1703579462=&response-content- disposition=inline%3B+filename%3DPrioritisation of research challenge
	eview: awaiting			security and privacy, behavioural optimisation, self-adaptation and reliability to mention some. Methods: This article presents one of	_in.pdf&Expires=1712331933&Signature=A1PJcbBemFVOmC~JIc1U1sk
	eview. awaring			the main results from the European project SWForum.eu (https://www.swforum.eu/), that to focuse to the implementation of a multi-	hqxPjKWQya7RvOJzG4nX8VpEUb4y51-QTgEiulamYMcqtmVkzGFxj2KG
				factor methodology to develop research and innovation roadmaps for software technologies. Results: The article also discusses the	gnU~hhTatBNmtlMr1VEJLlfUtpnKS02nZXBWBWAEUo6zYrXWp5FilRjAk
				selection and prioritisation research and innovation challenges and topics on software technologies, cyber security and digital	Pie~q9kzSqo2kEHDOrybkZqrouRqD5zzXadfejZebbhwd6c1Rqn6BaKwRc
	FaaS: A Serverless Function-as-a-	Hoa T. NguyenMuhammad	2024	Quantum computing is rapidly reaching a point in which its application design and engineering aspects must be seriously considered.	https://www.sciencedirect.com/science/article/pii/S0167739X24000189
	Service framework for Quantum	UsmanRajkumar Buyya		However, quantum software engineering is still in its infancy, with numerous challenges, especially in dealing with the diversity of quantum programming languages and noisy intermediate-scale quantum (NISQ) systems. To alleviate these challenges, we propose	
C	omputing			QFaaS, a holistic Quantum Function-as-a-Service framework, which leverages the advantages of the serverless model, DevOps	
				ar day, a nonine datated in tanking the data set techniques names to advance of the datated tanking of the datated tanking the datated in the	
				development in the NISQ era. Our framework provides essential elements of a serverless quantum system to streamline service-	
				oriented quantum application development in cloud environments, such as combining hybrid quantum-classical computation,	
		M Nadeem, M Ahmad, SA	2023	Quantum computer development attracts the security experts of software. The rapid development of number of qubit in quantum	https://www.researchsquare.com/article/rs-2654673/latest
	Security by Quantum Technique Jsing Fuzzy TOPSIS	Ansar, PC Pathak, RA Khan	I	computer makes the present security mechanism of software insecure. Software developers need to pay attention to the development of guantum computers in terms of software security. Software security evaluation focuses on the fundamental security features of	
, i	Jsing Fuzzy TOPSIS			software as well as the quantum enable security alternatives. The software security evaluation focuses on the fundamental security features of software security evaluation focuses on the most crucial part of surveying,	
				controlling, and administering security in order to further improve the properties of safety. It's crucial to understand that performing a	
				security assessment early on in the development process can help you find bugs, vulnerabilities, faults, and attacks. In this	
				quantitative study, the definition and use of the quantum computing security approach in software security will be covered. The	
	Quantum Computers and the Risks	P Schindler	2022	Quantum computers are currently being developed and are expected to supersede classical computers in many areas. Besides their	https://www.ejsit-journal.com/index.php/ejsit/article/view/136
	hey Pose to Small and Medium- Bized Enterprises			positive use cases, they can pose significant dangers to data security in businesses. The aim of this paper is to raise awareness of this topic and support the preparation of all market participants for the advent of quantum computing. First, the possible dangers	
·	sized Enterprises			quantum computers pose to data security are identified. Approaches to solutions and the necessary transition process are researched	
				that can help to protect data in the face of quantum computers, based on recommendations by the American National Institute of	
				Standards and Technology and the German Federal Office for Information Security. Based on this knowledge and the need to create	
				awareness, further research is planned to provide concepts to accelerate the spread of quantum computer-safe measures as soon as	
	Quantum Computers for High-	Humble, Travis S.; McCaskey,	2021	Quantum computing systems are developing rapidly as powerful solvers for a variety of real-world calculations. Traditionally, many of	http://dx.doi.org/10.1109/MM.2021.3099140
F	Performance Computing	Alexander; Lyakh, Dmitry, I; Gowrishankar, Meenambika;		these same applications are solved using conventional high-performance computing (HPC) systems, which have progressed sharply through decades of hardware and software improvements. Here, we present a perspective on the motivations and challenges of	
		Frisch. Albert: Monz. Thomas		anough decades of nationale and softwate importenents, here, we present a perspective of the notivations and challenges of pairing quantum computing systems with modern HPC infrastructure. We outline considerations and requirements for the use cases,	
				macroarchitecture, microarchitecture, and programming models needed to integrate near-term quantum computers with HPC system,	
				and we conclude with the expectation that such efforts are well within reach of current technology.	
105 0			0000		
	Quantum computing for financial risk neasurement	Wilkens, Sascha; Moorhouse, Joe	2023	Quantum computing allows a significant speed-up over traditional CPU-and GPUbased algorithms when applied to particular mathematical challenges such as optimisation and simulation. Despite promising advances and extensive research in hard-and	http://dx.doi.org/10.1007/s11128-022-03777-2
	leasurement	306		software developments, currently available quantum systems are still largely limited in their capability. In line with this, practical	
				applications in quantitative finance are still in their infancy. This paper analyses requirements and concrete approaches for the	
				application to risk management in a financial institution. On the examples of Value-at-Risk for market risk and Potential Future	
				Exposure for counterparty credit risk, the main contribution lies in going beyond textbook illustrations and instead exploring must-have	
100	Nontrin computing for a sint	M Alicofori	2000	model features and their quantum implementations. While conceptual solutions and small-scale circuits are feasible at this stage, the	https://liple.opringer.com/optiple/40.4007/-00500.000.00704
	Quantum computing for social pusiness optimization: a	M Aljaafari	2023	Currently, E-commerce is widely adopted as it is important for business management and economic growth in the new global economy, and to reach the rapid increasing population. To better manage the e-commerce, it is important to collect and evaluate the	https://link.springer.com/article/10.1007/s00500-023-08764-y
	practitioner's perspective		I	consumer behavior data for decision making and optimization. The conventional computing technologies need high amount of power	
				and time for large data analysis. Quantum computing has the potential to analyze the large amount of data more efficiently than	
			I	classical computing. This paper aims to explore the core process areas that need to be considered by the practitioners for adopting	
				quantum computing in social business. To address the objective of this study, we conducted a literature review and empirical study to	
407		D. Carlleli, D. Kara	0001	explore the core process areas that need to be considered for the consideration of quantum computing in social business. The results	
		B Sodni, R Kapur	2021		nttps://ieeexplore.ieee.org/abstract/document/9426783/
°					
				software. Thus, developing quantum software requires a paradigm shift in thinking by software engineers. This paper presents the key	
				findings from the SE perspective, resulting from an in-depth examination of state-of-the-art QCPs available today. The main	
			2021		https://link.springer.com/chapter/10.1007/978-3-030-81645-2_11
C	in a generic cps setup	ZHOU		prepare for the remedies against the threat. At the algorithm-level, the two most popular public-key cryptosystems, RSA and ECC, are vulnerable to quantum cryptanalysis using Shor's algorithm, while symmetric key and hash-based cryptosystems are weakened by	
				Grover's algorithm. Less is understood at the implementation laver, where businesses, operations, and other considerations such as	
				time, resources, know-how, and costs can affect the speed, safety, and availability of the applications under threat. We carry out a	
				time, resources, know-how, and costs can affect the speed, safety, and availability of the applications under threat. We carry out a landscape study of 20 better-known threat modelling methods and identify PASTA, when complemented with Attack Trees and STRIDE, as the most appropriate method to be used for evaluating quantum computing threats on existing systems. We then perform	
a a 198 (Quantum computing platforms: issessing the impact on quality ttributes and sdlc activities Quantum computing threat modelling on a generic cps setup	B Sodhi, R Kapur CC Lee, TG Tan, V Sharma, J Zhou	2021	Practical quantum computing is rapidly becoming a reality. To harness quantum computers' real potential in software applications, one needs to have an in-depth understanding of all such characteristics of quantum computing platforms (QCPs), relevant from the Software Engineering (SE) perspective. Restrictions on copying, deletion, the transmission of qubit states, a hard dependency on quantum algorithms are few, out of many, examples of QCP characteristics that have significant implications for building quantum software. Thus, developing quantum software requires a paradigm shift in thinking by software engineers. This paper presents the key	https://ieeexplore.ieee.org/abstract/document/9426783/ https://link.springer.com/chapter/10.1007/978-3-030-81645-2_1

200	Quantum devops: Towards reliable	ID Gheorghe-Pop, N	2020	Quantum Computing is emerging as one of the great hopes for boosting current computational resources and enabling the application	https://ieeexplore.ieee.org/abstract/document/9367411/
202	and applicable nisq quantum	Tcholtchev, T Ritter	2020	of ICT for optimizing processes and solving complex and challenging domain specific problems. However, the Quantum Computing	https://ieeexplore.ieee.org/abstract/document/9367411/
	computing			technology has not matured to a level where it can provide a clear advantage over high performance computing ver. Towards	
	pg			achieving this "quantum advantage", a larger number of Qubits is required, leading inevitably to a more complex topology of the	
				computing Qubits. This raises additional difficulties with decoherence times and implies higher Qubit error rates. Nevertheless, the	
				current Noisy Intermediate-Scale Quantum (NISQ) computers can prove useful despite the intrinsic uncertainties on the quantum	
				hardware layer. In order to utilize such error-prone computing resources, various concepts are required to address Qubit errors and to	
203	Quantum for 6G communication: A	Ali, Muhammad Zulfiqar;	2023	In the technologically changing world, the demand for ultra-reliable, faster, low power, and secure communication has significantly	http://dx.doi.org/10.1049/qtc2.12060
	perspective	Abohmra, Abdoalbaset;		risen in recent years. Researchers have shown immense interest in emerging quantum computing (QC) due to its potentials of solving	
		Usman, Muhammad; Zahid,		the computing complexity in the robust and efficient manner. It is envisioned that QC can act as critical enablers and strong catalysts	
		Adnan; Heidari, Hadi; Imran,		to considerably reduce the computing complexities and boost the future of sixth generation (6G) and beyond communication systems	
		Muhammad Ali; Abbasi,		in terms of their security. In this study, the fundamentals of QC, the evolution of quantum communication that encompasses a wide	
		Qammer H.		spectrum of technologies and applications and quantum key distribution, which is one of the most promising applications of quantum security, have been presented. Furthermore, various parameters and important techniques are also investigated to optimise the	
204	Quantum healthcare analysis based	Zhang, Jingya	2024	Edge computing (EC) aided Internet of Things (IoT) based applications require real-time processing as well as high-volume data-	http://dx.doi.org/10.1007/s11082-024-06285-y
204	on smart IoT and mobile edge	znang, Jingya	2024	intensive services as 5G networks evolve. It is difficult to fit IoT services into available edge nodes (ENs) while maintaining	1111p://dx.doi.org/10.1007/S11082-024-00283-y
	computing: way into network study			performance measures on quality of service (QoS) because of the heterogeneity, restricted resources, and changing resource	
	computing, way into network study			demand of IoT applications. This study aims to examine a quantum healthcare model that is built on mobile edge computing networks	
				linked with smart IoT. Serverless computing with edge computing may handle guick or small-scale tasks effectively at edge devices,	
				lowering latency. Moreover, serverless edge computing now faces significant hurdles from security and processing performance. In	
				order to provide trustworthy and secure edge serverless services, it is possible to use blockchain technology to boost processing	
213	Quantum power flows: From theory	J Liu, H Zheng, M Hanada, K	2022	Climate change is becoming one of the greatest challenges to the sustainable development of modern society. Renewable energies	https://arxiv.org/abs/2211.05728
	to practice	Setia, D Wu		with low density greatly complicate the online optimization and control processes, where modern advanced computational	
				technologies, specifically quantum computing, have significant potential to help. In this paper, we discuss applications of quantum	
				computing algorithms toward state-of-the-art smart grid problems. We suggest potential, exponential quantum speedup by the use of	
				the Harrow-Hassidim-Lloyd (HHL) algorithms for sparse matrix inversions in power-flow problems. However, practical implementations	
				of the algorithm are limited by the noise of quantum circuits, the hardness of realizations of quantum random access memories	
_				(QRAM), and the depth of the required quantum circuits. We benchmark the hardware and software requirements from the state-of-	
214	Quantum Program Synthesis	Lee, Sihyung; Nam, Seung	2023	Programming for quantum computers is complicated and time-consuming, because quantum operations are counterintuitive and their	http://dx.doi.org/10.1109/ACCESS.2023.3257192
	Through Operator Learning and	Yeob		combined effects are difficult to understand. Existing tools allow automatic synthesis of quantum programs, which releases the burden	
	Selection			of handwriting. However, many existing systems arrange predetermined operators in successive manner to gradually reduce the gap	
				with requirements; these methods are quick but often produce lengthy programs, and they are difficult to adopt for new operators.	
				Other systems depend on stochastic or heuristic search; they identify near-optimal programs for certain cases, but it is not easy to tune the algorithms for a wide range of cases. We propose a system that produces compact programs for most cases and easily	
				evolves with new operators. The system automatically learns the roles of available operators by composing various possible	
045			0000	Quantum Random Access Memory (QRAM) has the potential to revolutionize the area of guantum computing. QRAM has the potential to revolutionize the area of guantum computing. QRAM	
	Quantum Random Access Memory				http://dy.doi.org/10.3390/c23177/62
215		Phalak, Koustubh; Chatterjee, Avimita: Ghosh, Swaroop	2023		http://dx.doi.org/10.3390/s23177462
215	Quantum Random Access Memory for Dummies	Phalak, Koustubh; Chatterjee, Avimita; Ghosh, Swaroop	2023	Quantum Random Access Memory (QHAM) has the potential to revolutionize the area of quantum computing. QHAM uses quantum computing principles to store and modify quantum or classical data efficiently, greatly accelerating a wide range of computer processes. Despite its importance, there is a lack of comprehensive surveys that cover the entire spectrum of QRAM architectures.	http://dx.doi.org/10.3390/s23177462
215			2023	computing principles to store and modify quantum or classical data efficiently, greatly accelerating a wide range of computer	http://dx.doi.org/10.3390/s23177462
215			2023	computing principles to store and modify quantum or classical data efficiently, greatly accelerating a wide range of computer processes. Despite its importance, there is a lack of comprehensive surveys that cover the entire spectrum of QRAM architectures.	
