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ABSTRACT 

W e  explore the advantages of designing a communi- 
cation system based on chaos by using digital signal 
processing techniques. Existing work developing chaotic 
communication schemes has been done on a theoretical 
basis or in component based electrical circuits that are 
not as flexible, particularly f o r  research. 

OUT work takes a unique technological approach to- 
wards exploring the benefits of chaos. W e  use dis- 
crete methods to implement chaotic dynamical systems. 
Most of OUT current results are f r o m  MATLAB simula- 
tions, but we are working towards implementing chaos 
on digital signal processors (DSPs). These high-speed 
processors produce a chaotic carrier through flexible 
software algorithms. The use of discrete methods al- 
lows for schemes that out perform earlier systems. 

We demonstrate a new dual synchronizing response 
system that exploits the ability to  store samples over an  
entire bit period and then perfonn an intelligent com- 
parison. Our results show better bit error probability in 
comparison to previously published chaotic techniques. 
W e  introduce a method and algorithms for improving 
the bat error performance of our scheme by systemati- 
cally searching for  better parameter sets. 

1. INTRODUCTION 

Chaot.ic systems are aperiodic, deterministic, and sen- 
sitive to slight variations in initial condition. The latter 
property presents the problem tha,t the behavior of the 
system cannot be predicted for a significant period of 
time into the future. The state of a system for the next 
instant. is completely attainable, but in the long run it 
cannot be calculated with any degree of accuracy. 

These systems then produce random-like behavior 
due to their unpredictability a,nd relatively broad band- 
width. We have looked at, both the frequency domain 
and time domain properties of chaotic systems and find 
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that using them for a message carrier could offer sev- 
eral advantages over traditional modulation schemes 
such as amplitude modulation and frequency modula- 
tion. Our goal is to design a, system that can avoid 
detection by third parties. 

Initially, it seems strange to a,ttempt, communica- 
tion using a cha,otic carrier since the state of a chaotic 
system cannot be accurately predicted. However, a 
number of chaotic communicatioii schemes have been 
proven possible using the property of synchronization 

Some chaotic systems can be synchronized with an 
identical system by allowing for an influence between 
the two. Both systems will remain chaotic, but one 
locks to the other. Once synchronization has been 
achieved, information can be sent. A transmitter’s ont- 
put is modified in some way by a message. Since the 
receiver follows what the transmitter’s state should be? 
it, can detect the modification caused by a message and 
thus extract the information from the chaotic signal. 
Mea,nwhile, the transmission will hopefully continue to  
look like noise to an outside observer. 

111, PI. 

2. SYNCHRONIZED CHAOS 

We consider the famous Lorenz System: 

x = u ( y - z ) ,  

Ij = r z - y - z z ,  (1) 
f = X Y  - bz. 

The parameters U, r )  and b have been removed from 
their original context in Lorenz’s convection process 
but they are still significant, for our purposes. The state 
variables a,bove must be sca,led to match the dynamic 
range of the Digita,l-t*Analog and Analog-to-Digital 
converters (CODECs) on our DSPs. Additionally, the 
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system evolves at a rate that is impractical for the sam- 
pling rate of the CODECs. For these reasons, we will 
use a magnitude and time scaling change of variables. 
Scaling magnitude by allows the z term to be sent to 
the Digital-teAnalog converter without saturation. A 
time scale of Ts allows efficient use of available CODEC 
bandwidth. These terms will need to he adjusted based 
on the particular parameters chosen and the time scal- 
ing will he tied to the step size of the differential equa- 
tion solver. 

Thc uniform scaling is given by the substitution: 

Thus, the scaled drive system (transmitter) is: 

7i = T.sU(.-U), 
V = T ~ ( T u - u - A u w ) ,  (3) 
w = T ~ ( A u v - ~ ) .  

2.1. Drive - Response Coupling based on Para- 
meter Set Match or Mismatch 

In our discrete scheme, we further an idea investigated 
by Cuomo, et al. r3]. They sent a binaay message by 
adjusting the b parameter of the drive system. This ad- 
justment slightly iipset,s t,he synchronization between 
the drive and response systems. The presence or a.h- 
sence of error at the response system could thcn be 
used to determine the message bit. 

Our new dual synchronizing response system 
is as follows. We run two response systems in the re- 
ceiver DSP. One response system parameter set cor- 
responds to a one-bit and the other corresponds to a 
zero-bit. Both systems attempt to synchronize with 
the parameter modulated drive system over the entire 
bit, period. Then, the errors experienced by each re- 
sponse system are compared. The system with less 
error determines the received bit and both response 
system states are updated to reflect the better match. 
By taking advantage of the abilities of DSP hardware, 
we achieve better performance than a discrete version 
of the system in [3]. 

Figure 1 shows the four cases of two drive parame 
tcr set.s and two response systems. The drive system 
chooses pammeter set A or B based on the message bit. 
The plots show t,he drive system and how the response 
systems (one using set A and one using set B) respond. 
We desire that a matched set of parameters between 
the transmitter a.nd receiver causes a quick and tight 
coupling while a mismatched set leads to large error. 

