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Abstract 

Fomzol spec8cations of required system behavior can 
be anaIyzed, ver$ed, and validated, giving hiph confidence 
11iat the specijkdon captures the desired behavior: Trans- 
ferring this confidence to the system intplementntion de- 
pends on 0 formal link between requirentents and intple- 
ntentatinn. The automtic generation of pmvably correct 
code provides just such a link. While optiniization is usu- 
ally petj5ornwd on code to achieve eficiency, we propose 
to optimize the formal specification bejore generaring code, 
thus providing optimi;ation indepeiident of the particular 
code generation merhod. This paper investigates the use of 
invariants in optimizing code generuted front fomml speci- 
fications in the Sojhwe Cost Reduction (SCR) tabular no- 
tation. We show rhar inrwiants ( I )  provide the basis for 
siniplifiing expressions that otherwise cannot be iniproved 
using frrrdirionol compiler optimization techniques, and (2) 
allouv detection and eliniinarion of parts ofthe spec$catimn 
tliaf would lead to urireuchable rode. 

1. Introduction 

Formal requirements specifications are useful because 
they can be analyzed to show that they satisfy critical prop- 
erties such as safety, security, and timeliness. Additionally, 
with executable specifications, the user may symbolically 
execute the system to validate that the specification captures 
the intended system behavior. Thus, analysis and simulation 
can provide confidence that a specification is coii-ect. Trans- 
ferring this confidence to the implementation requires a for- 
mal link between requirements and implementation. This 
formal link may be realized by a sequence of (usually) man- 
ual refinements, but the automatic generation of provably 
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correct code provides the highest confidence that the code 
captures the specified behavior. We have shown in previous 
work [21] how to construct code from requirements speci- 
fied in the Software Cost Reduction (SCR) tabular notation. 
The development of high-quality SCR requirements speci- 
fications is supported by a suite of editing and verification 
tools designed and developed by the Naval Research Labo- 
ratory. Automatic code synthesis is consistent with our SCR 
toolset design phitosophy, the goal of which is to automate 
(as much as possible) the process of system specification, 
analysis, and implementation using tools and methods de- 
signed for practicing engineers. 

Both speed and code size are important in code for em- 
bedded systems. Compilers generally perform optimiza- 
tions for speed, while code size optimization is often done 
by hand on either the source code or the compiled code [281. 
Rather than perform optimizations only on the code itself, 
our approach is to translate the formal specification into an 
equivalent form that will lead to smaller, and frequently 
faster, code than the originaI specification, thus providing 
optimization independent of the particular code generation 
method. This will then be followed by more typical opti- 
mizations on the code. This paper investigates the use of 
requirements level invariants in optimizing code generated 
from executable formal requirements specifications repre- 
sented in the SCR tabular notation. Invariants are proper- 
ties that hold in every reachable state of such an executable 
system. In previous work, we have developed algorithms 
for automatically generating invariants 116, 171; these and 
other invariants that have been established can be used with 
our techniques. 

To illustrate our notion of optimization, we consider a 
simple state machine E with state set (~1~x2). Associated 
with C is a variable X, whose value represents the current 
state of E, and Boolean variables A and B. The machine 
C changes state based on (and in parallel with) changes in 
A and B. Here and below, we follow the standard conven- 
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transition and primed variables represent values after a tran- 
sition. 

source state 

5 1  

5 1  

A h -A’ 

A - A h A ’  

- 
B A - B ’ A A  

guard target state 

A A lA‘ 2 2  

B ~ - 4 3 ’  A A 2 2  

Figure 1. Simple Example State Machine 

I 2 1  
x2 1 l A ~ A f  I 

The SCR method uses similar tables to define state machine 
transitions. The above table is a compact representation of 
the function defining X’, the value of variable X in the new 
state. The standard mathematical definition of the function 
is more complex: 

X I =  { 2 1  if X = z2 A (lA A A’) 

The simplification performed above can be used to in- 
duce a transformation of the table. -The cells comprising 

52 if x = T I  A ( ( A  A TA’) v ( B  A d 3 ’  A A ) )  

X otherwise 

the guard column of the table are the focus of our sim- 
plifications. We are abte to perform the simplification be- 
cause (1) the system is in state 51 (i.e., X = XI), (2) the 
invariant (X = 51) + A always holds, and (3) the pre- 
vious two facts together imply that A holds. If we take 
K = (X = 21) A (X = z1 =+ A) to be the context of 
the cell containing the expression B A -E’ A A, then our 
simplification may be expressed as follows. 