215			2023	computing principles to store and modify quantum or classical data efficiently, greatly accelerating a wide range of computer processes. Despite its importance, there is a lack of comprehensive surveys that cover the entire spectrum of QRAM architectures. We fill this gap by providing a comprehensive review of QRAM, emphasizing its significance and viability in existing noisy quantum	
_	for Dummies	Avimita; Ghosh, Swaroop		computing principles to store and modify quantum or classical data efficiently, greatly accelerating a wide range of computer processes. Despite its importance, there is a lack of comprehensive surveys that cover the entire spectrum of QRAM architectures. We fill this gap by providing a comprehensive review of QRAM, emphasizing its significance and viability in existing noisy quantum computers. By drawing comparisons with conventional RAM for ease of understanding, this survey clarifies the fundamental ideas and actions of QRAM. QRAM provides an exponential time advantage compared to its classical counterpart by reading and writing all data at once, which is achieved owing to storage of data in a superposition of states. Overall, we compare six different QRAM technologies	
_	for Dummies Quantum Searchable Encryption for	Avimita; Ghosh, Swaroop Liu, Wenjie; Xu, Yinsong; Liu,	2023	computing principles to store and modify quantum or classical data efficiently, greatly accelerating a wide range of computer processes. Despite its importance, there is a lack of comprehensive surveys that cover the entire spectrum of QRAM architectures. We fill this gap by providing a comprehensive review of QRAM, emphasizing its significance and viability in existing noisy quantum computers. By drawing comparisons with conventional RAM for ease of understanding, this survey clarifies the fundamental ideas and actions of QRAM. QRAM provides an exponential time advantage compared to its classical counterpart by reading and writing all data at once, which is achieved owing to storage of data in a superposition of states. Overall, we compare six different QRAM technologies Searchable encryption (SE) is a positive way to protect users sensitive data in cloud computing setting, while preserving search ability	
_	for Dummies Quantum Searchable Encryption for Cloud Data Based on Full-Blind	Avimita; Ghosh, Śwaroop Liu, Wenjie; Xu, Yinsong; Liu, Wen; Wang, Haibin; Lei,		computing principles to store and modify quantum or classical data efficiently, greatly accelerating a wide range of computer processes. Despite its importance, there is a lack of comprehensive surveys that cover the entire spectrum of QRAM architectures. We fill this gap by providing a comprehensive review of QRAM, emphasizing its significance and viability in existing noisy quantum computers. By drawing comparisons with conventional RAM for ease of understanding, this survey clarifies the fundamental ideas and actions of QRAM. QRAM provides an exponential time advantage compared to its classical counterpart by reading and writing all data at once, which is achieved owing to storage of data in a superposition of states. Overall, we compare six different QRAM technologies Searchable encryption (SE) is a positive way to protect users sensitive data in cloud computing setting, while preserving search ability on the server side, i.e., it allows the server to search encrypted data without leaking information about the plaintext data. In this paper,	
_	for Dummies Quantum Searchable Encryption for	Avimita; Ghosh, Swaroop Liu, Wenjie; Xu, Yinsong; Liu,		computing principles to store and modify quantum or classical data efficiently, greatly accelerating a wide range of computer processes. Despite its importance, there is a lack of comprehensive surveys that cover the entire spectrum of QRAM architectures. We fill this gap by providing a comprehensive review of QRAM, emphasizing its significance and viability in existing noisy quantum computers. By drawing comparisons with conventional RAM for ease of understanding, this survey clarifies the fundamental ideas and actions of QRAM. QRAM provides an exponential time advantage compared to its classical counterpart by reading and writing all data at once, which is achieved owing to storage of data in a superposition of states. Overall, we compare six different QRAM technologies Searchable encryption (SE) is a positive way to protect users sensitive data in cloud computing setting, while preserving search ability on the server side, i.e., it allows the server to search encrypted data without leaking information about the plaintext data. In this paper, a multi-client universal circuit-based full-blind quantum computation (FBQC) model is proposed. In order to meet the requirements of	
_	for Dummies Quantum Searchable Encryption for Cloud Data Based on Full-Blind	Avimita; Ghosh, Śwaroop Liu, Wenjie; Xu, Yinsong; Liu, Wen; Wang, Haibin; Lei,		computing principles to store and modify quantum or classical data efficiently, greatly accelerating a wide range of computer processes. Despite its importance, there is a lack of comprehensive surveys that cover the entire spectrum of QRAM architectures. We fill this gap by providing a comprehensive review of QRAM, emphasizing its significance and viability in existing noisy quantum computers. By drawing comparisons with conventional RAM for ease of understanding, this survey clarifies the fundamental ideas and actions of QRAM. QRAM provides an exponential time advantage compared to its classical counterpart by reading and writing all data at once, which is achieved owing to storage of data in a superposition of states. Overall, we compare six different QRAM technologies. Searchable encryption (SE) is a positive way to protect users sensitive data in cloud computing setting, while preserving search ability on the server side, i.e., it allows the server to search encrypted data without leaking information about the plaintext data. In this paper, a multi-client accessing or computing encrypted cloud data, all clients with limited quantum ability outsource the key generation to a	
_	for Dummies Quantum Searchable Encryption for Cloud Data Based on Full-Blind	Avimita; Ghosh, Śwaroop Liu, Wenjie; Xu, Yinsong; Liu, Wen; Wang, Haibin; Lei,		computing principles to store and modify quantum or classical data efficiently, greatly accelerating a wide range of computer processes. Despite its importance, there is a lack of comprehensive surveys that cover the entire spectrum of QRAM architectures. We fill this gap by providing a comprehensive review of QRAM, emphasizing its significance and viability in existing noisy quantum computers. By drawing comparisons with conventional RAM for ease of understanding, this survey clarifies the fundamental ideas and actions of QRAM. QRAM provides an exponential time advantage compared to its classical counterpart by reading and writing all data at once, which is achieved owing to storage of data in a superposition of states. Overall, we compare six different QRAM technologies. Searchable encryption (SE) is a positive way to protect users sensitive data in cloud computing setting, while preserving search ability on the server side, i.e., it allows the server to search encrypted data without leaking information about the plaintext data. In this paper, a multi-client universal circuit-based full-blind quantum computation (FBQC) model is proposed. In order to meet the requirements of multi-client accessing or computing encrypted cloud data, all clients with limited quantum ability outsource the key generation to a trusted key center and upload their encrypted data to the data center. Considering the feasibility of physical implementation, all	
_	for Dummies Quantum Searchable Encryption for Cloud Data Based on Full-Blind	Avimita; Ghosh, Śwaroop Liu, Wenjie; Xu, Yinsong; Liu, Wen; Wang, Haibin; Lei,		computing principles to store and modify quantum or classical data efficiently, greatly accelerating a wide range of computer processes. Despite its importance, there is a lack of comprehensive surveys that cover the entire spectrum of QRAM architectures. We fill this gap by providing a comprehensive review of QRAM, emphasizing its significance and viability in existing noisy quantum computers. By drawing comparisons with conventional RAM for ease of understanding, this survey clarifies the fundamental ideas and actions of QRAM. QRAM provides an exponential time advantage compared to its classical counterpart by reading and writing all data at once, which is achieved owing to storage of data in a superposition of states. Overall, we compare six different QRAM technologies Searchable encryption (SE) is a positive way to protect users sensitive data in cloud computing setting, while preserving search ability on the server side, i.e., it allows the server to search encrypted data without leaking information about the plaintext data. In this paper, a multi-client universal circuit-based full-blind quantum computation (FBQC) model is proposed. In order to meet the requirements of multi-client accessing or computing encrypted data to the data center. Considering the feasibility of physical implementation, all quantum gates in the circuit are replaced with the combination of pl/8 rotation operator set (R-2(pi/4), Ry(pi/4), CRy(pi/4), CR	
216	for Dummies Quantum Searchable Encryption for Cloud Data Based on Full-Blind Quantum Computation	Avimita; Ghosh, Śwaroop Liu, Wenjie; Xu, Yinsong; Liu, Wen; Wang, Haibin; Lei, Zhibin	2019	computing principles to store and modify quantum or classical data efficiently, greatly accelerating a wide range of computer processes. Despite its importance, there is a lack of comprehensive surveys that cover the entire spectrum of QRAM architectures. We fill this gap by providing a comprehensive review of QRAM, emphasizing its significance and viability in existing noisy quantum computers. By drawing comparisons with conventional RAM for ease of understanding, this survey clarifies the fundamental ideas and actions of QRAM. QRAM provides an exponential time advantage compared to its classical counterpart by reading and writing all data at once, which is achieved owing to storage of data in a superposition of states. Overall, we compare six different QRAM technologies. Searchable encryption (SE) is a positive way to protect users sensitive data in cloud computing setting, while preserving search ability on the server side, i.e., it allows the server to search encrypted data without leaking information about the plaintext data. In this paper, a multi-client accessing or computing encrypted cloud data, all clients with limited quantum ability outsource the key generation to a trusted key center and upload their encrypted data to the data center. Considering the feasibility of physical implementation, all quantum gates in the circuit are replaced with the combination of pi/8 totation operator set (R-z(pi/4), Ry(pi/4), CRz(pi/4), CRz(pi/4)). CR3(pi/4), CR2(pi/4), CR2(pi/4)). La ddition, the data center is only allowed to perform one pi/8 totation operator each time, but does not	http://dx.doi.org/10.1109/ACCESS.2019.2960592
216	for Dummies Quantum Searchable Encryption for Cloud Data Based on Full-Blind Quantum Computation Quantum Software Components and	Avimita; Ghosh, Śwaroop Liu, Wenjie; Xu, Yinsong; Liu, Wen; Wang, Haibin; Lei, Zhibin Serrano, Manuel A.; Cruz-		computing principles to store and modify quantum or classical data efficiently, greatly accelerating a wide range of computer processes. Despite its importance, there is a lack of comprehensive surveys that cover the entire spectrum of QRAM architectures. We fill this gap by providing a comprehensive review of QRAM, emphasizing its significance and viability in existing noisy quantum computers. By drawing comparisons with conventional RAM for ease of understanding, this survey clarifies the fundamental ideas and actions of QRAM. QRAM provides an exponential time advantage compared to its classical counterpart by reading and writing all data at once, which is achieved owing to storage of data in a superposition of states. Overall, we compare six different QRAM technologies Searchable encryption (SE) is a positive way to protect users sensitive data in cloud computing setting, while preserving search ability on the server side, i.e., it allows the server to search encrypted data without leaking information about the plaintext data. In this paper, a multi-client universal circuit-based full-blind quantum computation (FEQC) model is proposed. In order to meet the requirements of multi-client accessing or computing encrypted data to the data center. Considering the feasibility of physical implementation, all quantum gates in the circuit are replaced with the combination of pl/8 rotation operator set (R-z(pi/4), Ry(pi/4), Rz(pi/4), CRz(pi/4), CRz(pi/4), CRz(pi/4), In addition, the data center is only allowed to perform one pi/8 rotation operator each time, but does not Quantum computing is the latest revolution in computing and will probably come to be seen as an advance as important as the steam	
216	for Dummies Quantum Searchable Encryption for Cloud Data Based on Full-Blind Quantum Computation Quantum Software Components and Platforms: Overview and Quality	Avimita; Ghosh, Swaroop Liu, Wenjie; Xu, Yinsong; Liu, Wen; Wang, Haibin; Lei, Zhibin Serrano, Manuel A.; Cruz- Lemus, Jose A.; Perez-	2019	computing principles to store and modify quantum or classical data efficiently, greatly accelerating a wide range of computer processes. Despite its importance, there is a lack of comprehensive surveys that cover the entire spectrum of QRAM architectures. We fill this gap by providing a comprehensive review of QRAM, emphasizing its significance and viability in existing noisy quantum computers. By drawing comparisons with conventional RAM for ease of understanding, this survey clarifies the fundamental ideas and actions of QRAM. QRAM provides an exponential time advantage compared to its classical counterpart by reading and writing all data at once, which is achieved owing to storage of data in a superposition of states. Overall, we compare six different QRAM technologies Searchable encryption (SE) is a positive way to protect users sensitive data in cloud computing setting, while preserving search ability on the server side, i.e., it allows the server to search encrypted data without leaking information about the plaintext data. In this paper, a multi-client universal circuit-based full-blind quantum computation (FBQC) model is proposed. In order to meet the requirements of multi-client accessing or computing encrypted data to the data center. Considering the feasibility of physical implementation, all quantum gates in the circuit are replaced with the combination of pl/8 rotation operator set (R-2(pi/4), R(pi/4), CR2(pi/4), CR2(pi/4), CR2(pi/4), CR2(pi/4), LCR2(pi/4), L	http://dx.doi.org/10.1109/ACCESS.2019.2960592
216	for Dummies Quantum Searchable Encryption for Cloud Data Based on Full-Blind Quantum Computation Quantum Software Components and	Avimita; Ghosh, Śwaroop Liu, Wenjie; Xu, Yinsong; Liu, Wen; Wang, Haibin; Lei, Zhibin Serrano, Manuel A.; Cruz- Lemus, Jose A.; Perez- Castillo, Ricardo; Plattini,	2019	computing principles to store and modify quantum or classical data efficiently, greatly accelerating a wide range of computer processes. Despite its importance, there is a lack of comprehensive surveys that cover the entire spectrum of QRAM architectures. We fill this gap by providing a comprehensive review of QRAM, emphasizing its significance and viability in existing noisy quantum computers. By drawing comparisons with conventional RAM for ease of understanding, this survey clarifies the fundamental ideas and actions of QRAM. QRAM provides an exponential time advantage compared to its classical counterpart by reading and writing all data at once, which is achieved owing to storage of data in a superposition of states. Overall, we compare six different QRAM technologies. Searchable encryption (SE) is a positive way to protect users sensitive data in cloud computing setting, while preserving search ability on the server side, i.e., it allows the server to search encrypted data without leaking information about the plaintext data. In this paper, a multi-client accessing or computing encrypted cloud data, all clients with limited quantum ability outsource the key generation to a trusted key center and upload their encrypted data to the data center. Considering the feasibility of physical implementation, all quantum gates in the circuit are replaced with the combination of pi/8 rotation operator set {R-z(pi/4), Ry(pi/4), CRz(pi/4),	http://dx.doi.org/10.1109/ACCESS.2019.2960592
216	for Dummies Quantum Searchable Encryption for Cloud Data Based on Full-Blind Quantum Computation Quantum Software Components and Platforms: Overview and Quality	Avimita; Ghosh, Swaroop Liu, Wenjie; Xu, Yinsong; Liu, Wen; Wang, Haibin; Lei, Zhibin Serrano, Manuel A.; Cruz- Lemus, Jose A.; Perez-	2019	computing principles to store and modify quantum or classical data efficiently, greatly accelerating a wide range of computer processes. Despite its importance, there is a lack of comprehensive surveys that cover the entire spectrum of QRAM architectures. We fill this gap by providing a comprehensive review of QRAM, emphasizing its significance and viability in existing noisy quantum computers. By drawing comparisons with conventional RAM for ease of understanding, this survey clarifies the fundamental ideas and actions of QRAM. QRAM provides an exponential time advantage compared to its classical counterpart by reading and writing all data at once, which is achieved owing to storage of data in a superposition of states. Overall, we compare six different QRAM technologies Searchable encryption (SE) is a positive way to protect users sensitive data in cloud computing setting, while preserving search ability on the server side, i.e., it allows the server to search encrypted data without leaking information about the plaintext data. In this paper, a multi-client universal circuit-based full-blind quantum computation (FBQC) model is proposed. In order to meet the requirements of multi-client accessing or computing encrypted data to the data center. Considering the feasibility of physical implementation, all quantum gates in the circuit are replaced with the combination of pl/8 rotation operator set (R-2(pi/4), R(pi/4), CR2(pi/4), CR2(pi/4), CR2(pi/4), CR2(pi/4), LCR2(pi/4), L	http://dx.doi.org/10.1109/ACCESS.2019.2960592
