Published July 15, 2024 | Version v1
Journal article Open

A hitchhiker's guide to Europe: mapping human-mediated spread of the invasive Japanese beetle

  • 1. University of Rennes, Le Rheu, France
  • 2. |INRAE, Avignon, France

Description

Early detection of hitchhiking pests requires the identification of strategic introduction points via transport. We propose a framework for achieving this in Europe using the Japanese beetle (Popillia japonica) as a case study. Human-mediated spread has been responsible for its introduction into several continents over the last century, including a recent introduction in continental Europe, where it is now listed as a priority pest. Furthermore, recent interceptions far from the infested area confirm the risk of unintentional transport within continental Europe. Here, we analysed how three modes of transport - air, rail and road - connect the infested area to the rest of Europe. We ranked all European regions from most to least reachable from the infested area. We identified border regions and distant major cities that are readily reachable and observed differences between modes. We propose a composite reachability index combining the three transport modes, which provides a valuable tool for designing a continental surveillance strategy and prioritising highly reachable regions, as demonstrated by recent interceptions.

Files

NB_article_126283.pdf

Files (2.8 MB)

Name Size Download all
md5:8b1b910b32085039447f8173460b350a
2.8 MB Preview Download

System files (92.6 kB)

Name Size Download all
md5:d1036c4ddc86ca0a51a07a8b272805c5
92.6 kB Download

Linked records

Additional details

References

  • Banks NC, Paini DR, Bayliss KL, Hodda M (2015) The role of global trade and transport network topology in the human-mediated dispersal of alien species. Ecology Letters 18(2): 188–199. https://doi.org/10.1111/ele.12397
  • Bassi C, Benvenuto L, Bernardinelli Ii, Drosghig A, Malossini G (2022) Popillia japonica: primi rinvenimenti in Friuli Venezia Giulia. ERSA notiziario.
  • Blackburn TM, Pyšek P, Bacher S, Carlton JT, Duncan RP, Jarošík V, Wilson JRU, Richardson DM (2011) A proposed unified framework for biological invasions. Trends in Ecology & Evolution 26(7): 333–339. https://doi.org/10.1016/j.tree.2011.03.023
  • Borner L, Martinetti D, Poggi S (2023) A new chapter of the Japanese beetle invasion saga: predicting suitability from long-invaded areas to inform surveillance strategies in Europe. Entomologia Generalis 43(5): 951–960. https://doi.org/10.1127/entomologia/2023/2073
  • Commission Delegated Regulation (EU) (2019) Commission Delegated Regulation (EU) 2019/1702 of 1 August 2019 supplementing Regulation (EU) 2016/2031 of the European Parliament and of the Council by establishing the list of priority pests. [2019] L 260/8.
  • Early R, Bradley BA, Dukes JS, Lawler JJ, Olden JD, Blumenthal DM, Gonzalez P, Grosholz ED, Ibañez I, Miller LP, Sorte CJB, Tatem AJ (2016) Global threats from invasive alien species in the twenty-first century and national response capacities. Nature Communications 7(1): 12485. https://doi.org/10.1038/ncomms12485
  • Bragard C, Dehnen-Schmutz K, Di Serio F, Gonthier P, Jacques M-A, Jaques Miret JA, Justesen AF, Magnusson CS, Milonas P, Navas-Cortes JA, Parnell S, Potting R, Reignault PL, Thulke H-H, Van der Werf W, Vicent Civera A, Yuen J, Zappalà L, Czwienczek E, MacLeod A (2018) Pest categorisation of Popillia japonica. EFSA Journal 16(11): e05438. https://doi.org/10.2903/j.efsa.2018.5438
  • EPPO (2019) Dead beetle of Popillia japonica found in trap at Schiphol airport (NL). EPPO Reporting Service no. 02-2019. https://gd.eppo.int/reporting/article-6464
  • EPPO (2022a) First finding of Popillia japonica in Germany. EPPO Reporting Service no. 01-2022. https://gd.eppo.int/reporting/article-7240
  • EPPO (2022b) Update of the situation of Popillia japonica in Italy. EPPO Reporting Service 2022-04. https://gd.eppo.int/reporting/article-7312