If K is the context for a cell containing the expres- 
sion E and K + A then, A may be replaced by 
true in E. 

A generalization of the above rule to replace any subex- 
pression (rather than just the Boolean variable A) is one of 
the simplification rules that we have developed. However, 
the simplification is not yet complete because this rule says 
that B A 4 3 ‘  A A is transformed into B A +?’ A true. 
Transforming this expression to B A 1B’ is trivial; we sim- 
plify using the identity P A true H p. In the general case, 
we apply this and other standard Boolean simplifications. 
Transforming the table as described results in a table with a 
simplified middle row: 

I sourcestate I guard 1 target state I 

Note that the simplification rule with the same context has 
also been applied to remove the term A from the guard cell 
of the first line of the table. 

 his simple example i~~ustrates that invariants can pro- 
vide the basis for simplifying expressions that cannot be fur- 
ther simplified without use of those invariants. Such modi- 
fications are a form of contextual siniplification, analogous 
to contextual rewriting [35], since they involve the use of a 
context of known facts to aid in the simplification. In addi- 
tion to the generalization of the above rule, we also develop 
rules for detecting and eliminating parts of the specifica- 
tion that would lead to unreachable code. Our general ap- 
proach is to apply a convergent set of contextual simplifica- 
tion rules, each application of which may require additional 
non-contextual simplification. 

While this paper considers only a set of simple rules for 
simplifying propositional formulas, we are in the process of 
investigating more sophisticated techniques to include ac- 
tual algorithms for doing these optimizations, as well as ex- 
tension to contextual simplification of a more general nature 
(e.g., simplification of arithmetic expressions). 

Section 2 provides background on SCR and on invari- 
ants that can be automatically derived from SCR specifi- 
cations. Section 3 explains how invariants may be used to 
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simpIify SCR tables by removing portions of the specifica- 
tion that would lead to unnecessary or dead code. Examples 
are given to illustrate the utility of invariants in this process. 
Section 4 discusses related work. Section 5 presents con- 
clusions and ideas for future work. 

2, Background 

Originally formulated to document the requirements of 
the flight program of the U.S. Navy’s A-7 aircraft [14], the 
SCR requirements method is designed to support detection 
and correction of errors during the requirements phase of 
software development [13, 91. The SCR toolset provides 
a user-friendly approach to writing requirements specifica- 
tions in a tabular format and a number of analysis tools, 
including a consistency checker [13], a simulator [12], a 
model checker [IO], theorem provers [2,4], and an invariant 
generator [16, 171. By applying the SCR tools to uncover 
errors, a user can develop high confidence that a specifica- 
tion correctly captures the required system behavior. 

The SCR method has been used successfully by many 
organizations in industry and in government (e.g., Bell Lab- 
oratories [15], Grumman [261, Lockheed [77, the Naval 
Research Laboratory [IO, 201, Ontario Hydro [311, and 
Rockwell Aviation {27]) to develop and analyze specifi- 
cations of practical systems, including flight control sys- 
tems 17,271, weapons systems [IO], space systems [SI, and 
cryptographic devices [20]. Most recently, the SCR tools 
were used, together with a test case generator, by Lockheed 
Martin to detect a critical error described as the “most likely 
cause” of a $1 65 million failure in the software controlling 
landing procedures in the Mars Polar Lander [5 ] .  

2.1 SCR Requirements Model 

In SCR the required system behavior is defined in terms 
of monitored and controlled variables, which represent 
quantities in the system environment that the system mon- 
itors and controls. The environment nondeterministically 
produces a sequence of monitored events, where a nzoni- 
rored evenr signaIs a change in the value of some monitored 
variable. The system, represented in the model as a state 
machine, begins execution in some initial state and then re- 
sponds to each monitored event in tum by changing state. 
In SCR the system behavior is assumed to be synclzronous: 
the system completely processes one set of inputs before 
processing the next set. Furthermore, the One Input As- 
srrniption allows at most one monitored variable to change 
from one state to the next. 

To specify the required behavior concisely, the SCR 
model contains two types of auxiliary variables: made 
classes, whose values are called modes, and terms. Each 

mode is an equivalence class of system states useful in spec- 
ifying as well as understanding the required system behav- 
ior. A term is a state variable defined by an expression over 
monitored variables, mode classes, or other terms. Mode 
classes and terms often capture history-the changes that 
occurred in the values of the monitored variables-and help 
to make the specification more concise. 