216	for Dummies Quantum Searchable Encryption for Cloud Data Based on Full-Blind Quantum Computation Quantum Software Components and Platforms: Overview and Quality	Avimita; Ghosh, Śwaroop Liu, Wenjie; Xu, Yinsong; Liu, Wen; Wang, Haibin; Lei, Zhibin Serrano, Manuel A.; Cruz- Lemus, Jose A.; Perez- Castillo, Ricardo; Plattini,	2019	computing principles to store and modify quantum or classical data efficiently, greatly accelerating a wide range of computer processes. Despite its importance, there is a lack of comprehensive surveys that cover the entire spectrum of QRAM architectures. We fill this gap by providing a comprehensive review of QRAM, emphasizing its significance and viability in existing noisy quantum computers. By drawing comparisons with conventional RAM for ease of understanding, this survey clarifies the fundamental ideas and actions of QRAM. QRAM provides an exponential time advantage compared to its classical counterpart by reading and writing all data at once, which is achieved owing to storage of data in a superposition of states. Overall, we compare six different QRAM technologies Searchable encryption (SE) is a positive way to protect users sensitive data in cloud computing setting, while preserving search ability on the server side, i.e., it allows the server to search encrypted data without leaking information about the plaintext data. In this paper, a multi-client universal circuit-based full-blind quantum computation (FBQC) model is proposed. In order to meet the requirements of trusted key center and upload their encrypted data to the data center. Considering the feasibility of physical implementation, all quantum gates in the circuit are replaced with the combination of pl/8 rotation operator set (R-2(pl/4), Ry(pl/4), CR2(pl/4), CR	http://dx.doi.org/10.1109/ACCESS.2019.2960592
216	for Dummies Quantum Searchable Encryption for Cloud Data Based on Full-Blind Quantum Computation Quantum Software Components and Platforms: Overview and Quality	Avimita; Ghosh, Śwaroop Liu, Wenjie; Xu, Yinsong; Liu, Wen; Wang, Haibin; Lei, Zhibin Serrano, Manuel A.; Cruz- Lemus, Jose A.; Perez- Castillo, Ricardo; Plattini,	2019	computing principles to store and modify quantum or classical data efficiently, greatly accelerating a wide range of computer processes. Despite its importance, there is a lack of comprehensive surveys that cover the entire spectrum of QRAM architectures. We fill this gap by providing a comprehensive review of QRAM, emphasizing its significance and viability in existing noisy quantum computers. By drawing comparisons with conventional RAM for ease of understanding, this survey clarifies the fundamental ideas and actions of QRAM. QRAM provides an exponential time advantage compared to its classical counterpart by reading and writing all data at once, which is achieved owing to storage of data in a superposition of states. Overall, we compare six different QRAM technologies Searchable encryption (SE) is a positive way to protect users sensitive data in cloud computing setting, while preserving search ability on the server side, i.e., it allows the server to search encrypted data without leaking information about the plaintext data. In this paper, a multi-client universal circuit-based full-blind quantum computation (FBQC) model is proposed. In order to meet the requirements of multi-client accessing or computing encrypted cloud data, all clients with limited quantum ability outsource the key generation to a trusted key center and upload their encrypted data to the data center. Considering the feasibility of physical implementation, all quantum gates in the circuit are replaced with the combination opt/8 totation operator set (R-2(pi/4), R(pi/4), CR2(pi/4), CR2(pi/4), CR2(pi/4), CR2(pi/4), CR2(pi/4), In addition, the data center is only allowed to perform one pi/8 totation operator each time, but does not Quantum computing is the latest revolution in computing and will probably come to be seen as an advance as important as the steam engine or the information society. In the last few decades, our understanding of quantum computers has expanded and multiple efforts have been made to create languages, l	http://dx.doi.org/10.1109/ACCESS.2019.2960592
216	for Dummies Quantum Searchable Encryption for Cloud Data Based on Full-Blind Quantum Computation Quantum Software Components and Platforms: Overview and Quality Assessment	Avimita; Ghosh, Śwaroop Liu, Wenjie; Xu, Yinsong; Liu, Wen; Wang, Haibin; Lei, Zhibin Serrano, Manuel A.; Cruz- Lemus, Jose A.; Perez- Castillo, Ricardo; Plattini,	2019	computing principles to store and modify quantum or classical data efficiently, greatly accelerating a wide range of computer processes. Despite its importance, there is a lack of comprehensive surveys that cover the entire spectrum of QRAM architectures. We fill this gap by providing a comprehensive review of QRAM, emphasizing its significance and viability in existing noisy quantum computers. By drawing comparisons with conventional RAM for ease of understanding, this survey clarifies the fundamental ideas and actions of QRAM. QRAM provides an exponential time advantage compared to its classical counterpart by reading and writing all data at once, which is achieved owing to storage of data in a superposition of states. Overall, we compare six different QRAM technologies. Searchable encryption (SE) is a positive way to protect users sensitive data in cloud computing setting, while preserving search ability on the server side, i.e., it allows the server to search encrypted data without leaking information about the plaintext data. In this paper, a multi-client accessing or computing encrypted cloud data, all clients with limited quantum ability outsource the key generation to a trusted key center and upload their encrypted data to the data center. Considering the feasibility of physical implementation, all quantum gates in the circuit are replaced with the combination of pi/8 totation operator set (R-z(pi/4), Ry(pi/4), CRz(pi/4), LRz(pi/4),	http://dx.doi.org/10.1109/ACCESS.2019.2960592
216	for Dummies Quantum Searchable Encryption for Cloud Data Based on Full-Blind Quantum Computation Quantum Software Components and Platforms: Overview and Quality Assessment	Avimita; Ghosh, Śwaroop Liu, Wenjie; Xu, Yinsong; Liu, Wen; Wang, Haibin; Lei, Zhibin Serrano, Manuel A.; Cruz- Lemus, Jose A.; Perez- Castillo, Ricardo; Piattini, Mario	2019	computing principles to store and modify quantum or classical data efficiently, greatly accelerating a wide range of computer processes. Despite its importance, there is a lack of comprehensive surveys that cover the entire spectrum of QRAM architectures. We fill this gap by providing a comprehensive review of QRAM, emphasizing its significance and viability in existing noisy quantum computers. By drawing comparisons with conventional RAM for ease of understanding, this survey clarifies the fundamental ideas and actions of QRAM. QRAM provides an exponential time advantage compared to its classical counterpart by reading and writing all data at once, which is achieved owing to storage of data in a superposition of states. Overall, we compare six different QRAM technologies Searchable encryption (SE) is a positive way to protect users sensitive data in cloud computing setting, while preserving search ability on the server side, i.e., it allows the server to search encrypted data without leaking information about the plaintext data. In this paper, a multi-client accessing or computing encrypted cloud data, all clients with limited quantum ability outsource the key generation to a trusted key center and upload their encrypted data to the data center. Considering the feasibility of physical implementation, all quantum gates in the circuit are replaced with the combination of pi/8 rotation operator set (R-2(pi/4), CR2(pi/4), CR2(pi/4), CR2(pi/4)). CR2(pi/4), CR2(pi/4), CR2(pi/4)). In addition, the data center is only allowed to perform one pi/8 rotation operator each time, but does not Quantum computing is the last revolution in computing and will probably come to be seen as an advance as important as the steam engine or the information society. In the last few decades, our understanding of quantum computers has expanded and multiple efforts have been made to create languages, libraries, tools, and environments to facilitate their programming. Nonetheless, quantum computers are complex systems at the bottom of a stac	http://dx.doi.org/10.1109/ACCESS.2019.2960592 http://dx.doi.org/10.1145/3548679
216	for Dummies Quantum Searchable Encryption for Cloud Data Based on Full-Blind Quantum Computation Quantum Software Components and Platforms: Overview and Quality Assessment Quantum software development	Avimita; Ghosh, Swaroop Liu, Wenjie; Xu, Yinsong; Liu, Wen; Wang, Haibin; Lei, Zhibin Serrano, Manuel A.; Cruz- Lemus, Jose A.; Perez- Castillo, Ricardo; Piattini, Mario B Weder, J Barzen, F	2019	computing principles to store and modify quantum or classical data efficiently, greatly accelerating a wide range of computer processes. Despite its importance, there is a lack of comprehensive surveys that cover the entire spectrum of QRAM architectures. We fill this gap by providing a comprehensive review of QRAM, emphasizing its significance and viability in existing noisy quantum computers. By drawing comparisons with conventional RAM for ease of understanding, this survey clarifies the fundamental ideas and actions of QRAM. QRAM provides an exponential time advantage compared to its classical counterpart by reading and writing all data at once, which is achieved owing to storage of data in a superposition of states. Overall, we compare six different QRAM technologies Searchable encryption (SE) is a positive way to protect users sensitive data in cloud computing setting, while preserving search ability on the server side, i.e., it allows the server to search encrypted data without leaking information about the plaintext data. In this paper, a multi-client accessing or computing encrypted cloud data, all clients with limited quantum ability outsource the key generation to a trusted key center and upload their encrypted data to the data center. Considering the feasibility of physical implementation, all quantum gates in the circuit are replaced with the combination of pi/8 rotation operator set (R-2(pi/4), R2(pi/4), CR2(pi/4), CR2(pi/4)). CR2(pi/4), LCR2(pi/4), LCR2(pi/	http://dx.doi.org/10.1109/ACCESS.2019.2960592 http://dx.doi.org/10.1145/3548679
216	for Dummies Quantum Searchable Encryption for Cloud Data Based on Full-Blind Quantum Computation Quantum Software Components and Platforms: Overview and Quality Assessment Quantum software development	Avimita; Ghosh, Swaroop Liu, Wenjie; Xu, Yinsong; Liu, Wen; Wang, Haibin; Lei, Zhibin Serrano, Manuel A.; Cruz- Lemus, Jose A.; Perez- Castillo, Ricardo; Piattini, Mario B Weder, J Barzen, F	2019	computing principles to store and modify quantum or classical data efficiently, greatly accelerating a wide range of computer processes. Despite its importance, there is a lack of comprehensive surveys that cover the entire spectrum of QRAM architectures. We fill this gap by providing a comprehensive review of QRAM, emphasizing its significance and viability in existing noisy quantum computers. By drawing comparisons with conventional RAM for ease of understanding, this survey clarifies the fundamental ideas and actions of QRAM. QRAM provides an exponential time advantage compared to its classical counterpart by reading and writing all data at once, which is achieved owing to storage of data in a superposition of states. Overall, we compare six different QRAM technologies Searchable encryption (SE) is a positive way to protect users sensitive data in cloud computing setting, while preserving search ability on the server side, i.e., it allows the server to search encrypted data without leaking information about the plaintext data. In this paper, a multi-client accessing or computing encrypted cloud data, all clients with limited quantum ability outsource the key generation to a trusted key center and upload their encrypted data to the data center. Considering the feasibility of physical implementation, all quantum gates in the circuit are replaced with the combination of pi/8 rotation operator set (R-2(pi/4), CR2(pi/4), CR2(pi/4), CR2(pi/4)). CR2(pi/4), CR2(pi/4), CR2(pi/4)). In addition, the data center is only allowed to perform one pi/8 rotation operator each time, but does not Quantum computing is the last revolution in computing and will probably come to be seen as an advance as important as the steam engine or the information society. In the last few decades, our understanding of quantum computers has expanded and multiple efforts have been made to create languages, libraries, tools, and environments to facilitate their programming. Nonetheless, quantum computers are complex systems at the bottom of a stac	http://dx.doi.org/10.1109/ACCESS.2019.2960592 http://dx.doi.org/10.1145/3548679
216	for Dummies Quantum Searchable Encryption for Cloud Data Based on Full-Blind Quantum Computation Quantum Software Components and Platforms: Overview and Quality Assessment Quantum software development	Avimita; Ghosh, Swaroop Liu, Wenjie; Xu, Yinsong; Liu, Wen; Wang, Haibin; Lei, Zhibin Serrano, Manuel A.; Cruz- Lemus, Jose A.; Perez- Castillo, Ricardo; Piattini, Mario B Weder, J Barzen, F	2019	computing principles to store and modify quantum or classical data efficiently, greatly accelerating a wide range of computer processes. Despite its importance, there is a lack of comprehensive surveys that cover the entire spectrum of QRAM architectures. We fill this gap by providing a comprehensive review of QRAM, emphasizing its significance and viability in existing noisy quantum computers. By drawing comparisons with conventional RAM for ease of understanding, this survey clarifies the fundamental ideas and actions of QRAM. QRAM provides an exponential time advantage compared to its classical counterpart by reading and writing all data at once, which is achieved owing to storage of data in a superposition of states. Overall, we compare six different QRAM technologies Searchable encryption (SE) is a positive way to protect users sensitive data in cloud computing setting, while preserving search ability on the server side, i.e., it allows the server to search encrypted data without leaking information about the plaintext data. In this paper, a multi-client accessing or computing encrypted cloud data, all clients with limited quantum ability outsource the key generation to a trusted key center and upload their encrypted data to the data center. Considering the feasibility of physical implementation, all quantum gates in the circuit are replaced with the combination of pi/8 rotation operator set (R-2(pi/4), R2(pi/4), CR2(pi/4), CR2(pi/4)). CR2(pi/4), LCR2(pi/4), LCR2(pi/	http://dx.doi.org/10.1109/ACCESS.2019.2960592 http://dx.doi.org/10.1145/3548679
216	for Dummies Quantum Searchable Encryption for Cloud Data Based on Full-Blind Quantum Computation Quantum Software Components and Platforms: Overview and Quality Assessment Quantum software development	Avimita; Ghosh, Swaroop Liu, Wenjie; Xu, Yinsong; Liu, Wen; Wang, Haibin; Lei, Zhibin Serrano, Manuel A.; Cruz- Lemus, Jose A.; Perez- Castillo, Ricardo; Piattini, Mario B Weder, J Barzen, F	2019	computing principles to store and modify quantum or classical data efficiently, greatly accelerating a wide range of computer processes. Despite its importance, there is a lack of comprehensive surveys that cover the entire spectrum of QRAM architectures. We fill this gap by providing a comprehensive review of QRAM, emphasizing its significance and viability in existing noisy quantum computers. By drawing comparisons with conventional RAM for ease of understanding, this survey clarifies the fundamental ideas and actions of QRAM. QRAM provides an exponential time advantage compared to its classical counterpart by reading and writing all data at once, which is achieved owing to storage of data in a superposition of states. Overall, we compare six different QRAM technologies Searchable encryption (SE) is a positive way to protect users sensitive data in cloud computing setting, while preserving search ability on the server side, i.e., it allows the server to search encrypted data without leaking information about the plaintext data. In this paper, a multi-client accessing or computing encrypted cloud data, all clients with limited quantum ability outsource the key generation to a trusted key center and upload their encrypted data to the data center. Considering the feasibility of physical implementation, all quantum gates in the circuit are replaced with the combination of pi/8 rotation operator set (R-2(pi/4), R2(pi/4), CR2(pi/4), CR2(pi/4)). CR2(pi/4), LCR2(pi/4), LCR2(pi/	http://dx.doi.org/10.1109/ACCESS.2019.2960592 http://dx.doi.org/10.1145/3548679
216	for Dummies Quantum Searchable Encryption for Cloud Data Based on Full-Blind Quantum Computation Quantum Software Components and Platforms: Overview and Quality Assessment Quantum software development lifecycle	Avimita; Ghosh, Śwaroop Liu, Wenjie; Xu, Yinsong; Liu, Wen; Wang, Haibin; Lei, Zhibin Serrano, Manuel A.; Cruz- Lemus, Jose A.; Perez- Castillo, Ricardo; Piattini, Mario B Weder, J Barzen, F Leymann, D Vietz	2019 2023 2022	computing principles to store and modify quantum or classical data efficiently, greatly accelerating a wide range of computer processes. Despite its importance, there is a lack of comprehensive surveys that cover the entire spectrum of QRAM architectures. We fill this gap by providing a comprehensive review of QRAM, emphasizing its significance and viability in existing noisy quantum computers. By drawing comparisons with conventional RAM for ease of understanding, this survey clarifies the fundamental ideas and actions of QRAM. QRAM provides an exponential time advantage compared to its classical counterpart by reading and writing all data at once, which is achieved owing to storage of data in a superposition of states. Overall, we compare six different QRAM technologies Searchable encryption (SE) is a positive way to protect users sensitive data in cloud computing setting, while preserving search ability on the server side, i.e., it allows the server to search encrypted data without leaking information about the plaintext data. In this paper, a multi-client accessing or computing encrypted cloud data, all clients with limited quantum ability outsource the key generation to a trusted key center and upload their encrypted data to the data center. Considering the feasibility of physical implementation, all quantum gates in the circuit are replaced with the combination of pi/8 rotation operator set (R-2(pi/4), CR/(pi/4), CR/(pi/4)	http://dx.doi.org/10.1109/ACCESS.2019.2960592 http://dx.doi.org/10.1145/3548679 https://link.springer.com/chapter/10.1007/978-3-031-05324-5_4