Fig. 1. All possible combinations of hit sent and re- 
ceiver syst.em, plotted as voltage vs. sample number. 
(a), transmitt,er and receiver use parameter set A (h), 
transmitter uses set A, receiver uses set B, (c)? Trans- 
mitter uses set B, receiver uses set A (d), transnlitter 
and receiver use pa,rameter set B. 

Coupling is achieved by sharing the U term from 
the drive system with the response system. Not,ice in 
eqn. (4) that U takes the place of U ,  in the equations 
for 6, and wv, The variable U is the influence signal. 
We maintain the same influence configuration as used 
by Cuomo, et al. and simplify the analysis hy letting U 

and T be the same in thc response systems as the drive 
system. The transmitter alters the parameter b based 
on a message bit. Parameter b,. is the corresponding 
parameter in the response system. Parameter b, will 
either he identical or mismatched to b. 

The response system (receiver) is: 

UT = Tso(v, - %), 
i., = T ~ ( T u  - U, - A u w ~ ) ,  (4) 
w, = T s ( A u z I , - ~ ~ w , ) .  

Error terms are used to evaluate coupling: 

e, = ( U - U ~ ) ,  

e, = ( u - u v ) ,  ( 5 )  
e, = (w--wT). 

Taking the derivative with respect to time yields 

c, = (7i-7iiL7.), 
= Tso(u - u )  - T S U ( V ,  -ULLT).  

= Tsa(e, - e u ) .  
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e, = ( W - W 7 ) ,  (6 )  
= T ~ ( v J  - v - AUW - TU + 21, + Auw,), 
= Ts(-e, - Aue,). 

e,  = (lit -,UT), 

= Ts(Auo - b~ - A U W ~  + byur,), 
= Ts(Aue, - bur + b,w,). 

2.2. Lyapunov Function Analysis 

If we can find a Lyapunov fnnction for the error system 
above, we can show that it approaches zero ovcr time? 
and thus the two Lorenz systems synchronize [4]. Lya- 
punov functions generalize the idea of potential energy. 
Again we follow Cuomo's lead arid use his Lyapunov 
function as the basis for ours [3]. 

To show synchronization, we want to find that the 
fimction E(e,, eur e,,,) has a long-term negative slope 
and so error decreases. Taking the derivative with re- 
spect to time: 

d E  dE del, d E  de, d E  de, 
d t  de, dt de, d t  de, at 

+ eveu + ewe, 

- = 

e& ~- 
U 

( 8 )  
2 = Ts(e,,e,, ~ eu - e: - Aue,e, 

+Aue,e, - e,(bur - b,w,)). 

If b = b, (Parameter Set Match) then, 

2 2  2 
~ Ts(e,e, - e, - e, - be,) dE 

d t  
- -  

1 3 ,  2 
= Ts(-(e, - -e,)2 - -e, -be,). (9) 2 4 

3. IMPROVING BIT ERROR RATE 

We developed a systematic analysis to optimize the se- 
lection of prameter  sets including allowing mismatch 
in the U and T parameters as well. For complete free- 
dom in all three parameters for both sets, this is a, 
six dimensional problem a,nd computationally too in- 
tensive. In our most complete results, one of the two 
parameter sets remains fixed ~ reducing to a three di- 
mensional problem. 

We have found that the error performance of the 
system is essentially based on the difference between 
the energy of a one-bit and the energy of a, zerebit. 
Let, 

Ediff = I& - EoI. (11) 

This energy difference changes from bit to bit since 
the system is aperiodic and cannot be calculated in 
closed form. To improve the systems error performance 
when subjected to noise, we wish to rna,ximize the av- 
erage Ediff over all transmitted bits. 

To illustrate the effects of noise on our scheme, 
Figure 2 shows a single transmitted bit using in our 
dual synchronizing receiver scheme. The influence sig- 
nal from the transmitter is affected by additive white 
Gaussian noise and the two response systems in the 
receiver attempt to  synchronize to the noisy influence 
signal. The sum of squares of the error for both re- 
ceiver systems is used to determine the best match 
with the influence signal. For this case, SysB repre- 
sented by the open circles is the better match. This 
system would then determine the received bit, and the 
other response system, SysA, would be reset to match 
the state of SysB before the next bit period. 

Because the DSP hardware gives us the ability to  
compare two response systems against the received sig- 
nal, we do not have to worry about completely de- 
stroying the synchronization by a parameter mismatch 
which is too larre. The uarameter nntched version 

I I I Y Y I I .  

occurs. but experimentation shows it to be fast enouEh 
to achieve a working system. 