The SCR model represents a system as a state machine 
C = (S, SO, Em,T),  where S is the set of states, SO C S 
is the set of initial states, E” is the set of monitored events, 
and T is the transform describing the allowed state transi- 
tions [ 131. In our model, the transform T is a function that 
maps a monitored event e f Em and the current state s E S 
to the next state s’ E S. Further, a stare is a function that 
maps each state variable, i.e., each monitored or controlled 
variable, mode class, or term, to a type-correct value; a cm- 
dirion is a predicate defined on a system state, and an eveltr 
is a predicate requiring that two consecutive system states 
differ in the value of at least one state variable. 

The notation “@T ( c ) WHEN d” denotes a conditioned 
en”, which is defined by 

@ T i c )  WHEN d e f - c h c ‘ A d ,  

where the unprimed conditions c and d are evaiuated in the 
current state and the primed condition c’ is evaluated in the 
next state. The event @T ( c )  WHEN d occurs when its 
defining expression evaluates to true. We also define 

2.2 The SCR Tables 

The transform T is a composition of smaller functions 
called table furrcrions, which are derived from the condi- 
tion tables, event tables, and mode transition tables in SCR 
requirements specifications. These tables define the values 
of the dependenr iwiables-the controlled variables, mode 
classes, and terms. For T to be well-defined, no circular de- 
pendencies are allowed in the definitions of the dependent 
variables. The variables are partially ordered based on the 
dependencies among the next state values. 

Each table defining a term or controlled variable is ei- 
ther a condition table or an event table. A candifion tu- 
ble associates a mode and a condition in the next state with 
a variable value in the next state, whereas an rvenr ruble 
associates a mode and a conditioned event with a variable 
value in the next state. Each table defining’a mode class 
is a nzode trunsirion table, which associates a source mode 
and an event with a target mode. Our formal model requires 
the information in each table to satisfy certain properties, 
guaranteeing that each table describes a total function [13]. 
Some SCR tables may be modeless, i.e., they define the 
value of a variable without referring to any mode class. 
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I OldMode I Event 1 NewMode 1 

Mode 

I TooLow I bT(WaterPres2Low) I Permit ted I 

Conditions 

I Permitted I OTWaterTres2Permit)  I High I 

TOOLOW I Overridden 

I Permitted I BT(WaterPres<Low)  I TOOLOW I 

NOT Overridden 

1 HiQh I @T(waterPres < Permit) 1 Pernitted 1 

Safe ty- In jec t ion  I O€ f On 

Table 2. Condition Table for Safe ty- In jec t ion .  

To illustrate the SCR tabular notation, three example ta- 
bles are presented. These tables define the values of the 
three dependent variables in a simplified version of a safety 
injection system (SIS) [ 131 for a nuclear power plant. The 
SZS system monitors water pressure, and if the pressure is 
too low, the system injects coolant into the reactor core. 

Table 1 is a mode transition table defining the new value 
of the mode class Pressure  as a function of the current 
mode and the monitored variables. For example, the first 
row of the table states that if the current mode is TooLow 
and the water pressure becomes greater than or equal to the 
Low threshold, the new mode is Permitted.  

Table 2 is a condition table defining the value of 
the controlled variable Safe ty - In j ec t ion  as a function 
of the modes and the term varjable Overridden. The 
first row states that in the High or Permitted modes, 
Sa fe ty - In j ec t ion  is Off .  The second row states 
that in the mode TooLou, if Overridden is true then 
Safe ty- In jec t ion  is Off, and if Overridden is false 
then Safety-Injection is On. 

Table 3 is an event table defining the term Overridden 
as a function of the current mode and the monitored vari- 
ables. The first row describes the behavior when the mode 
of the system (i.e., the value of Pressure  in the old state) 
is either TooLou or Permitted. In either of these modes, if 
Block switches to On when Reset is U f f ,  then the new 
value of Overridden is true, but if the Pressure be- 
comes High or Reset switches to On, then the new value 
of Overridden is false.  