216	for Dummies Quantum Searchable Encryption for Cloud Data Based on Full-Blind Quantum Computation Quantum Software Components and Platforms: Overview and Quality Assessment Quantum software development lifecycle Quantum software engineering	Avimita; Ghosh, Swaroop Liu, Wenjie; Xu, Yinsong; Liu, Wen; Wang, Haibin; Lei, Zhibin Serrano, Manuel A.; Cruz- Lemus, Jose A.; Perez- Castillo, Ricardo; Piattini, Mario B Weder, J Barzen, F	2019	computing principles to store and modify quantum or classical data efficiently, greatly accelerating a wide range of computer processes. Despite its importance, there is a lack of comprehensive surveys that cover the entire spectrum of QRAM architectures. We fill this gap by providing a comprehensive review of QRAM, emphasizing its significance and viability in existing noisy quantum computers. By drawing comparisons with conventional RAM for ease of understanding, this survey clarifies the fundamental ideas and actions of QRAM. QRAM provides an exponential time advantage compared to its classical counterpart by reading and writing all data at once, which is achieved owing to storage of data in a superposition of states. Overall, we compare six different QRAM technologies Searchable encryption (SE) is a positive way to protect users sensitive data in cloud computing setting, while preserving search ability on the server side, i.e., it allows the server to search encrypted data without leaking information about the plaintext data. In this paper, a multi-client accessing or computing encrypted cloud data, all clients with limited quantum ability outsource the key generation to a trusted key center and upload their encrypted data to the data center. Considering the feasibility of physical implementation, all quantum gates in the circuit are replaced with the combination of pi/8 rotation operator set (R-2pi/4), RX(pi/4), CRX(pi/4),	http://dx.doi.org/10.1109/ACCESS.2019.2960592 http://dx.doi.org/10.1145/3548679
216 220 221	for Dummies Quantum Searchable Encryption for Cloud Data Based on Full-Blind Quantum Computation Quantum Software Components and Platforms: Overview and Quality Assessment Quantum software development lifecycle	Avimita; Ghosh, Śwaroop Liu, Wenjie; Xu, Yinsong; Liu, Wen; Wang, Haibin; Lei, Zhibin Serrano, Manuel A.; Cruz- Lemus, Jose A.; Perez- Castillo, Ricardo; Piattini, Mario B Weder, J Barzen, F Leymann, D Vietz	2019 2023 2022	computing principles to store and modify quantum or classical data efficiently, greatly accelerating a wide range of computer processes. Despite its importance, there is a lack of comprehensive surveys that cover the entire spectrum of QRAM architectures. We fill this gap by providing a comprehensive review of QRAM, emphasizing its significance and viability in existing noisy quantum computers. By drawing comparisons with conventional RAM for ease of understanding, this survey clarifies the fundamental ideas and actions of QRAM. QRAM provides an exponential time advantage compared to its classical counterpart by reading and writing all data at once, which is achieved owing to storage of data in a superposition of states. Overall, we compare six different QRAM technologies Searchable encryption (SE) is a positive way to protect users sensitive data in cloud computing setting, while preserving search ability on the server side, i.e., it allows the server to search encrypted data without leaking information about the plaintext data. In this paper, a multi-client accessing or computing encrypted cloud data, all clients with limited quantum ability outsource the key generation to a trusted key center and upload their encrypted data to the data center. Considering the feasibility of physical implementation, all quantum gates in the circuit are replaced with the combination of pi/8 totation operator set (R-Z(pi/4), RZ(pi/4), CZR(pi/4), CZR(pi/4), CCR/(pi/4)). L addition, the data center is only allowed to perform one pi/8 totation operator each time, but does not CREMC and multiple for the information society. In the last few decades, our understanding of quantum computiers has expanded and multiple forts have been made to create languages, libraries, tools, and environments to facilitate their programming. Nonetheless, quantum computers are complex systems at the bottom of a stack of layers that programmers need to understand. Hence, efforts towards creating quantum programming languages and computing environments th	http://dx.doi.org/10.1109/ACCESS.2019.2960592 http://dx.doi.org/10.1145/3548679 https://link.springer.com/chapter/10.1007/978-3-031-05324-5_4
216 220 221	for Dummies Quantum Searchable Encryption for Cloud Data Based on Full-Blind Quantum Computation Quantum Software Components and Platforms: Overview and Quality Assessment Quantum software development lifecycle Quantum software engineering	Avimita; Ghosh, Śwaroop Liu, Wenjie; Xu, Yinsong; Liu, Wen; Wang, Haibin; Lei, Zhibin Serrano, Manuel A.; Cruz- Lemus, Jose A.; Perez- Castillo, Ricardo; Piattini, Mario B Weder, J Barzen, F Leymann, D Vietz	2019 2023 2022	computing principles to store and modify quantum or classical data efficiently, greatly accelerating a wide range of computer processes. Despite its importance, there is a lack of comprehensive surveys that cover the entire spectrum of QRAM architectures. We fill this gap by providing a comprehensive review of QRAM, emphasizing its significance and viability in existing noisy quantum computers. By drawing comparisons with conventional RAM for ease of understanding, this survey clarifies the fundamental ideas and actions of QRAM. QRAM provides an exponential time advantage compared to its classical counterpart by reading and writing all data at once, which is achieved owing to storage of data in a superposition of states. Overall, we compare six different QRAM technologies Searchable encryption (SE) is a positive way to protect users sensitive data in cloud computing setting, while preserving search ability on the server side, i.e., it allows the server to search encrypted data without leaking information about the plaintext data. In this paper, a multi-client accessing or computing encrypted cloud data, all clients with limited quantum ability outsource the key generation to a trusted key center and upload their encrypted data to the data center. Considering the feasibility of physical implementation, all quantum gates in the circuit are replaced with the combination of pi/8 rotation operator set (R-2(pi/4), CR/(pi/4), CR/(pi/4)	http://dx.doi.org/10.1109/ACCESS.2019.2960592 http://dx.doi.org/10.1145/3548679 https://link.springer.com/chapter/10.1007/978-3-031-05324-5_4
216 220 221	for Dummies Quantum Searchable Encryption for Cloud Data Based on Full-Blind Quantum Computation Quantum Software Components and Platforms: Overview and Quality Assessment Quantum software development lifecycle Quantum software engineering	Avimita; Ghosh, Śwaroop Liu, Wenjie; Xu, Yinsong; Liu, Wen; Wang, Haibin; Lei, Zhibin Serrano, Manuel A.; Cruz- Lemus, Jose A.; Perez- Castillo, Ricardo; Piattini, Mario B Weder, J Barzen, F Leymann, D Vietz	2019 2023 2022	computing principles to store and modify quantum or classical data efficiently, greatly accelerating a wide range of computer processes. Despite its importance, there is a lack of comprehensive surveys that cover the entire spectrum of QRAM architectures. We fill this gap by providing a comprehensive review of QRAM, emphasizing its significance and viability in existing noisy quantum computers. By drawing comparisons with conventional RAM for ease of understanding, this survey clarifies the fundamental ideas and actions of QRAM. QRAM provides an exponential time advantage compared to its classical counterpart by reading and writing all data at once, which is achieved owing to storage of data in a superposition of states. Overall, we compare six different QRAM technologies Searchable encryption (SE) is a positive way to protect users sensitive data in cloud computing setting, while preserving search ability on the server side, i.e., it allows the server to search encrypted data without leaking information about the plaintext data. In this paper, a multi-client accessing or computing encrypted cloud data, all clients with limited quantum ability outsource the key generation to a trusted key center and upload their encrypted data to the data center. Considering the feasibility of physical implementation, all quantum gates in the circuit are replaced with the combination of pi/8 totation operator set (R-Z(pi/4), RZ(pi/4), CZR(pi/4), CZR(pi/4), CCR/(pi/4)). L addition, the data center is only allowed to perform one pi/8 totation operator each time, but does not CREMC and multiple for the information society. In the last few decades, our understanding of quantum computiers has expanded and multiple forts have been made to create languages, libraries, tools, and environments to facilitate their programming. Nonetheless, quantum computers are complex systems at the bottom of a stack of layers that programmers need to understand. Hence, efforts towards creating quantum programming languages and computing environments th	http://dx.doi.org/10.1109/ACCESS.2019.2960592 http://dx.doi.org/10.1145/3548679 https://link.springer.com/chapter/10.1007/978-3-031-05324-5_4
216 220 221	for Dummies Quantum Searchable Encryption for Cloud Data Based on Full-Blind Quantum Computation Quantum Software Components and Platforms: Overview and Quality Assessment Quantum software development lifecycle Quantum software engineering	Avimita; Ghosh, Śwaroop Liu, Wenjie; Xu, Yinsong; Liu, Wen; Wang, Haibin; Lei, Zhibin Serrano, Manuel A.; Cruz- Lemus, Jose A.; Perez- Castillo, Ricardo; Piattini, Mario B Weder, J Barzen, F Leymann, D Vietz	2019 2023 2022	computing principles to store and modify quantum or classical data efficiently, greatly accelerating a wide range of computer processes. Despite its importance, there is a lack of comprehensive surveys that cover the entire spectrum of QRAM architectures. We fill this gap by providing a comprehensive review of QRAM, emphasizing its significance and viability in existing noisy quantum computers. By drawing comparisons with conventional RAM for ease of understanding, this survey clarifies the fundamental ideas and actions of QRAM. QRAM provides an exponential time advantage compared to its classical counterpart by reading and writing all data at once, which is achieved owing to storage of data in a superposition of states. Overall, we compare six different QRAM technologies Searchable encryption (SE) is a positive way to protect users sensitive data in cloud computing setting, while preserving search ability on the server side, i.e., it allows the server to search encrypted data without leaking information about the plaintext data. In this paper, a multi-client accessing or computing encrypted cloud data, all clients with limited quantum ability outsource the key generation to a trusted key center and upload their encrypted data to the data center. Considering the feasibility of physical implementation, all quantum gates in the circuit are replaced with the combination of pi/8 rotation operator set (R-2(pi/4), CR/(pi/4), CR/(pi/4)	http://dx.doi.org/10.1109/ACCESS.2019.2960592 http://dx.doi.org/10.1145/3548679 https://link.springer.com/chapter/10.1007/978-3-031-05324-5_4
216	for Dummies Quantum Searchable Encryption for Cloud Data Based on Full-Blind Quantum Computation Quantum Software Components and Platforms: Overview and Quality Assessment Quantum software development lifecycle Quantum software engineering	Avimita; Ghosh, Śwaroop Liu, Wenjie; Xu, Yinsong; Liu, Wen; Wang, Haibin; Lei, Zhibin Serrano, Manuel A.; Cruz- Lemus, Jose A.; Perez- Castillo, Ricardo; Piattini, Mario B Weder, J Barzen, F Leymann, D Vietz	2019 2023 2022	computing principles to store and modify quantum or classical data efficiently, greatly accelerating a wide range of computer processes. Despite its importance, there is a lack of comprehensive surveys that cover the entire spectrum of QRAM architectures. We fill this gap by providing a comprehensive review of QRAM, emphasizing its significance and viability in existing noisy quantum computers. By drawing comparisons with conventional RAM for ease of understanding, this survey clarifies the fundamental ideas and actions of QRAM. QRAM provides an exponential time advantage compared to its classical counterpart by reading and writing all data at once, which is achieved owing to storage of data in a superposition of states. Overall, we compare six different QRAM technologies Searchable encryption (SE) is a positive way to protect users sensitive data in cloud computing setting, while preserving search ability on the server side, i.e., it allows the server to search encrypted data without leaking information about the plaintext data. In this paper, a multi-client accessing or computing encrypted cloud data, all clients with limited quantum ability outsource the key generation to a trusted key center and upload their encrypted data to the data center. Considering the feasibility of physical implementation, all quantum gates in the circuit are replaced with the combination of pi/8 rotation operator set (R-2(pi/4), CR/(pi/4), CR/(pi/4)	http://dx.doi.org/10.1109/ACCESS.2019.2960592 http://dx.doi.org/10.1145/3548679 https://link.springer.com/chapter/10.1007/978-3-031-05324-5_4

223	Quantum software engineering: a	MA Akbar, AA Khan, S	2022	Quantum computing (QC) is no longer only a scientific interest but is rapidly becoming an industrially available technology that can	https://arxiv.org/abs/2211.13990
	new genre of computing	Mahmood, S Rafi		potentially tackle the limitations of classical computing. Over the last few years, major technology giants have invested in developing	
				hardware and programming frameworks to develop quantum-specific applications. QC hardware technologies are gaining momentum, however, operationalizing the QC technologies trigger the need for software-intensive methodologies, techniques, processes, tools,	
				roles, and responsibilities for developing industrial-centric quantum software applications. This paper presents the vision of the	
				quantum software engineering (QSE) life cycle consisting of quantum requirements engineering, quantum software design, quantum	
				quantum software engineering (QCL) ne cycle constantio or quantum equipments engineering, quantum software design, quantu	
224	Quantum software engineering:	J Zhao	2020	Quantum software plays a critical role in exploiting the full potential of quantum computing systems. As a result, it has been drawing	https://arxiv.org/abs/2007.07047
227	Landscapes and horizons	o Endo	2020	increasing attention recently. This paper defines the term "guantum software engineering" and introduces a guantum software life	
				cycle. The paper also gives a generic view of quantum software engineering and discusses the quantum software engineering	
				processes, methods, and tools. Based on these, the paper provides a comprehensive survey of the current state of the art in the field	
				and presents the challenges and opportunities we face. The survey summarizes the technology available in the various phases of the	
				quantum software life cycle, including quantum software requirements analysis, design, implementation, test, and maintenance. It also	
				covers the crucial issues of quantum software reuse and measurement.	
	Quantum-based privacy-preserving	Abulkasim, Hussein;	2021	Sealed-bid auction is one of the major protocols used in the electronic commerce industry. Recently, many schemes have been	http://dx.doi.org/10.1016/j.ijleo.2021.167039
	sealed-bid auction on the blockchain	Mashatan, Atefeh; Ghose,		proposed to implement sealed-bid auction protocols based on quantum computing, while other schemes have adopted the blockchain.	
		Shohini		However, each of the previous proposals has focused on a few sealed-bid auction features while simply ignoring others. A robust	
				sealed-bid auction protocol should comprise all important features and satisfy all requirements. We design a sealed-bid auction	
				protocol using quantum-based blockchain, in which the transactions of the sealed-bid auction are stored using the blockchain and	
				supported by quantum computation and communication to enhance security and protect privacy. Our proposed protocol takes	
000	Oversteen langing d D''' to t	LIMIL Coord DK	0001	advantage of both quantum computing and blockchain technology to ensure essential features and requirements. Security analysis,	
	Quantum-Inspired Differential Evolution for Resource-Constrained	HMH Saad, RK Chakrabortty	2021	The Resource-Constrained Project Scheduling Problem (RCPSP) is an NP-hard optimisation problem that can be found in many real-	https://ieeexplore.ieee.org/abstract/document/9504970/
	Project-Scheduling: Preliminary	Chakrabortty		world applications. Considerable research effort has been put into overcoming the difficulties in solving the RCPSP by proposing innovative heuristics, meta-heuristics and their hybridisation. However, finding optimal solutions is still not guaranteed. It is known that	
	Study			quantum-inspired metaheuristics can improve population diversity and the quality of solutions but little has been published on adapting	
				them to solving RCPSPs. Here, we examine the performance of a Quantum-Inspired Differential Evolution (QIDE) algorithm in solving	
				such problems. The proposed QIDE uses a quantum population that is initialised using the rotation quantum gate and quantum	
				superposition in the proposed guide a decay addition population interaction management of the superposition operators. A local search is also adopted to	
231	Quantum2FA: Efficient Quantum-	Wang, Qingxuan; Wang,	2023	Smart-card based password authentication has been the most widely used two-factor authentication (2FA) mechanism for security-	http://dx.doi.org/10.1109/TDSC.2021.3129512
	Resistant Two-Factor Authentication			critical applications (e.g., e-Health, smart grid and e-Commerce) in the past decades, and it is likely to hold its status in the	
	Scheme for Mobile Devices	3 . 3		foreseeable future. Hundreds of this type of 2FA schemes have been proposed, yet to our knowledge, most of them are built on the	
				intractability of conventional hard problems (e.g., discrete logarithm problems and integer factoring problems) which are no longer	
				hard in the quantum era. With the recent advancements in quantum computing, the design of secure and efficient smart-card based	
				password authentication schemes against quantum attacks is becoming increasingly urgent. However, it is not as simple as it seems,	
				how to design such a quantum-resistant 2FA scheme is challenging due to the demanding security requirements and the resource-	
	QUASIM: Quantum computing	A Agrawal, H Stein, S Xu, S	2023	Machining is a key manufacturing technology, representing one of the most significant German economic sectors. To ensure required	https://ceur-ws.org/Vol-3618/pe_paper_3.pdf
	enhanced service ecosystem for	Janzen, W Maass		high-quality assurance and prevent manufacturing errors, process simulations based on digital twins can be applied. However, the	
	simulation in manufacturing			current digitization and simulation models face limitations in terms of computational requirements and expert knowledge. As a	
				consequence, important physical effects in industrial practice are either neglected or roughly approximated, resulting in compromised	
				decision-making and economic disadvantages. Since quantum computing (QC) has shown promising benefits in solving numerous algorithmic problems and simulations, the QUASIM research project aims to use QC to improve simulations in manufacturing, reduce	
				modeling efforts and error rates, and develop innovative solutions.	