  • EPPO (2023) Update of the situation of Popillia japonica in Switzerland. EPPO Reporting Service no. 08-2023. https://gd.eppo.int/reporting/article-7666
  • Essl F, Dullinger S, Rabitsch W, Hulme PE, Hülber K, Jarošík V, Kleinbauer I, Krausmann F, Kühn I, Nentwig W, Vilà M, Genovesi P, Gherardi F, Desprez-Loustau M-L, Roques A, Pyšek P (2011) Socioeconomic legacy yields an invasion debt. Proceedings of the National Academy of Sciences of the United States of America 108(1): 203–207. https://doi.org/10.1073/pnas.1011728108
  • Fenn-Moltu G, Ollier S, Caton B, Liebhold AM, Nahrung H, Pureswaran DS, Turner RM, Yamanaka T, Bertelsmeier C (2023) Alien insect dispersal mediated by the global movement of commodities. Ecological Applications 33(1): e2721. https://doi.org/10.1002/eap.2721
  • Frank K (2016) Establishment of the Japanese Beetle (Popillia japonica Newman) in North America Near Philadelphia a Century ago. Entomological News 126(3): 153–174. https://doi.org/10.3157/021.126.0302
  • Frem M, Chapman D, Fucilli V, Choueiri E, El Moujabber M, La Notte P, Nigro F (2020) Xylella fastidiosa invasion of new countries in Europe, the Middle East and North Africa: Ranking the potential exposure scenarios. NeoBiota 59: 77–97. https://doi.org/10.3897/neobiota.59.53208
  • Gotta P, Ciampitti M, Cavagna B, Bosio G, Gilioli G, Alma A, Battisti A, Mori N, Mazza G, Torrini G, Paoli F, Santoiemma G, Simonetto A, Lessio F, Sperandio G, Giacometto E, Bianchi A, Roversi PF, Marianelli L (2023) Popillia japonica – Italian outbreak management. Frontiers in Insect Science 3: 1175138. https://doi.org/10.3389/finsc.2023.1175138
  • Hulme PE (2009) Trade, transport and trouble: Managing invasive species pathways in an era of globalization. Journal of Applied Ecology 46(1): 10–18. https://doi.org/10.1111/j.1365-2664.2008.01600.x
  • Hulme PE (2021) Unwelcome exchange: International trade as a direct and indirect driver of biological invasions worldwide. One Earth 4(5): 666–679. https://doi.org/10.1016/j.oneear.2021.04.015
  • Jamieson LE, Woodberry O, Mascaro S, Meurisse N, Jaksons R, Brown SDJ, Ormsby M (2022) An Integrated Biosecurity Risk Assessment Model (IBRAM) For Evaluating the Risk of Import Pathways for the Establishment of Invasive Species. Risk Analysis 42(6): 1325–1345. https://doi.org/10.1111/risa.13861
  • Malliaros FD, Giatsidis C, Papadopoulos AN, Vazirgiannis M (2019) The core decomposition of networks: Theory, algorithms and applications. The VLDB Journal 29(1): 61–92. https://doi.org/10.1007/s00778-019-00587-4
  • Meurisse N, Rassati D, Hurley BP, Brockerhoff EG, Haack RA (2019) Common pathways by which non-native forest insects move internationally and domestically. Journal of Pest Science 92(1): 13–27. https://doi.org/10.1007/s10340-018-0990-0
  • Newman MEJ (2003) Mixing patterns in networks. Physical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics 67(2): 026126. https://doi.org/10.1103/PhysRevE.67.026126
  • NPPO of Switzerland (2021) in EPPO Global Database. https://gd.eppo.int/taxon/POPIJA/distribution/CH
  • Parnell S, Gottwald TR, Riley T, van den Bosch F (2014) A generic risk-based surveying method for invading plant pathogens. Ecological Applications 24(4): 779–790. https://doi.org/10.1890/13-0704.1
  • Perry G, Vice D (2009) Forecasting the Risk of Brown Tree Snake Dispersal from Guam: A Mixed Transport-Establishment Model. Conservation Biology 23(4): 992–1000. https://doi.org/10.1111/j.1523-1739.2009.01169.x
  • Piel F, Gilbert M, De Canniere C, Gregoire J-C (2008) Coniferous round wood imports from Russia and Baltic countries to Belgium: A pathway analysis for assessing risks of exotic pest insect introductions. Diversity & Distributions 14(2): 318–328. https://doi.org/10.1111/j.1472-4642.2007.00390.x