If b # b, (Parameter Set Mismatch) then, 4. DEVELOPMENT OF THE DISCRETE 
CARRIER 

d E  - = Ts(e,e, - e: - e: - ew(bw - b W ) ) . ( l O )  
d t  The differential equations described a,bove are contin- 

uous systems a,nd must be modified to run our dis- 
crete hardwa,re. This can be done by using n u m e r i d  The derivative above is inconclusive. 
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Fig. 2. Receiver evaluation of a particular bit, (a) 
Noisy influence signal and attempts to synchronize by 
both response systems (Volts vs. Sample Number), (b) 
Error' between both receivers and the influence signal 
(Volts' vs. Sample Number). 

techniques to solve the differential equations. We have 
chosen to use the R.unge-Kutta 4-5 a,lgorithm beca,use 

exponent for the region shown. Sets with negative ex- 
ponents can be excluded from the bit energy search 
since they indicate periodic behavior. 

problem. Initially we have fixed one parameter set and 
searched in a three-dimensional space in order to max- 
imize Ediff. As long as the set identified to maximize 
Ediff maintains the boundedness of the syst.em, then 
we expect it to result in the best bit error performance 
out of all sets in the parameter space. 

Currently we have not tackled the full six-dimensional 

-' ," - - - ". 
it yields a,ccura,te resuks relative to its processing re- 
quirements [ 5 ] .  The chief issue we have faced when 
tra,nsforming the continuous systems to a discrete en- 
vironment is that of step size. 

There are two methods to effectively utilize the 
available bandwidth of the CODEC without aliasing. 
First, the system can be sped up or slowed down by 
adjusting the RK-45 step size or by adjusting the time 
scale Ts, which are a, related pair. Alternatively, ex- 
cessive samples can be discarded by decimation, p r e  
vided the Nyquist condition is met. We have found 
the step size-Ts pair is the limiting factor. Taking a, 
step that is too big causes the RK-45 algorithm to fail 
and the discrete system does not emulate its contin- 
uous model. Therefore, to efficiently utilize CODEC 
bandwidth, decimation is the better method provided 
it can be done without aliasing. 

Fig. 3. Lyapunov exponents for one-huudred- 
thollsand parameter sets tested in the displayed range 
of U ,  T ,  and b. Only positive exponent values are shown 
as parameter sets with negative Lyapunov exponents 
ca,nnot bc used with our system. ~ ~ ~ ~ ~ ~ i ~ ~ , t ~ l ~  one. 
third of the sets remain, 
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5. SEARCH FOR A BETTER PARAMETER 
SET 

The Lya,punov exponent measures average error growth 
between two solutions of a, system. A posi- Fig. 4. Bit energies for one-hundred-thousand para- 
tive exponent indicates nearby solutions diverge and meter sets tested in  the displayed range of U ,  T ,  and 
are aperiodic. Boundedness amd a, positive Lyapunov b. One paramet,er set is fixed a,t U = 16.0, T = 45.6, 
exponent can define a chaot,ic system. Figure 3 shows b = 4.0 for a z e r d i t .  The displa,wd sets are candidates 
the parameter sets that, result in a. positive Lyapunov to represent a onebit. 

20 
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6. CONCLUSION 

The bit error probability performance of our system is 
shown in Figure 5 .  By using the dual synchronizing re- 
ceiver scheme and intelligently picking parameter sets 
for modulation, performance has been substantially im- 
proved over previous methods. 

We have discovered, while trying to  ascerta,in the 
cause of bit errors for rehtively large g ,  that they are 
largely due to  characteristics of the system itself. For 
basic tra,nsmission schemes like BPSK, the energy in a, 
bit, is always the same and errors occnr when the noise 
energy is large. This is not true for this cha,otic scheme. 
It turns out that the Lorenz system occasionally goes 
into regions where the power of U is significant,ly less 
than the long-term average. When the bit window cor- 
responds to these regions, the energy in those bits is 
less. The histograms in Figure 6 indicate the majority 
of errors occur when the bit energy is small rather than 
when the noise energy is la,rge. 

Using a discrete processing approach to  explore the 
benefits of chaos has produced many promising results 
and has opened up several paths for further invest,i- 
ga,tion. Discretely generating the cha,otic waveforms 
has both helped to streamline development time and 
improve upon earlier systems. We cont,inue to  work 
towards a system that works effectively but prevents 
det,ection by a third party. We believe that such a sys- 
tem could be useful for camoufla,ged military wireless 
communications. 
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Fig. 5. Bit error probability as a, function of the ratio 
of energy per bit E* to  noise power spectral density 
No for several communications schemes. (a), the aster- 
isks show the performance of our discrete system using 
parameter modulat~ion techniques with a good parame- 
ter set (b), the open squares show the performance of 
our discrete system using the more conservative para- 
meter mismatch used in [3] (c), the open circles show 
the performance of the multiple attmctor system in [6] 
(d), the solid line shows results for baseband BPSK for 
comparison. 

(8 mr0Y-M 

Fig. 6. Histograms of (a),  bit energy and (b). noise en- 
ergy for the dual synchronizing response system over 
200 bits received in error at $ = 29dB.  The aver- 
age bit energy and average noise energy for all bits is 
indicated by the dashed line. 