235		Fu X · Vu lintao: Su Xing:	2021		http://dx.doi.org/10.1145/3483528
	Quingo: A Programming Framework for Heterogeneous Quantum-		2021	The increasing control complexity of Noisy Intermediate-Scale Quantum (NISQ) systems underlines the necessity of integrating	http://dx.doi.org/10.1145/3483528
	for Heterogeneous Quantum-	Jiang, Hanru; Wu, Hua;	2021	The increasing control complexity of Noisy Intermediate-Scale Quantum (NISQ) systems underlines the necessity of integrating quantum hardware with quantum software. While mapping heterogeneous quantum-classical computing (HQCC) algorithms to NISQ	http://dx.doi.org/10.1145/3483528
	for Heterogeneous Quantum- Classical Computing with NISQ	Jiang, Hanru; Wu, Hua; Cheng, Fucheng; Deng, Xi;	2021	The increasing control complexity of Noisy Intermediate-Scale Quantum (NISQ) systems underlines the necessity of integrating quantum hardware with quantum software. While mapping heterogeneous quantum-classical computing (HQCC) algorithms to NISQ hardware for execution, we observed a few dissatisfactions in quantum programming languages (QPLs), including difficult mapping to	http://dx.doi.org/10.1145/3483528
	for Heterogeneous Quantum- Classical Computing with NISQ	Jiang, Hanru; Wu, Hua;	2021	The increasing control complexity of Noisy Intermediate-Scale Quantum (NISQ) systems underlines the necessity of integrating quantum hardware with quantum software. While mapping heterogeneous quantum-classical computing (HQCC) algorithms to NISQ	http://dx.doi.org/10.1145/3483528
	for Heterogeneous Quantum- Classical Computing with NISQ Features	Jiang, Hanru; Wu, Hua; Cheng, Fucheng; Deng, Xi; Zhang, Jinrong; Jin, Lei;	2021	The increasing control complexity of Noisy Intermediate-Scale Quantum (NISQ) systems underlines the necessity of integrating quantum hardware with quantum software. While mapping heterogeneous quantum-classical computing (HQCC) algorithms to NISQ hardware for execution, we observed a few dissatisfactions in quantum programming languages (QPLs), including difficult mapping to hardware, limited expressiveness, and counter-intuitive code. In addition, noisy qubits require repeatedly performed quantum	http://dx.doi.org/10.1145/3483528
	for Heterogeneous Quantum- Classical Computing with NISQ Features	Jiang, Hanru; Wu, Hua; Cheng, Fucheng; Deng, Xi; Zhang, Jinrong; Jin, Lei; Yang, Yihang; Xu, Le; Hu,	2021	The increasing control complexity of Noisy Intermediate-Scale Quantum (NISQ) systems underlines the necessity of integrating quantum hardware with quantum software. While mapping heterogeneous quantum-classical computing (HQCC) algorithms to NISQ hardware for execution, we observed a few dissatisfactions in quantum programming languages (QPLs), including difficult mapping to hardware, limited expressiveness, and counter-intuitive code. In addition, noisy qubits require repeatedly performed quantum experiments, which explicitly operate low-level configurations, such as pulses and timing of operations. This requirement is beyond the	http://dx.doi.org/10.1145/3483528
241	for Heterogeneous Quantum- Classical Computing with NISQ Features Resilience Optimization of Post-	Jiang, Hanru; Wu, Hua; Cheng, Fucheng; Deng, Xi; Zhang, Jinrong; Jin, Lei; Yang, Yihang; Xu, Le; Hu, Chunchao; Huang, Anqi; Huang, Guangyao; Qiang, Farooq, Sana; Altaf, Ayesha;	2021	The increasing control complexity of Noisy Intermediate-Scale Quantum (NISQ) systems underlines the necessity of integrating quantum hardware with quantum software. While mapping heterogeneous quantum-classical computing (HQCC) algorithms to NISQ hardware for execution, we observed a few dissatisfactions in quantum programming languages (QPLs), including difficult mapping to hardware, limited expressiveness, and counter-intuitive code. In addition, noisy qubits require repeatedly performed quantum experiments, which explicitly operate low-level configurations, such as pulses and timing of operations. This requirement is beyond the scope or capability of most existing QPLs. We summarize three execution models to depict the quantum-classical interaction of existing QPLs. Based on the refined HQCC model, we propose the Quingo framework to integrate and manage quantum-classical Recent developments in quantum computing have shed light on the shortcomings of the conventional public cryptosystem. Even while	http://dx.doi.org/10.1145/3483528 http://dx.doi.org/10.3390/s23125379
241	for Heterogeneous Quantum- Classical Computing with NISQ Features Resilience Optimization of Post- Quantum Cryptography Key	Jiang, Hanru; Wu, Hua; Cheng, Fucheng; Deng, Xi; Zhang, Jinrong; Jin, Lei; Yang, Yihang; Xu, Le; Hu, Chunchao; Huang, Anqi; <u>Huang, Guangyao; Qiang,</u> Farooq, Sana; Altaf, Ayesha; Iqbal, Faiza; Thompson,		The increasing control complexity of Noisy Intermediate-Scale Quantum (NISQ) systems underlines the necessity of integrating quantum hardware with quantum software. While mapping heterogeneous quantum-classical computing (HQCC) algorithms to NISQ hardware for execution, we observed a few dissatisfactions in quantum programming languages (QPLs), including difficult mapping to hardware, limited expressiveness, and counter-intuitive code. In addition, noisy qubits require repeatedly performed quantum experiments, which explicitly operate low-level configurations, such as pulses and timing of operations. This requirement is beyond the scope or capability of most existing QPLs. We summarize three execution models to depict the quantum-classical interaction of existing QPLs. Based on the refined HQCC model, we propose the Quingo framework to integrate and manage quantum-classical Recent developments in quantum computing have shed light on the shortcomings of the conventional public cryptosystem. Even while Shor's algorithm cannot yet be implemented on quantum computers, it indicates that asymmetric key encryption will not be practicable	
241	for Heterogeneous Quantum- Classical Computing with NISQ Features Resilience Optimization of Post- Quantum Cryptography Key Encapsulation Algorithms	Jiang, Hanru; Wu, Hua; Cheng, Fucheng; Deng, Xi; Zhang, Jinrong; Jin, Lei; Yang, Yihang; Xu, Le; Hu, Chunchao; Huang, Anqi; Huang, Guangyao; Diang, Farooq, Sana; Altaf, Ayesha; Iqbal, Faiza; Thompson, Ernesto Bautista; Vargas,		The increasing control complexity of Noisy Intermediate-Scale Quantum (NISQ) systems underlines the necessity of integrating quantum hardware with quantum software. While mapping heterogeneous quantum-classical computing (HQCC) algorithms to NISQ hardware for execution, we observed a few dissatisfactions in quantum programming languages (QPLs), including difficult mapping to hardware for execution, we observed a few dissatisfactions in quantum programming languages (QPLs), including difficult mapping to hardware, limited expressiveness, and counter-intuitive code. In addition, noisy qubits require repeatedly performed quantum experiments, which explicitly operate low-level configurations, such as pulses and timing of operations. This requirement is beyond the scope or capability of most existing QPLs. We summarize three execution models to depict the quantum-classical interaction of existing QPLs. Based on the refined HQCC model, we propose the Quingo framework to integrate and manage quantum-classical Recent developments in quantum computing have shed light on the shortcomings of the conventional public cryptosystem. Even while Shor's algorithm cannot yet be implemented on quantum computers, it indicates that asymmetric key encryption will not be practicable or secure in the near future. The National Institute of Standards and Technology (NIST) has started looking for a post-quantum	
241	for Heterogeneous Quantum- Classical Computing with NISQ Features Resilience Optimization of Post- Quantum Cryptography Key Encapsulation Algorithms	Jiang, Hanru; Wu, Hua; Cheng, Fucheng; Deng, Xi; Zhang, Jinrong; Jin, Lei; Yang, Yihang; Xu, Le; Hu, Chunchao; Huang, Anqi; Huang, Guangyao; Qiang, Farooq, Sana; Altaf, Ayesha; Iqbal, Faiza; Thompson, Ernesto Bautista; Vargas, Debora Libertad Ramirez;		The increasing control complexity of Noisy Intermediate-Scale Quantum (NISQ) systems underlines the necessity of integrating quantum hardware with quantum software. While mapping heterogeneous quantum-classical computing (HQCC) algorithms to NISQ hardware for execution, we observed a few dissatisfactions in quantum programming languages (QPLs), including difficult mapping to hardware, limited expressiveness, and counter-intuitive code. In addition, noisy qubits require repeatedly performed quantum experiments, which explicitly operate low-level configurations, such as pulses and timing of operations. This requirement is beyond the scope or capability of most existing QPLs. We summarize three execution models to depict the quantum-classical interaction of existing QPLs. Based on the refined HQCC model, we propose the Quingo framework to integrate and manage quantum-classical Recent developments in quantum computing have shed light on the shortcomings of the conventional public cryptosystem. Even while Shor's algorithm cannot yet be implemented on quantum computers, it indicates that asymmetric key encryption will not be practicable or secure in the near future. The National Institute of Standards and Technology (NIST) has started looking for a post-quantum encryption algorithm that is resistant to the development of future quantum computers as response to this security concern. The	
241	for Heterogeneous Quantum- Classical Computing with NISQ Features Resilience Optimization of Post- Quantum Cryptography Key Encapsulation Algorithms	Jiang, Hanru; Wu, Hua; Cheng, Fucheng; Deng, Xi; Zhang, Jinrong; Jin, Lei; Yang, Yihang; Xu, Le; Hu, Chunchao; Huang, Anqi; Huang, Guangyao; Qiang, Farooq, Sana; Altaf, Ayesha; Iqbal, Faiza; Thompson, Ernesto Bautista; Vargas, Debora Libertad Ramirez; Diez, Isabel de la Torre;		The increasing control complexity of Noisy Intermediate-Scale Quantum (NISQ) systems underlines the necessity of integrating quantum hardware with quantum software. While mapping heterogeneous quantum-classical computing (HQCC) algorithms to NISQ hardware for execution, we observed a few dissatisfactions in quantum programming languages (QPLs), including difficult mapping to hardware, limited expressiveness, and counter-intuitive code. In addition, noisy qubits require repeatedly performed quantum experiments, which explicitly operate low-level configurations, such as pulses and timing of operations. This requirement is beyond the scope or capability of most existing QPLs. We summarize three execution models to depict the quantum-classical interaction of existing QPLs. Based on the refined HQCC model, we propose the Quingo framework to integrate and manage quantum-classical Recent developments in quantum computing have shed light on the shortcomings of the conventional public cryptosystem. Even while Shor's algorithm cannot yet be implemented on quantum computers, it indicates that asymmetric key encryption will not be practicable or secure in the near future. The National Institute of Standards and Technology (NIST) has started looking for a post-quantum encryption algorithm that is resistant to the development of future quantum computers as a response to this security concern. The current focus is on standardizing asymmetric cryptography that should be impenetrable by a quantum computer. This has become	
241	for Heterogeneous Quantum- Classical Computing with NISQ Features Resilience Optimization of Post- Quantum Cryptography Key Encapsulation Algorithms	Jiang, Hanru; Wu, Hua; Cheng, Fucheng; Deng, Xi; Zhang, Jinrong; Jin, Lei; Yang, Yihang; Xu, Le; Hu, Chunchao; Huang, Anqi; Huang, Guangyao; Qiang, Farooq, Sana; Altaf, Ayesha; Iqbal, Faiza; Thompson, Ernesto Bautista; Vargas, Debora Libertad Ramirez;		The increasing control complexity of Noisy Intermediate-Scale Quantum (NISQ) systems underlines the necessity of integrating quantum hardware with quantum software. While mapping heterogeneous quantum-classical computing (HQCC) algorithms to NISQ hardware for execution, we observed a few dissatisfactions in quantum programming languages (QPLs), including difficult mapping to hardware for execution, we observed a few dissatisfactions in quantum programming languages (QPLs), including difficult mapping to hardware, limited expressiveness, and counter-intuitive code. In addition, noisy qubits require repeatedly performed quantum experiments, which explicitly operate low-level configurations, such as pulses and timing of operations. This requirement is beyond the scope or capability of most existing QPLs. We summarize three execution models to depict the quantum-classical interaction of existing QPLs. Based on the refined HQCC model, we propose the Quingo framework to integrate and manage quantum-classical Recent developments in quantum computing have shed light on the shortcomings of the conventional public cryptosystem. Even while Shor's algorithm cannot yet be implemented on quantum computers, it indicates that asymmetric key encryption will not be practicable or secure in the near future. The National Institute of Standards and Technology (NIST) has started looking for a post-quantum encryption algorithm that is resistant to the development of future quantum computers as a response to this security concern. The current focus is on standardizing asymmetric cryptography that should be impenetrable by a quantum computer. This has become increasingly important in recent years. Currently, the process of standarding asymmetric cryptography is coming very close to being	
241	for Heterogeneous Quantum- Classical Computing with NISQ Features Resilience Optimization of Post- Quantum Cryptography Key Encapsulation Algorithms	Jiang, Hanru; Wu, Hua; Cheng, Fucheng; Deng, Xi; Zhang, Jinrong; Jin, Lei; Yang, Yihang; Xu, Le; Hu, Chunchao; Huang, Anqi; Huang, Guangyao; Qiang, Farooq, Sana; Altaf, Ayesha; Iqbal, Faiza; Thompson, Ernesto Bautista; Vargas, Debora Libertad Ramirez; Diez, Isabel de la Torre; Ashraf, Imran	2023	The increasing control complexity of Noisy Intermediate-Scale Quantum (NISQ) systems underlines the necessity of integrating quantum hardware with quantum software. While mapping heterogeneous quantum-classical computing (HQCC) algorithms to NISQ hardware for execution, we observed a few dissatisfactions in quantum programming languages (QPLs), including difficult mapping to hardware, limited expressiveness, and counter-intuitive code. In addition, noisy qubits require repeatedly performed quantum experiments, which explicitly operate low-level configurations, such as pulses and timing of operations. This requirement is beyond the scope or capability of most existing QPLs. We summarize three execution models to depict the quantum-classical interaction of existing QPLs. Based on the refined HQCC model, we propose the Quingo framework to integrate and manage quantum-classical Recent developments in quantum computing have shed light on the shortcomings of the conventional public cryptosystem. Even while Shor's algorithm cannot yet be implemented on quantum computers, it indicates that asymmetric key encryption will not be practicable or secure in the near future. The National Institute of Standards and Technology (NIST) has started looking for a post-quantum encryption algorithm that is resistant to the development of future quantum computers as a response to this security concern. The current focus is on standardizing asymmetric cryptography that should be impenentable by a quantum computer. This has become increasingly important in recent years. Currently, the process of standardizing asymmetric cryptography is coming very close to being finished. This study evaluated the performance of two post-quantum compating asymmetric cryptography is coming very close to being finished. This study evaluated the performance of two post-quantum compating asymmetric cryptography is coming very close to being finished.	http://dx.doi.org/10.3390/s23125379
241	for Heterogeneous Quantum- Classical Computing with NISQ Features Resilience Optimization of Post- Quantum Cryptography Key Encapsulation Algorithms Resource Allocation in Quantum-Key-	Jiang, Hanru; Wu, Hua; Cheng, Fucheng; Deng, Xi; Zhang, Jinrong; Jin, Lei; Yang, Yihang; Xu, Le; Hu, Chunchao; Huang, Anqi; Huang, Guangyao; Qiang, Farooq, Sana; Altaf, Ayesha; Iqbal, Faiza; Thompson, Ernesto Bautista; Vargas, Debora Libertad Ramirez; Diez, Isabel de la Torre; Ashraf, Imran Zhu, Qingcheng; Yu,		The increasing control complexity of Noisy Intermediate-Scale Quantum (NISQ) systems underlines the necessity of integrating quantum hardware with quantum software. While mapping heterogeneous quantum-classical computing (HQCC) algorithms to NISQ hardware for execution, we observed a few dissatisfactions in quantum programming languages (QPLs), including difficult mapping to hardware, limited expressiveness, and counter-intuitive code. In addition, noisy qubits require repeatedly performed quantum experiments, which explicitly operate low-level configurations, such as pulses and timing of operations. This requirement is beyond the scope or capability of most existing QPLs. We summarize three execution models to depict the quantum-classical interaction of existing QPLs. Based on the refined HQCC model, we propose the Quingo framework to integrate and manage quantum-classical Recent developments in quantum computing have shed light on the shortcomings of the conventional public cryptosystem. Even while Shor's algorithm cannot yet be implemented on quantum computers, it indicates that asymmetric key encryption will not be practicable or secure in the near future. The National Institute of Standards and Technology (NIST) has started looking for a post-quantum encryption algorithm that is resistant to the development of future quantum computers as a response to this security concern. The current focus is on standardizing asymmetric cryptography that should be impenetrable by a quantum computer. This has become increasingly important in recent years. Currently, the process of standardizing asymmetric cryptography is coming yery close to being finished. This study evaluated the performance of two post-quantum cryptography (PQC) algorithms, both of which were selected as Datacenter networks (DCNS) with cloud-edge collaboration are emerging to satisfy the communication, computation, and caching (3C)	
241	for Heterogeneous Quantum- Classical Computing with NISQ Features Resilience Optimization of Post- Quantum Cryptography Key Encapsulation Algorithms Resource Allocation in Quantum-Key- Distribution-Secured Datacenter	Jiang, Hanru; Wu, Hua; Cheng, Fucheng; Deng, Xi; Zhang, Jinrong; Jin, Lei; Yang, Yihang; Xu, Le; Hu, Chunchao; Huang, Anqi; Huang, Guangyao; Qiang, Farooq, Sana; Altaf, Ayesha; Iqbal, Faiza; Thompson, Ernesto Bautista; Vargas, Debora Libertad Ramirez; Diez, Isabel de la Torre; Ashraf, Imran Zhu, Qingcheng; Yu, Xiaosong; Zhao, Yongli; Nag,	2023	The increasing control complexity of Noisy Intermediate-Scale Quantum (NISQ) systems underlines the necessity of integrating quantum hardware with quantum software. While mapping heterogeneous quantum-classical computing (HQCC) algorithms to NISQ hardware for execution, we observed a few dissatisfactions in quantum programming languages (QPLs), including difficult mapping to hardware for execution, we observed a few dissatisfactions in quantum programming languages (QPLs), including difficult mapping to hardware, limited expressiveness, and counter-intuitive code. In addition, noisy qubits require repeatedly performed quantum experiments, which explicitly operate low-level configurations, such as pulses and timing of operations. This requirement is beyond the scope or capability of most existing QPLs. We summarize three execution models to depict the quantum-classical interaction of existing QPLs. Based on the refined HQCC model, we propose the Quingo framework to integrate and manage quantum-classical Recent developments in quantum computing have shed light on the shortcomings of the conventional public cryptosystem. Even while Shor's algorithm cannot yet be implemented on quantum computers, it indicates that asymmetric key encryption will not be practicable or secure in the near future. The National Institute of Standards and Technology (NIST) has started looking for a post-quantum encryption algorithm that is resistant to the development of future quantum computers as a response to this security concern. The current focus is on standardizing asymmetric cryptography that should be impenetrable by a quantum computer. This has become increasingly important in recent years. Currently, the process of standardizing asymmetric cryptography is coming very close to being finished. This study evaluated the performance of two post-quantum reprography (PCQ) algorithms, both of which were selected as Datacenter networks (DCNs) with cloud-edge collaboration are emerging to satisfy the communication, computa	http://dx.doi.org/10.3390/s23125379