  • Pittel B, Spencer J, Wormald N (1996) Sudden Emergence of a Giantk-Core in a Random Graph. Journal of Combinatorial Theory Series B 67(1): 111–151. https://doi.org/10.1006/jctb.1996.0036
  • Poggi S, Borner L, Roche J, Tayeh C, Martinetti D (2022a) Biological invasion of the Japanese beetle in Continental Europe at a glance. Recherche Data Gouv, V3. https://doi.org/10.57745/R18NGL
  • Poggi S, Desneux N, Jactel H, Tayeh C, Verheggen F (2022b) A nationwide pest risk analysis in the context of the ongoing Japanese beetle invasion in Continental Europe: The case of metropolitan France. Frontiers in Insect Science 2: 1079756. https://doi.org/10.3389/finsc.2022.1079756
  • R Core Team (2021) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.
  • Radici A, Martinetti D, Bevacqua D (2023) Global benefits and domestic costs of a cooperative surveillance strategy to control transboundary crop pathogens. Plants, People, Planet 5(6): 1–10. https://doi.org/10.1002/ppp3.10379
  • Roocks P (2016) Computing Pareto Frontiers and Database Preferences with the rPref Package. The R Journal 8(2): 393–404. https://doi.org/10.32614/RJ-2016-054
  • Rosace MC, Cendoya M, Mattion G, Vicent A, Battisti A, Cavaletto G, Marini L, Rossi V (2023) A spatio-temporal dataset of plant pests' first introductions across the EU and potential entry pathways. Scientific Data 10(1): 731. https://doi.org/10.1038/s41597-023-02643-9
  • Saccaggi DL, Karsten M, Robertson MP, Kumschick S, Somers MJ, Wilson JRU, Terblanche JS (2016) Methods and approaches for the management of arthropod border incursions. Biological Invasions 18(4): 1057–1075. https://doi.org/10.1007/s10530-016-1085-6
  • Schneider K, Makowski D, van der Werf W (2021) Predicting hotspots for invasive species introduction in Europe. Environmental Research Letters 16(11): 114026. https://doi.org/10.1088/1748-9326/ac2f19
  • Speth D, Sauter V, Plötz P, Signer T (2022) Synthetic European road freight transport flow data. Data in Brief 40: 107786. https://doi.org/10.1016/j.dib.2021.107786
  • Strangi A, Paoli F, Nardi F, Shimizu K, Kimoto T, Iovinella I, Bosio G, Roversi PF, Carapelli A, Marianelli L (2023) Tracing the dispersal route of the invasive Japanese beetle Popillia japonica. Journal of Pest Science 97: 613–629. https://doi.org/10.1007/s10340-023-01653-1
  • Szyniszewska AM, Leppla NC, Huang Z, Tatem AJ (2016) Analysis of Seasonal Risk for Importation of the Mediterranean Fruit Fly, Ceratitis capitata (Diptera: Tephritidae), via Air Passenger Traffic Arriving in Florida and California. Journal of Economic Entomology 109(6): 2317–2328. https://doi.org/10.1093/jee/tow196
  • Tatem AJ (2017) Modern Day Population, Pathogen and Pest Dispersals. Cambridge Univ. Press, Cambridge.
  • Tatem AJ, Hay SI, Rogers DJ (2006) Global traffic and disease vector dispersal. Proceedings of the National Academy of Sciences of the United States of America 103(16): 6242–6247. https://doi.org/10.1073/pnas.0508391103
  • Turner RM, Brockerhoff EG, Bertelsmeier C, Blake RE, Caton B, James A, MacLeod A, Nahrung HF, Pawson SM, Plank MJ, Pureswaran DS, Seebens H, Yamanaka T, Liebhold AM (2021) Worldwide border interceptions provide a window into human-mediated global insect movement. Ecological Applications 31(7): e02412. https://doi.org/10.1002/eap.2412
  • Venette RC [Ed.] (2015) Pest risk modelling and mapping for invasive alien species. CABI, Wallingford. https://doi.org/10.1079/9781780643946.0000
  • Wickham H (2022) httr2: Perform HTTP Requests and Process the Responses. https://doi.org/10.32614/CRAN.package.httr2
  • Wood SN (2011) Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. Journal of the Royal Statistical Society. Series B, Statistical Methodology 73(1): 3–36. https://doi.org/10.1111/j.1467-9868.2010.00749.x
  • Yemshanov D, Koch FH, Ducey M, Koehler K (2012) Trade-associated pathways of alien forest insect entries in Canada. Biological Invasions 14(4): 797–812. https://doi.org/10.1007/s10530-011-0117-5