241	for Heterogeneous Quantum- Classical Computing with NISQ Features Resilience Optimization of Post- Quantum Cryptography Key Encapsulation Algorithms Resource Allocation in Quantum-Key- Distribution-Secured Datacenter Networks With Cloud-Edge	Jiang, Hanru; Wu, Hua; Cheng, Fucheng; Deng, Xi; Zhang, Jinrong; Jin, Lei; Yang, Yihang; Xu, Le; Hu, Chunchao; Huang, Anqi; Huang, Guangyao; Qiang, Farooq, Sana; Altaf, Ayesha; Iqbal, Faiza; Thompson, Ernesto Bautista; Vargas, Debora Libertad Ramirez; Diez, Isabel de la Torre; Ashraf, Imran Zhu, Qingcheng; Yu,	2023	The increasing control complexity of Noisy Intermediate-Scale Quantum (NISQ) systems underlines the necessity of integrating quantum hardware with quantum software. While mapping heterogeneous quantum-classical computing (HQCC) algorithms to NISQ hardware for execution, we observed a few dissatisfactions in quantum programming languages (QPLs), including difficult mapping to hardware for execution, we observed a few dissatisfactions in quantum programming languages (QPLs), including difficult mapping to hardware for execution, we observed a few dissatisfactions, such as pulses and timing of operations. This requirement is beyond the scope or capability of most existing QPLs. We summarize three execution models to depict the quantum-classical interaction of existing QPLs. Based on the refined HQCC model, we propose the Quingo framework to integrate and manage quantum-classical Recent developments in quantum computing have shed light on the shortcomings of the conventional public cryptosystem. Even while Shor's algorithm cannot yet be implemented on quantum computers, it indicates that asymmetric key encryption will not be practicable or secure in the near future. The National Institute of Standards and Technology (NIST) has started looking for a post-quantum encryption algorithm that is resistant to the development of future quantum computers as a response to this security concern. The current focus is on standardizing asymmetric cryptography that should be impenetrable by a quantum computer. This has become increasingly important in recent years. Currently, the process of standardizing asymmetric cryptography is coming very close to being finished. This study evaluated the performance of two post-quantum cryptography (PQC) algorithms, both of which were selected as Datacenter networks (DCNs) with cloud-edge collaboration are emerging to satisfy the communication, computation, and caching (3C) requirements of future services such as cloud-based IoT services. However, the enroute data over DCNs wit	http://dx.doi.org/10.3390/s23125379
241	for Heterogeneous Quantum- Classical Computing with NISQ Features Resilience Optimization of Post- Quantum Cryptography Key Encapsulation Algorithms Resource Allocation in Quantum-Key- Distribution-Secured Datacenter	Jiang, Hanru; Wu, Hua; Cheng, Fucheng; Deng, Xi; Zhang, Jinrong; Jin, Lei; Yang, Yihang; Xu, Le; Hu, Chunchao; Huang, Anqi; Huang, Guangyao; Qiang, Farooq, Sana; Altaf, Ayesha; Iqbal, Faiza; Thompson, Ernesto Bautista; Vargas, Debora Libertad Ramirez; Diez, Isabel de la Torre; Ashraf, Imran Zhu, Qingcheng; Yu, Xiaosong; Zhao, Yongli; Nag,	2023	The increasing control complexity of Noisy Intermediate-Scale Quantum (NISQ) systems underlines the necessity of integrating quantum hardware with quantum software. While mapping heterogeneous quantum-classical computing (HQCC) algorithms to NISQ hardware for execution, we observed a few dissatisfactions in quantum programming languages (QPLs), including difficult mapping to hardware, limited expressiveness, and counter-intuitive code. In addition, noisy qubits require repeatedly performed quantum experiments, which explicitly operate low-level configurations, such as pulses and timing of operations. This requirement is beyond the exoper or capability of most existing QPLs. We summarize three execution models to depict the quantum-classical interaction of existing QPLs. Based on the refined HQCC model, we propose the Quingo framework to integrate and manage quantum-classical Recent developments in quantum computing have shed light on the shortcomings of the conventional public cryptosystem. Even while Shor's algorithm cannot yet be implemented on quantum computers, it indicates that asymmetric key encryption will not be practicable or secure in the near future. The National Institute of Standards and Technology (NIST) has started looking for a post-quantum encryption algorithm that is resistant to the development of future quantum computers as a response to this security concern. The current focus is on standardizing asymmetric cryptography that should be impenetrable by a quantum computer. This has become increasingly important in recent years. Currently, the process of standardizing asymmetric cryptography tas coming assist the weel as Datacenter networks (DCNs) with cloud-edge collaboration are emerging to satisfy the communication, computation, and caching (3C) requirements of liture services such as cloud-based IoT services. However, the enroute data over DCNs with cloud-edge collaboration is likely to suffer from cyberattacks such as eavesdropping. A large number of services require not onl	http://dx.doi.org/10.3390/s23125379
241	for Heterogeneous Quantum- Classical Computing with NISQ Features Resilience Optimization of Post- Quantum Cryptography Key Encapsulation Algorithms Resource Allocation in Quantum-Key- Distribution-Secured Datacenter Networks With Cloud-Edge	Jiang, Hanru; Wu, Hua; Cheng, Fucheng; Deng, Xi; Zhang, Jinrong; Jin, Lei; Yang, Yihang; Xu, Le; Hu, Chunchao; Huang, Anqi; Huang, Guangyao; Qiang, Farooq, Sana; Altaf, Ayesha; Iqbal, Faiza; Thompson, Ernesto Bautista; Vargas, Debora Libertad Ramirez; Diez, Isabel de la Torre; Ashraf, Imran Zhu, Qingcheng; Yu, Xiaosong; Zhao, Yongli; Nag,	2023	The increasing control complexity of Noisy Intermediate-Scale Quantum (NISQ) systems underlines the necessity of integrating quantum hardware with quantum software. While mapping heterogeneous quantum-classical computing (HQCC) algorithms to NISQ hardware for execution, we observed a few dissatisfactions in quantum programming languages (QPLs), including difficult mapping to hardware for execution, we observed a few dissatisfactions in quantum programming languages (QPLs), including difficult mapping to hardware, limited expressiveness, and counter-intuitive code. In addition, noisy qubits require repeatedly performed quantum experiments, which explicitly operate low-level configurations, such as pulses and timing of operations. This requirement is beyond the scope or capability of most existing QPLs. We summarize three execution models to depict the quantum-classical interaction of existing QPLs. Based on the refined HQCC model, we propose the Quingo framework to integrate and manage quantum-classical Recent developments in quantum computing have shed light on the shortcomings of the conventional public cryptosystem. Even while Shor's algorithm cannot yet be implemented on quantum computers, it indicates that asymmetric key encryption will not be practicable or secure in the near future. The National Institute of Standards and Technology (NIST) has started looking for a post-quantum encryption algorithm that is resistant to the development of future quantum computers as a response to this security concern. The current focus is on standardizing asymmetric cryptography that should be impenetrable by a quantum computer, such as become increasingly important in recent years. Currently, the process of standardizing asymmetric cryptography is coming very close to being finished. This study evaluated the performance of two post-quantum cryptography (PQC) algorithms, both of which were selected as Datacenter networks (DCNs) with cloud-edge collaboration are emerging to satisfy the communication, computa	http://dx.doi.org/10.3390/s23125379
241	for Heterogeneous Quantum- Classical Computing with NISQ Features Resilience Optimization of Post- Quantum Cryptography Key Encapsulation Algorithms Resource Allocation in Quantum-Key- Distribution-Secured Datacenter Networks With Cloud-Edge	Jiang, Hanru; Wu, Hua; Cheng, Fucheng; Deng, Xi; Zhang, Jinrong; Jin, Lei; Yang, Yihang; Xu, Le; Hu, Chunchao; Huang, Anqi; Huang, Guangyao; Qiang, Farooq, Sana; Altaf, Ayesha; Iqbal, Faiza; Thompson, Ernesto Bautista; Vargas, Debora Libertad Ramirez; Diez, Isabel de la Torre; Ashraf, Imran Zhu, Qingcheng; Yu, Xiaosong; Zhao, Yongli; Nag,	2023	The increasing control complexity of Noisy Intermediate-Scale Quantum (NISQ) systems underlines the necessity of integrating quantum hardware with quantum software. While mapping heterogeneous quantum-classical computing (HQCC) algorithms to NISQ hardware for execution, we observed a few dissatisfactions in quantum programming languages (QPLs), including difficult mapping to hardware for execution, we observed a few dissatisfactions in quantum programming languages (QPLs), including difficult mapping to hardware, limited expressiveness, and counter-intuitive code. In addition, noisy qubits require repeatedly performed quantum experiments, which explicitly operate low-level configurations, such as pulses and timing of operations. This requirement is beyond the scope or capability of most existing QPLs. We summarize three execution models to depict the quantum-classical interaction of existing QPLs. Based on the refined HQCC model, we propose the Quingo framework to integrate and manage quantum-classical recent developments in quantum computing have shed light on the shortcomings of the conventional public cryptosystem. Even while Shor's algorithm cannot yet be implemented on quantum computers, it indicates that asymmetric key encryption will not be practicable or secure in the near future. The National Institute of Standards and Technology (NIST) has started looking for a post-quantum encryption algorithm that is resistant to the development of future quantum computers as a response to this security concern. The current focus is on standardizing asymmetric cryptography is standardizing asymmetric cryptography is coming very close to being finished. This study evaluated the performance of two post-quantum cryptography (PQC) algorithms, both of which were selected as Datacenter networks (DCNs) with cloud-edge collaboration are emerging to satisfy the communication, computation, and caching (3C) requirements of future services such as cloud-based IoT services. However, the enroute data over DCNs with	http://dx.doi.org/10.3390/s23125379
241	for Heterogeneous Quantum- Classical Computing with NISQ Features Resilience Optimization of Post- Quantum Cryptography Key Encapsulation Algorithms Resource Allocation in Quantum-Key- Distribution-Secured Datacenter Networks With Cloud-Edge Collaboration	Jiang, Hanru; Wu, Hua; Cheng, Fucheng; Deng, Xi; Zhang, Jinrong; Jin, Lei; Yang, Yihang; Xu, Le; Hu, Chunchao; Huang, Anqi; Huang, Guangyao; Qiang, Farooq, Sana; Altaf, Ayesha; Iqbal, Faiza; Thompson, Ernesto Bautista; Vargas, Debora Libertad Ramirez; Diez, Isabel de la Torre; Ashraf, Imran Zhu, Qingcheng; Yu, Xiaosong; Zhao, Yongli; Nag, Avishek; Zhang, Jie	2023	The increasing control complexity of Noisy Intermediate-Scale Quantum (NISQ) systems underlines the necessity of integrating quantum hardware with quantum software. While mapping heterogeneous quantum-classical computing (HQCC) algorithms to NISQ hardware for execution, we observed a few dissatisfactions in quantum programming languages (QPLs), including difficult mapping to hardware, limited expressiveness, and counter-intuitive code. In addition, noisy qubits require repeatedly performed quantum experiments, which explicitly operate low-level configurations, such as pulses and timing of operations. This requirement is beyond the exope or capability of most existing QPLs. We summarize three execution models to depict the quantum-classical interaction of existing QPLs. Based on the refined HQCC model, we propose the Quingo framework to integrate and manage quantum-classical Recent developments in quantum computing have shed light on the shortcomings of the conventional public cryptosystem. Even while Shor's algorithm cannot yet be implemented on quantum computers, it indicates that asymmetric key encryption will not be practicable or secure in the near future. The National Institute of Standards and Technology (NIST) has started looking for a post-quantum encryption algorithm that is resistant to the development of future quantum computers as a response to this security concern. The current focus is on standardizing asymmetric cryptography that should be impenetrable by a quantum computer. This has become increasingly important in recent years. Currently, the process of standardizing asymmetric cryptography tas coming very close to being finished. This study evaluated the performance of two post-quantum cryptography tithe communication, computation, and caching (3C) requirements of future services such as cloud-based IoT services. However, the enroute data over DCNs with cloud-edge collaboration is likely to suffer from cyberattacks such as eavesdropping. A large number of services require not on	http://dx.doi.org/10.3390/s23125379 http://dx.doi.org/10.1109/JIOT.2023.3242725
241 243 244	for Heterogeneous Quantum- Classical Computing with NISQ Features Resilience Optimization of Post- Quantum Cryptography Key Encapsulation Algorithms Resource Allocation in Quantum-Key- Distribution-Secured Datacenter Networks With Cloud-Edge Collaboration Review and analysis of classical	Jiang, Hanru; Wu, Hua; Cheng, Fucheng; Deng, Xi; Zhang, Jinrong; Jin, Lei; Yang, Yihang; Xu, Le; Hu, Chunchao; Huang, Anqi; Huang, Guangyao; Qiang, Farooq, Sana; Altaf, Ayesha; Iqbal, Faiza; Thompson, Ernesto Bautista; Vargas, Debora Libertad Ramirez; Diez, Isabel de la Torre; Ashraf, Imran Zhu, Qingcheng; Yu, Xiaosong; Zhao, Yongli; Nag, Avishek; Zhang, Jie MD Noel, VO Waziri, SM	2023	The increasing control complexity of Noisy Intermediate-Scale Quantum (NISQ) systems underlines the necessity of integrating quantum hardware with quantum software. While mapping heterogeneous quantum-classical computing (HQCC) algorithms to NISQ hardware for execution, we observed a few dissatisfactions in quantum programming languages (QPLs), including difficult mapping to hardware for execution, we observed a few dissatisfactions in quantum programming languages (QPLs), including difficult mapping to hardware, limited expressiveness, and counter-intuitive code. In addition, noisy qubits require repeatedly performed quantum experiments, which explicitly operate low-level configurations, such as pulses and timing of operations. This requirement is beyond the scope or capability of most existing QPLs. We summarize three execution models to depict the quantum-classical interaction of existing QPLs. Based on the refined HQCC model, we propose the Quingo framework to integrate and manage quantum-classical Recent developments in quantum computing have shed light on the shortcomings of the conventional public cryptosystem. Even while or secure in the near future. The National Institute of Standards and Technology (NIST) has started looking for a post-quantum encryption algorithm that is resistant to the development of future quantum computers as a response to this security concern. The current focus is on standardizing asymmetric cryptography that should be impenetrable by a quantum computer. This has become increasingly important in recent years. Currently, the process of standardizing asymmetric cryptography is coming very close to being finished. This study evaluated the performance of two post-quantum cryptography (PQC) algorithms, both of which were selected as Datacenter networks (DCNs) with cloud-edge collaboration are emerging to satisfy the communication, computation, and caching (3C) requirements of future services such as cloud-based IoT services. However, the enroute data over DCNs with cl	http://dx.doi.org/10.3390/s23125379
241 243 244	for Heterogeneous Quantum- Classical Computing with NISQ Features Resilience Optimization of Post- Quantum Cryptography Key Encapsulation Algorithms Resource Allocation in Quantum-Key- Distribution-Secured Datacenter Networks With Cloud-Edge Collaboration	Jiang, Hanru; Wu, Hua; Cheng, Fucheng; Deng, Xi; Zhang, Jinrong; Jin, Lei; Yang, Yihang; Xu, Le; Hu, Chunchao; Huang, Anqi; Huang, Guangyao; Qiang, Farooq, Sana; Altaf, Ayesha; Iqbal, Faiza; Thompson, Ernesto Bautista; Vargas, Debora Libertad Ramirez; Diez, Isabel de la Torre; Ashraf, Imran Zhu, Qingcheng; Yu, Xiaosong; Zhao, Yongli; Nag, Avishek; Zhang, Jie	2023	The increasing control complexity of Noisy Intermediate-Scale Quantum (NISQ) systems underlines the necessity of integrating quantum hardware with quantum software. While mapping heterogeneous quantum-classical computing (HQCC) algorithms to NISQ hardware for execution, we observed a few dissatisfactions in quantum programming languages (QPLs), including difficult mapping to hardware for execution, we observed a lew dissatisfactions, such as pulses and timing of operations. This requirement is beyond the scope or capability of most existing QPLs. We summarize three execution models to depict the quantum-classical interaction of existing QPLs. Based on the refined HQCC model, we propose the Quingo framework to integrate and manage quantum-classical Recent developments in quantum computing have shed light on the shortcomings of the conventional public cryptosystem. Even while Shor's algorithm cannot yet be implemented on quantum computers, it indicates that asymmetric key encryption will not be practicable or secure in the near future. The National Institute of Standards and Technology (NIST) has started looking for a post-quantum encryption algorithm that is resistant to the development of future quantum computers as a response to this security concern. The current focus is on standardizing asymmetric cryptography that should be impenetrable by a quantum computer. This has become increasingly important in recent years. Currently, the process of standardizing asymmetric cryptography is coming very close to being finished. This study evaluated the performance of two post-quantum cryptography (PQC) algorithms, both of which were selected as Datacenter networks (DCNs) with cloud-edge collaboration are emerging to satisfy the communication, computation, and caching (3C) requirements of future services such as cloud-based loT services. However, the enroute data over DCNs with cloud-edge collaboration is likely to suffer from cyberattacks such as eavesdropping. A large number of services require not nly	http://dx.doi.org/10.3390/s23125379 http://dx.doi.org/10.1109/JIOT.2023.3242725
241 243 244	for Heterogeneous Quantum- Classical Computing with NISQ Features Resilience Optimization of Post- Quantum Cryptography Key Encapsulation Algorithms Resource Allocation in Quantum-Key- Distribution-Secured Datacenter Networks With Cloud-Edge Collaboration Review and analysis of classical	Jiang, Hanru; Wu, Hua; Cheng, Fucheng; Deng, Xi; Zhang, Jinrong; Jin, Lei; Yang, Yihang; Xu, Le; Hu, Chunchao; Huang, Anqi; Huang, Guangyao; Qiang, Farooq, Sana; Altaf, Ayesha; Iqbal, Faiza; Thompson, Ernesto Bautista; Vargas, Debora Libertad Ramirez; Diez, Isabel de la Torre; Ashraf, Imran Zhu, Qingcheng; Yu, Xiaosong; Zhao, Yongli; Nag, Avishek; Zhang, Jie MD Noel, VO Waziri, SM	2023	The increasing control complexity of Noisy Intermediate-Scale Quantum (NISQ) systems underlines the necessity of integrating quantum hardware with quantum software. While mapping heterogeneous quantum-classical computing (HQCC) algorithms to NISQ hardware for execution, we observed a few dissatisfactions in quantum programming languages (QPLs), including difficult mapping to hardware for execution, we observed a few dissatisfactions in quantum programming languages (QPLs), including difficult mapping to hardware, limited expressiveness, and counter-intuitive code. In addition, noisy qubits require repeatedly performed quantum experiments, which explicitly operate low-level configurations, such as pulses and timing of operations. This requirement is beyond the scope or capability of most existing QPLs. We summarize three execution models to depict the quantum-classical interaction of existing QPLs. Based on the refined HQCC model, we propose the Quingo framework to integrate and manage quantum-classical Recent developments in quantum computing have shed light on the shortcomings of the conventional public cryptosystem. Even while or secure in the near future. The National Institute of Standards and Technology (NIST) has started looking for a post-quantum encryption algorithm that is resistant to the development of future quantum computers as a response to this security concern. The current focus is on standardizing asymmetric cryptography that should be impenetrable by a quantum computer. This has become increasingly important in recent years. Currently, the process of standardizing asymmetric cryptography is coming very close to being finished. This study evaluated the performance of two post-quantum cryptography (PQC) algorithms, both of which were selected as Datacenter networks (DCNs) with cloud-edge collaboration are emerging to satisfy the communication, computation, and caching (3C) requirements of future services such as cloud-based IoT services. However, the enroute data over DCNs with cl	http://dx.doi.org/10.3390/s23125379 http://dx.doi.org/10.1109/JIOT.2023.3242725
241 243 244	for Heterogeneous Quantum- Classical Computing with NISQ Features Resilience Optimization of Post- Quantum Cryptography Key Encapsulation Algorithms Resource Allocation in Quantum-Key- Distribution-Secured Datacenter Networks With Cloud-Edge Collaboration	Jiang, Hanru; Wu, Hua; Cheng, Fucheng; Deng, Xi; Zhang, Jinrong; Jin, Lei; Yang, Yihang; Xu, Le; Hu, Chunchao; Huang, Anqi; Huang, Guangyao; Qiang, Farooq, Sana; Altaf, Ayesha; Iqbal, Faiza; Thompson, Ernesto Bautista; Vargas, Debora Libertad Ramirez; Diez, Isabel de la Torre; Ashraf, Imran Zhu, Qingcheng; Yu, Xiaosong; Zhao, Yongli; Nag, Avishek; Zhang, Jie MD Noel, VO Waziri, SM	2023	The increasing control complexity of Noisy Intermediate-Scale Quantum (NISQ) systems underlines the necessity of integrating quantum hardware with quantum software. While mapping heterogeneous quantum-classical computing (HQCC) algorithms to NISQ hardware for execution, we observed a few dissatisfactions in quantum programming languages (QPLs), including difficult mapping to hardware, limited expressiveness, and counter-intuitive code. In addition, noisy qubits require repeatedly performed quantum experiments, which explicitly operate low-level configurations, such as pulses and timing of operations. This requirement is beyond the scope or capability of most existing QPLs. We summarize three execution models to depict the quantum-classical interaction of existing QPLs. Based on the refined HQCC model, we propose the Quingo framework to integrate and manage quantum-classical Recent developments in quantum computing have shed light on the shortcomings of the conventional public cryptosystem. Even while Shor's algorithm cannot yet be implemented on quantum computers, it indicates that asymmetric key encryption will not be practicable or secure in the near future. The National Institute of Standards and Technology (NIST) has started looking for a post-quantum encryption algorithm that is resistant to the development of future quantum computers as a response to this security concern. The current focus is on standardizing asymmetric cryptography that should be impenetrable by a quantum computer. This has become increasingly important in recent years. Currently, the process of standardizing asymmetric cryptography is coming very close to being finished. This study evaluated the performance of two post-quantum cryptography (PQC) algorithms, both of which were selected as Datacenter networks (DCNs) with cloud-edge collaboration are emerging to satisfy the communication, computation, and caching (3C) requirements of future services such as cloud-based IoT services. However, the enroute data over DCNs with	http://dx.doi.org/10.3390/s23125379 http://dx.doi.org/10.1109/JIOT.2023.3242725
241 243 244	for Heterogeneous Quantum- Classical Computing with NISQ Features Resilience Optimization of Post- Quantum Cryptography Key Encapsulation Algorithms Resource Allocation in Quantum-Key- Distribution-Secured Datacenter Networks With Cloud-Edge Collaboration	Jiang, Hanru; Wu, Hua; Cheng, Fucheng; Deng, Xi; Zhang, Jinrong; Jin, Lei; Yang, Yihang; Xu, Le; Hu, Chunchao; Huang, Anqi; Huang, Guangyao; Qiang, Farooq, Sana; Altaf, Ayesha; Iqbal, Faiza; Thompson, Ernesto Bautista; Vargas, Debora Libertad Ramirez; Diez, Isabel de la Torre; Ashraf, Imran Zhu, Qingcheng; Yu, Xiaosong; Zhao, Yongli; Nag, Avishek; Zhang, Jie MD Noel, VO Waziri, SM	2023	The increasing control complexity of Noisy Intermediate-Scale Quantum (NISQ) systems underlines the necessity of integrating quantum hardware with quantum software. While mapping heterogeneous quantum-classical computing (HQCC) algorithms to NISQ hardware for execution, we observed a few dissatisfactions in quantum programming languages (QPLs), including difficult mapping to hardware, limited expressiveness, and counter-intuitive code. In addition, noisy qubits require repeatedly performed quantum experiments, which explicitly operate low-level configurations, such as pulses and timing of operations. This requirement is beyond the scope or capability of most existing QPLs. We summarize three execution models to depict the quantum-classical interaction of existing QPLs. Based on the refined HQCC model, we propose the Quingo framework to integrate and manage quantum-classical Recent developments in quantum computing have shed light on the shortcomings of the conventional public cryptosystem. Even while Shor's algorithm cannot yet be implemented on quantum computers, it indicates that asymmetric key encryption will not be practicable or secure in the near future. The National Institute of Standards and Technology (NIST) has started looking for a post-quantum encryption algorithm that is resistant to the development of future quantum computers as a response to this security concern. The current focus is on standardizing asymmetric cryptography that should be impenetrable by a quantum computer. This has become increasingly important in recent years. Currently, the process of standardizing asymmetric cryptography tas coming very close to being finished. This study evaluated the performance of two post-quantum cryptography (PQC) algorithms, both of which were selected as Datacenter networks (DCNS) with cloud-edge collaboration are emerging to satisfy the communication, computation, and caching (3C) requirements of future services such as cloud-based IoT services. However, the emoute data over DCNs with	http://dx.doi.org/10.3390/s23125379 http://dx.doi.org/10.1109/JIOT.2023.3242725
241 243 244	for Heterogeneous Quantum- Classical Computing with NISQ Features Resilience Optimization of Post- Quantum Cryptography Key Encapsulation Algorithms Resource Allocation in Quantum-Key- Distribution-Secured Datacenter Networks With Cloud-Edge Collaboration	Jiang, Hanru; Wu, Hua; Cheng, Fucheng; Deng, Xi; Zhang, Jinrong; Jin, Lei; Yang, Yihang; Xu, Le; Hu, Chunchao; Huang, Anqi; Huang, Guangyao; Qiang, Farooq, Sana; Altaf, Ayesha; Iqbal, Faiza; Thompson, Ernesto Bautista; Vargas, Debora Libertad Ramirez; Diez, Isabel de la Torre; Ashraf, Imran Zhu, Qingcheng; Yu, Xiaosong; Zhao, Yongli; Nag, Avishek; Zhang, Jie MD Noel, VO Waziri, SM	2023	The increasing control complexity of Noisy Intermediate-Scale Quantum (NISQ) systems underlines the necessity of integrating quantum hardware with quantum software. While mapping heterogeneous quantum-classical computing (HQCC) algorithms to NISQ hardware for execution, we observed a few dissatisfactions in quantum programming languages (QPLs), including difficult mapping to hardware for execution, we observed a lew dissatisfactions, such as pulses and timing of operations. This requirement is beyond the scope or capability of most existing QPLs. We summarize three execution models to depict the quantum-classical interaction of existing QPLs. Based on the refined HQCC model, we propose the Quingo framework to integrate and manage quantum-classical Recent developments in quantum computing have shed light on the shortcomings of the conventional public cryptosystem. Even while Shor's algorithm cannot yet be implemented on quantum computers, it indicates that asymmetric key encryption will not be practicable or secure in the near future. The National Institute of Standards and Technology (NIST) has started looking for a post-quantum encryption algorithm that is resistant to the development of future quantum computers as a response to this security concern. The current focus is on standardizing asymmetric cryptography that should be impenetrable by a quantum computer. This has become increasingly important in recent years. Currently, the process of standardizing asymmetric cryptography is coming very close to being finished. This study evaluated the performance of two post-quantum cryptography (PQC) algorithms, both of which were selected as Datacenter networks (DCNs) with cloud-edge collaboration are emerging to satisfy the communication, computation, and caching (3C) requirements of future services such as cloud-based loT services. However, the enroute data over DCNs with cloud-edge collaboration is likely to suffer from cyberattacks such as eavesdropping. A large number of services require not nyl	http://dx.doi.org/10.3390/s23125379 http://dx.doi.org/10.1109/JIOT.2023.3242725

253	Society 5.0 and the future of work	S Smuts, H Smuts	2022	Society 5.0, with all its different cyber-physical aspects not only presents a technical challenge, but also significantly changes the	https://repository.up.ac.za/handle/2263/91094
	skills for software engineers and developers			structures and business processes of organizations. It requires software engineers and developers to consider a new level of socio- technical interaction and planning. Software should not be the point of friction among products, services and users, but should rather	
	developers			encourage software engineers and developers to become more human-oriented. Therefore, the purpose of this study was to	
				investigate the future of work skills in Society 5.0 for software engineers and developers. We collected and analyzed two datasets;	
				one dataset containing academic peer reviewed publications and the second dataset encompassed popular press articles that	
				predicted the future of software engineering and development. We used the Software Engineering Body of Knowledge (SWEBOK) to	
255	Solving optimization problems with	Serret, Michel Fabrice;	2020	Platforms of Rydberg atoms have been proposed as promising candidates to solve some combinatorial optimization problems. Here	http://dx.doi.org/10.1103/PhysRevA.102.052617
	Rydberg analog quantum computers:	Marchand, Bertrand; Ayral,		we compute quantitative requirements on the system sizes and noise levels that these platforms must fulfill to reach quantum	
	Realistic requirements for quantum	Thomas		advantage in approximately solving the Unit-Disk Maximum Independent Set problem. Using noisy simulations of Rydberg platforms of	
	advantage using noisy simulation			up to 26 atoms interacting through realistic van der Waals interactions, we compute the average approximation ratio that can be	
	and classical benchmarks			attained with a simple quantum annealing-based heuristic within a fixed temporal computational budget. Based on estimates of the	
				correlation lengths measured in the engineered quantum state, we extrapolate the results to large atom numbers and compare them	
				to a simple classical approximation heuristic. We find that approximation ratios of at least approximate to 0.84 are within reach for	
256	Space and Time-Efficient Quantum	Putranto, Dedy Septono	2023	This paper examines the asymptotic performance of multiplication and the cost of quantum implementation for the Naive schoolbook,	http://dx.doi.org/10.1109/ACCESS.2023.3252504
	Multiplier in Post Quantum	Catur; Wardhani, Rini Wisnu;		Karatsuba, and Toom-Cook methods in the classical and quantum cases and provides insights into multiplication roles in the post-	
	Cryptography Era	Larasati, Harashta Tatimma;		quantum cryptography (PQC) era. Further, considering that the lattice-based PQC algorithm is based on polynomial multiplication	
		Kim, Howon		algorithms, including the Toom-Cook 4-way multiplier as its fundamental building block, we propose a higher-degree multiplier, the	
				Toom-Cook 8-way multiplier, which has the lowest asymptotic performance and implementation cost. Additionally, the designed	
				multiplication will include additional sub-operations to complete the multiplication of large integers in order to prevent side-channel	
250	Studying office ou of the different	M Faryal, S Rubab, MM Khan,	2000	attacks. To design our Toom-Cook 8-way in detail, we employ detailed step computations such as splitting, evaluation, point-wise	https://link.opringer.com/orticle/10.1007/-11000.000.000.10
258	Studying efficacy of traditional software quality parameters in	M Faryal, S Rubab, MM Khan, MA Khan	2022	Classical computing, which gave us the current digital age, is about to be overriden by a more exciting, powerful, and radically distinct form of computing technology termed as guantum computing. Quantum-based computing may eventually be many times faster than	https://link.springer.com/article/10.1007/s11082-022-03943-x
L	guantum software engineering	w/~ r/11d11		the computing capability that we all use today in our smart phones, laptop computers, and other devices. By leveraging the	
	quantum sonware engineering			fundamentals of quantum mechanics, quantum potential is initially focused in this research paper. A baseline has been defined to get	
L				through the fundamentals of quantum mechanics, quantum potential is initially focused in this research paper. A baseline has been defined to get through the fundamentals of quantum computing. To get insights, currently available quantum computing platforms or environments	
				are described. Software quality models are investigated to enlist detailed software quality attributes and their relevance for different	
L				software application types. We have presented characteristics of quantum computers or quantum processors that may be pertinent to	
261	Technical debts and faults in open-	Moses Openja, Mohammad	2022	Quantum computing is a rapidly growing field attracting the interest of both researchers and software developers. Supported by its	https://www.sciencedirect.com/science/article/abs/pii/S0164121222001480
201	source quantum software systems:	Mehdi Morovati, Le An.	2022	advantum compound is a rapidly growing ned attracting the interest of both researchers and software developers. Couponted by its numerous open-source tools, developers can now build, test, or run their quantum algorithms. Although the maintenance practices for	111222001400
	An empirical study	Foutse Khomh, Mouna Abidi		traditional software systems have been extensively studied, the maintenance of quantum software is still a new field of study but a	
	All empiriou study			critical part to ensure the quality of a whole quantum computing system. In this work, we set out to investigate the distribution and	
				evolution of technical debts in quantum software and their relationship with fault occurrences. Understanding these problems could	
				guide future quantum development and provide maintenance recommendations for the key areas where quantum software	
				developers and researchers should pay more attention. In this paper, we empirically studied 118 open-source quantum projects,	
262	TensorFlow Quantum: Impacts of	Sierra-Sosa. Daniel: Telahun.	2020	Learning methodologies on guantum devices have shown that there are advantages in utilizing guantum properties. A requirement for	http://dx.doi.org/10.1109/ACCESS.2020.3040798
	Quantum State Preparation on	Michael; Elmaghraby, Adel		using quantum computing in machine learning techniques is the data representation as quantum states. In Quantum Machine	
	Quantum Machine Learning			Learning, quantum state preparation is paramount to attain a functional pipeline in a model. One state preparation method, amplitude	
	Performance			encoding, allows a dataset to be mapped or encoded more robustly and enhances the learning of quantum models. Albeit more	
				densely represented, a dataset which has been prepared by amplitude encoding provides a more learnable input to a model. The two	
				main advantages from using amplitude encoding are an increase in classification accuracy and reduced variability of learning epoch to	
				epoch. In this paper, we compare the basic implementations of TensorFlow Quantum's Quantum Convolutional Neural Network and a	
264	The impact of hardware	Webber, Mark; Elfving,	2022	We investigate how hardware specifications can impact the final run time and the required number of physical qubits to achieve a	http://dx.doi.org/10.1116/5.0073075
		Vincent; Weidt, Sebastian;		quantum advantage in the fault tolerant regime. Within a particular time frame, both the code cycle time and the number of achievable	
	advantage in the fault tolerant	Hensinger, Winfried K.		physical qubits may vary by orders of magnitude between different quantum hardware designs. We start with logical resource	
	regime			requirements corresponding to a quantum advantage for a particular chemistry application, simulating the FeMo-co molecule, and	
				explore to what extent slower code cycle times can be mitigated by using additional qubits. We show that in certain situations,	
				architectures with considerably slower code cycle times will still be able to reach desirable run times, provided enough physical qubits	
0.05	The month of the first		00000	are available. We utilize various space and time optimization strategies that have been previously considered within the field of error-	
265	The quantum computing business	J Jenkins, N Berente, C Angst	2022	Quantum computing is an emerging technology that promises to revolutionize business and society. Although it is still in its early	https://scholarspace.manoa.hawaii.edu/items/7c2f3d9f-7bf1-4dec-b1dd-
	ecosystem and firm strategies			stages, firms have begun to invest heavily in the technology. In this article, we review some key themes of quantum computing from a	<u>dd67829dc5b9</u>
L				business-oriented perspective, and construct a framework of the quantum computing business ecosystem. We also conduct an	
I.				analysis of the contemporary discourse to identify four general strategies that firms are following as they invest in quantum computing.	
				We refer to these as conventional, options, discovery, and adversarial strategies and describe and offer examples of each.	
266	The Quantum software lifecycle	Benjamin Weder, Johanna	2020	Quantum computing is an emerging paradigm that enables to solve a variety of problems more efficiently than it is possible on	https://dl.acm.org/doi/10.1145/3412451.3428497
200	The Quantum Software mecycle	Benjamin weder, Jonanna Barzen. Frank Levmann.	2020	classical computing is an emerging paradigm that enables to solve a variety of problems more emiclently than it is possible on classical computers. As the first quantum computers are available, quantum algorithms can be implemented and executed on real	11103.//di.aom.org/u0//10.1140/0412401.042040/
		Marie Salm, and Daniel Vietz		quantum hardware. However, the capabilities of today's quantum computers are very limited and quantum computations are always	
		mane Gain, and Danier vielz		disturbed by some error. Thus, further research is needed to develop or improve quantum algorithms, quantum computations are always	
				software tooling support. Due to the interdisciplinary nature of quantum computing, a common understanding of how to devolop and	
				software tooling support. Due to the interdisciplinary nature of quantum computing, a common understanding of how to develop and	
				execute a quantum software application is needed. However, there is currently no methodology or lifecycle comprising all relevant	
270	Toward a quantum software	M Piattini M Serrano P Poroz	2021	execute a quantum software application is needed. However, there is currently no methodology or lifecycle comprising all relevant phases that can occur during the development and execution process. Hence, in this paper, we introduce the quantum software	https://jeeevplore.jeee.org/abstract/document/0240056/
270	Toward a quantum software	M Piattini, M Serrano, R Perez- Castillo	2021	execute a quantum software application is needed. However, there is currently no methodology or lifecycle comprising all relevant phases that can occur during the development and execution process. Hence, in this paper, we introduce the quantum software Nowadays, we are at the dawn of a new age, the quantum era. Quantum computing is no longer a dream; it is a reality that needs to	https://ieeexplore.ieee.org/abstract/document/9340056/
270	Toward a quantum software engineering	M Piattini, M Serrano, R Perez Castillo	2021	execute a quantum software application is needed. However, there is currently no methodology or lifecycle comprising all relevant phases that can occur during the development and execution process. Hence, in this paper, we introduce the quantum software Nowadays, we are at the dawn of a new age, the quantum era. Quantum computing is no longer a dream; it is a reality that needs to be adopted. But this new technology is taking its first steps, so we still do not have models, standards, or methods to help us in the	https://ieeexplore.ieee.org/abstract/document/9340056/
270			2021	execute a quantum software application is needed. However, there is currently no methodology or lifecycle comprising all relevant phases that can occur during the development and execution process. Hence, in this paper, we introduce the quantum software Nowadays, we are at the dawn of a new age, the quantum era. Quantum computing is no longer a dream; it is a reality that needs to be adopted. But this new technology is taking its first steps, so we still do not have models, standards, or methods to help us in the creation of new systems and the migration of current ones. Given the current state of quantum computing, we need to go back to the	https://ieeexplore.ieee.org/abstract/document/9340056/
270			2021	execute a quantum software application is needed. However, there is currently no methodology or lifecycle comprising all relevant phases that can occur during the development and execution process. Hence, in this paper, we introduce the quantum software Nowadays, we are at the dawn of a new age, the quantum era. Quantum computing is no longer a dream; it is a reality that needs to be adopted. But this new technology is taking its first steps, so we still do not have models, standards, or methods to help us in the	https://ieeexplore.ieee.org/abstract/document/9340056/
270			2021	execute a quantum software application is needed. However, there is currently no methodology or lifecycle comprising all relevant phases that can occur during the development and execution process. Hence, in this paper, we introduce the quantum software Nowadays, we are at the dawn of a new age, the quantum era. Quantum computing is no longer a dream; it is a reality that needs to be adopted. But this new technology is taking its first steps, so we still do not have models, standards, or methods to help us in the creation of new systems and the migration of current ones. Given the current state of quantum computing, we need to go back to the	https://ieeexplore.ieee.org/abstract/document/9340056/
270			2021	execute a quantum software application is needed. However, there is currently no methodology or lifecycle comprising all relevant phases that can occur during the development and execution process. Hence, in this paper, we introduce the quantum software Nowadays, we are at the dawn of a new age, the quantum era. Quantum computing is no longer a dream; it is a reality that needs to be adopted. But this new technology is taking its first steps, so we still do not have models, standards, or methods to help us in the creation of new systems and the migration of current ones. Given the current state of quantum computing, we need to go back to the	https://ieeexplore.ieee.org/abstract/document/9340056/

075	T		0004		
	Towards near-term quantum simulation of materials Towards Physical Implementation of	Clinton, Laura; Cubitt, Toby; Flynn, Brian; Gambetta, Filippo Maria; Klassen, Joel; Montanaro, Ashley; Piddock, Stephen; Santos, Raul A.; Sheridan, Evan CH Ugwuishiwu, OA	2024	Determining the ground and excited state properties of materials is considered one of the most promising applications of quantum computers. On near-term hardware, the limiting constraint on such simulations is the requisite circuit depths and qubit numbers, which currently lie well beyond near-term capabilities. Here we develop a quantum algorithm which reduces the estimated cost of material simulations. For example, we obtain a circuit depth improvement by up to 6 orders of magnitude for a Trotter layer of time-dynamics simulation in the transition-metal oxide SrVO3 compared with the best previous quantum algorithms. We achieve this by introducing a collection of connected techniques, including highly localised and physically compact representations of materials Hamiltonians in the Wannier basis, a hybrid fermion-to-qubit mapping, and an efficient circuit compiler. Combined together, these methods leverage The future of computational speedup is no longer in the integrated circuits but in quantum phenomena. The emergence of Peter	http://dx.doi.org/10.1038/s41467-023-43479-6
	Quantum Computation	Ayegbusi, AH Eneh	2020	Shor's factoring algorithm resulted in a renewed interest in the field of computing. This paper focuses on the implementation of quantum computing from the hardware perspective by reviewing literature on the various technical requirements involved in the physical implementation of quantum computation. The David Divienzo criteria were examined as a necessary but not sufficient requirement in the implementation of quantum computing. The structure of existing quantum computer prototypes implemented by D- wave, Intel, Google, and IBM was also discussed. The paper also considered the significant advantages that quantum computers have over classical systems. The popular quantum algorithms and quantum gates were studied. Some examples of implementation of	https://www.iesearcingate.inegroteriorg/online/of/worker Avegbusi/publication/353386922 Towards physical implementation of Q uantum_Computation/links/60/9960c2bf3553b29065bb7/Towards-physical- implementation-of-Quantum-Computation.pdf
	Towards Quantum Software Requirements Engineering	T. Yue; S. Ali; P. Arcaini	2023	Quantum software engineering (QSE) is receiving increasing attention, as evidenced by increasing publications on topics, e.g., quantum software modeling, testing, and debugging. However, in the literature, quantum software requirements engineering (QSRE) is still a software engineering area that is relatively less investigated. To this end, in this paper, we provide an initial set of thoughts about how requirements engineering for quantum software might differ from that for classical software after making an effort to map classical requirements classifications (e.g., functional and extra-functional requirements) into the context of quantum software. Moreover, we provide discussions on various aspects of QSRE that deserve attention from the Quantum software engineering community.	https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10313750
	Towards requirements engineering for quantum computing applications in manufacturing	H Stein, S Schröder, P Kienast	2024	Quantum computing (QC) shows the potential to trigger a paradigm shift for numerous industries. As an emerging technology, methodological support for designing and developing QC-based applications is lacking. This paper presents the results of a case study applying consortium research in order to perform a requirements engineering process for two QC-based applications in the manufacturing industry. The results show the differences between requirements engineering for QC applications and conventional software applications. The major findings point to the need for QC knowledge and best practices for a successful requirements engineering process and elaborate on the main differences between QC application- and software application requirements.	https://www.guasim-project.de/wp-content/uploads/2023/09/Towards- Requirements-Engineering-for-Quantum-Computing-Applications-in- Manufacturing_HICSS-2024_final-1.pdf
280	Towards security recommendations for public-key infrastructures for production environments in the post- quantum era	Yunakovsky, Sergey E.; Kot, Maxim; Pozhar, Nikolay; Nabokov, Denis; Kudinov, Mikhail; Guglya, Anton; Kiktenko, Evgeniy O.; Kolycheva, Ekaterina; Borisov, Alexander; Fedorov,	2021	Quantum computing technologies pose a significant threat to the currently employed public-key cryptography protocols. In this paper, we discuss the impact of the quantum threat on public key infrastructures (PKIs), which are used as a part of security systems for protecting production environments. We analyze security issues of existing models with a focus on requirements for a fast transition to post-quantum solutions. Although our primary focus is on the attacks with quantum computing, we also discuss some security issues that are not directly related to the used cryptographic algorithms but are essential for the overall security of the PKI. We attempt to provide a set of security recommendations regarding the PKI from the viewpoints of attacks with quantum computers.	http://dx.doi.org/10.1140/epjqt/s40507-021-00104-z
	Two-factor authentication using biometric based quantum operations	Sharma, Mohit Kr; Nene, Manisha J.	2020	Two-way authentication methods are utilized in every online user authentication transactions. Use of one time passwords (OTP) have proved to be more secure method, than one factor authentication when the two authentication schemes are carried out on different media. However, current use of OTP restricts authentication to the device itself rather than the user. The fraud cases with OTP based transactions have also increased due to growth of technology. Hence, there is a requirement of enhancing security of OTP based transactions. The study in this paper anchors on mathematically proven properties of quantum cryptography and utilizes the quantum entanglement property to generate quantum OTP (QOTP) for authenticating the user based on its biometrics. The proposed method takes into consideration various quantum computing capabilities of user, thus paving path for gradual upgradation of infrastructure.	http://dx.doi.org/10.1002/spy2.102
	Unleashing quantum algorithms with Qinterpreter: bridging the gap between theory and practice across leading quantum computing platforms	WC Sepúlveda, ÁD Torres- Palencia	2023	Quantum computing is a rapidly emerging and promising field that has the potential to revolutionize numerous research domains, including drug design, network technologies and sustainable energy. Due to the inherent complexity and divergence from classical computing, several major quantum computing libraries have been developed to implement quantum algorithms, namely IBM Qiskit, Amazon Braket, Cirq, PyQuil, and PennyLane. These libraries allow for quantum simulations on classical computers and facilitate program execution on corresponding quantum hardware, e.g., Qiskit programs on IBM quantum computers. While all platforms have some differences, the main concepts are the same. QInterpreter is a tool embedded in the Quantum Science Gateway QubitHub using Jupyter Notebooks that translates seamlessly programs from one library to the other and visualizes the results. It combines the	https://arxiv.org/abs/2310.07173
	Using quantum annealers to calculate ground state properties of molecules	Copenhaver, Justin; Wasserman, Adam; Wehefritz- Kaufmann, Birgit	2021	Quantum annealers are an alternative approach to quantum computing, which make use of the adiabatic theorem to efficiently find the ground state of a physically realizable Hamiltonian. Such devices are currently commercially available and have been successfully applied to several combinatorial and discrete optimization problems. However, the application of quantum annealers to problems in chemistry remains a relatively sparse area of research due to the difficulty in mapping molecular systems to the Ising model Hamiltonian. In this paper, we review two different methods for finding the ground state of molecular Hamiltonians using Ising model- based quantum annealers. In addition, we compare the relative effectiveness of each method by calculating the binding energies, bond lengths, and bond angles of the H3+ and H2O molecules and mapping their potential energy curves. We also assess the	http://dx.doi.org/10.1063/5.0030397
	Variational quantum compiling with double Q-learning	He, Zhimin; Li, Lvzhou; Zheng, Shenggen; Li, Yongyao; Situ, Haozhen	2021	Quantum compiling aims to construct a quantum circuit V by quantum gates drawn from a native gate alphabet, which is functionally equivalent to the target unitary U. It is a crucial stage for the running of quantum algorithms on noisy intermediate-scale quantum (NISQ) devices. However, the space for structure exploration of quantum circuit is enormous, resulting in the requirement of human expertise, hundreds of experimentations or modifications from existing quantum circuits. In this paper, we propose a variational quantum compiling (VQC) algorithm based on reinforcement learning, in order to automatically design the structure of quantum circuit for VQC with no human intervention. An agent is trained to sequentially select quantum gates from the native gate alphabet and the qubits they act on by double Q-learning with epsilon-greedy exploration strategy and experience replay. At first, the agent randomly	http://dx.doi.org/10.1088/1367-2630/abe0ae
	When software engineering meets quantum computing	Shaukat Ali, Tao Yue, and Rui Abreu	2022	OVER THE LAST few decades, quantum computing (QC) has intrigued scientists, engineers, and the public across the globe. Quantum computers use quantum superposition to perform many computations, in parallel, that are not possible with classical computers, resulting in tremendous computational power.7 By exploiting such power, QC and quantum software enable many applications that are typically out of the reach of classical computing, such as drug discovery and faster artificial intelligence (AI) techniques. Quantum computers are currently being developed with a variety of technologies, such as superconducting and ion trapping. Private companies, such as Google and IBM, are building their own quantum computers, while public entities are investing in quantum technologies. For example, the European Union Commission is spending €1 billion on quantum technologies ("EU's	https://dl.acm.org/doi/10.1145/3512340

	Quantum Computing: An Overview Across the System Stack	Resch, S.; Karpuzcu, U. R.	2019	Quantum computers, if fully realized, promise to be a revolutionary technology. As a result, quantum computing has become one of the hottest areas of research in the last few years. Much effort is being applied at all levels of the system stack, from the creation of quantum algorithms to the development of hardware devices. The quantum age appears to be arriving sooner rather than later as commercially useful small-to-medium sized machines have already been built. However, full-scale quantum computers, and the full- scale algorithms they would perform, remain out of reach for now. It is currently uncertain how the first such computer will be built. Many different technologies are competing to be the first scalable quantum computer.	https://arxiv.org/abs/1905.07240
	Quantum in the Cloud: Application Potentials and Research Opportunities	Leymann, F.; Barzen, J.; Falkenthal, M.; Vietz, D.; Weder, B.; Wild, K.	2020	Quantum computers are becoming real, and they have the inherent potential to significantly impact many application domains. We sketch the basics about programming quantum computers, showing that quantum programs are typically hybrid consisting of a mixture of classical parts and quantum parts. With the advent of quantum computers in the cloud, the cloud is a fine environment for performing quantum programs. The tool chain available for creating and running such programs is sketched. As an exemplary problem we discuss efforts to implement quantum programs that are hardware independent. A use case from machine learning is outlined. Finally, a collaborative platform for solving problems with quantum computers that is currently under construction is presented.	https://arxiv.org/abs/2003.06256
	Patterns For Hybrid Quantum Algorithms	Weigold, M.; Barzen, J.; Leymann, F.; Vietz, D.	2021	Quantum computers have the potential to solve certain problems faster than classical computers. However, the computations that can be executed on current quantum devices are still limited. Hybrid algorithms split the computational tasks between classical and quantum computers circumventing some of these limitations. Therefore, they are regarded as promising candidates for useful applications in the near future. But especially for novices in quantum computing, it is hard to identify why a particular splitting strategy is proposed by an algorithm. In this work, we describe the best practices for splitting strategies as patterns to foster a common understanding of hybrid algorithms.	https://link.springer.com/chapter/10.1007/978-3-030-87568-8_2
	A systematic decision-making framework for tackling quantum software engineering challenges	Akbar, M. A.; Khan, A. A.; Rafi, S.	2023	Quantum computing systems harness the power of quantum mechanics to execute computationally demanding tasks more effectively than their classical counterparts. This has led to the emergence of Quantum Software Engineering (QSE), which focuses on unlocking the full potential of quantum computing systems. As QSE gains prominence, it seeks to address the evolving challenges of quantum software development by offering comprehensive concepts, principles, and guidelines. This paper aims to identify, prioritize, and develop a systematic decision-making framework of the challenging factors associated with QSE process execution. We conducted a literature survey to identify the challenging factors associated with QSE process and mapped them into 7 core categories. Additionally, we used a questionnaire survey to collect insights from practitioners regarding these challenges. To examine the	https://link.springer.com/article/10.1007/s10515-023-00389-7
	On decision support for quantum application developers: categorization, comparison, and analysis of existing technologies	Vietz, D.; Barzen, J.; Leymann, F.; Wild, K.	2021	Quantum computers have been significantly advanced in recent years. Offered as cloud services, quantum computers have become accessible to a broad range of users. Along with the physical advances, the landscape of technologies supporting quantum application development has also grown rapidly in recent years. However, there is a variety of tools, services, and techniques available for the development of quantum applications, and which ones are best suited for a particular use case depends, among other things, on the quantum algorithm and quantum hardware. Thus, their selection is a manual and cumbersome process. To tackle this challenge, we introduce a categorization and a taxonomy of available tools, services, and techniques for quantum application development to enable their analysis and comparison. Based on that we further present a comparison framework to support quantum	https://link.springer.com/chapter/10.1007/978-3-030-77980-1_10_
	Open source software in quantum computing	Fingerhuth, M.; Babej, T.; Wittek, P.	2018	Open source software is becoming crucial in the design and testing of quantum algorithms. Many of the tools are backed by major commercial vendors with the goal to make it easier to develop quantum software: this mirrors how well-funded open machine learning frameworks enabled the development of complex models and their execution on equally complex hardware. We review a wide range of open source software for quantum computing, covering all stages of the quantum toolchain from quantum hardware interfaces through quantum compilers to implementations of quantum algorithms, as well as all quantum computing paradigms, including quantum annealing, and discrete and continuous-variable gate-model quantum compiling. The evaluation of each project covers characteristics such as documentation, licence, the choice of programming language, compliance with norms of software engineering.	https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0208561
bw2	Programming languages and compiler design for realistic quantum hardware	Chong, F. T.; Franklin, D.; Martonosi, M.	2017	Quantum computing sits at an important inflection point. For years, high-level algorithms for quantum computers have shown considerable promise, and recent advances in quantum device fabrication offer hope of utility. A gap still exists, however, between the hardware size and reliability requirements of quantum computing algorithms and the physical machines foreseen within the next ten years. To bridge this gap, quantum computers require appropriate software to translate and optimize applications (toolflows) and abstraction layers. Given the stringent resource constraints in quantum computing, information passed between layers of software and implementations will differ markedly from in classical computing. Quantum toolflows must expose more physical details between layers, so the challenge is to find abstractions that expose key details while hiding enough complexity.	https://www.nature.com/articles/nature23459
	Quantum Computing in the NISQ era and beyond	Preskill, J.	2018	Noisy Intermediate-Scale Quantum (NISQ) technology will be available in the near future. Quantum computers with 50-100 qubits may be able to perform tasks which surpass the capabilities of today's classical digital computers, but noise in quantum gates will limit the size of quantum circuits that can be executed reliably. NISQ devices will be useful tools for exploring many-body quantum physics, and may have other useful applications, but the 100-qubit quantum computer will not change the world right away - we should regard it as a significant step toward the more powerful quantum technologies of the future. Quantum technologists should continue to strive for more accurate quantum gates and, eventually, fully fault-tolerant quantum computing.	https://quantum-journal.org/papers/q-2018-08-06-79/