2.3 Invariants and Code Generation 

We consider two forms of invariants in SCR: stufe in- 
~nn'unts, expressions over a single state that hold in each 
reachable state of the system, and rrunsirion invariants, ex- 
pressions over two states that hold for each reachable pair 

of consecutive states. We have designed two algorithms 
[16, 171 for constructing state invariants from the tables 
defining the dependent variables in an SCR specification. 
Suppose that dependent variable T has values in a finite set 
{ W ~ , ~ J ~ , . . . , V ~ ) .  Ifthevalueof risdefinedbyamodetransi- 
tion table or an event table, then, for each vi, the algorithms 
generate invariants of the form 

where Ci is a predicate over the variables in C on which r 
depends. Invariant generation from SCR tables is based on 
the following idea: In an SCR specification, T = ut 3 Ci is 
an invariant if 1) Ci is always Vue when T'S value changes 
to vi, and 2) an event falsifying C, unconditionally causes r 
to have a value other than vi. Since stronger invariants may 
be computed with knowledge of previously computed in- 
variants, the full algorithms repeat the computations of the 
invariants until a fixpoint is reached. The current implemen- 
tation of the SCR invariant generator applies our algorithms 
to both mode transition tables and event-tables. State in- 
variants constructed from a mode transition table are called 
mode invariants. 

We have also developed two prototype code synthesiz- 
ers that construct C source code from an SCR requirements 
specification 1211. The two synthesizers, each using'a dif- 
ferent code generation strategy, are based on Paige's APTS 
program transformation system 1301. The first strategy uses 
rewrite rules to transform the parse tree of an SCR specifi- 
cation into a parse tree for the corresponding C code. The 
second strategy associates a relation with each node of the 
specification parse tree. Each member of this relation acts 
as an attribute, holding the C code corresponding to the tree 
at the associated node; the root of the tree has the entire C 
program as its member of the relation. The generated code 
is efficient but has not been optimized. 
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Mode Pressure 

TooLow, 
Permitted 
High 

Overridden 

t r u e  if @T(Block=on) WHEN Reset=off 
AND Pressure in {TOOLOW, PermiEted) 

Pressure in {TooLow, Permitted} 
OR @F(Pressure= High) WHEN Pressure=Higlr 

false if @T(Pressure=High) OR @T(Reset=on) WHEN I Overriddm otherwise 

Overridden’ = 

Events 

@T(Block = On) 
WHEN Reset = O f f  

@T(Pressure = High) OR 
@T(Reset =On) 

False @F(Pressure =High) 

True False 

Figure 2. Functional Definition of Overridden Event Table. 

3, Simplifying SCR Tables Using Invariants 

This section presents two simplification rules that make 
use of invariants: (1) a rule to remove unreachable parts of 
the specification and (2) another rule to remove redundant 
parts of the specification. Since invariants are properties 
that hold in any reachable state, invariants may be used to 
simplify the expression of the next state function, the func- 
tion from which code is ultimately generated. Note that, 
to simplify an expression E, it is not sufficient to simply 
conjoin the invariants with E and apply some simplification 
procedure, because this might entail the simplification of 
bofh E and the invariants, when all we want to simplify is 
E itself. Thus, some form of expression simplification that 
uses the invariants as context is desired. 

3.1. Contexts 

For each cell to be simplified, several different forms of 
information may be assumed as context: the current value 
of the associated mode class, a constraint on the old value 
of the variable being defined in the table, and the set of in- 
variants. However, for a technical reason (as explained in 
the appendix) the contextual information involving the old 
value of the variable may only be used as context for the 
Rule Remove-Unreachable. 

A. THE MODE CLASS (Both Rules): Usually an 
event table in SCR has an associated mode class A T ;  that 
is, the value of the variable defined by the table is described 
as a function of that mode class and an event. Except for 
mode-less event tables, the mode in the old state can be used 
as part of a cell’s context. For mode transition tables, the 
vaIue of the mode in the old state can be used as context for 
the cell in the corresponding event column. For example, 

in Table 3 the mode context for the celI “@F(Pressure 
= High)” obtained from the associated mode class Pres- 
sure is “Pressure = High,” while the mode context for 
the cell in row 2 in Table 4 on page 7 is “CruiseMode = 
Inactive.” 

B. CONSTRAINT ON THE OLD VALUE (Rule 
Remove-Unreachable Only): For an event table, a con- 
straint on the old value of the variable being defined can also 
be used as part of the context of a cell. Event tables have 
a default “no change” condition, meaning that for a given 
cell, we only need to consider the value of the variable if 
the actual value of the variable changes. This is supported 
by the following property related to the formal definition of 
tables as given in [13], of which Figure 2 is an example. 

Property 1 For a variable r having 11ie set of possible i d -  

ues {VI, . . . , un}, thefunction definition 

is equivalent to the definition 

if the sei { P I ,  P2, ..., P,,} satisfies Di.rjointness, i.e. i # 
j + -.(F‘, A Pj) for  all 1 5 i, j 5 n.. 
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This property also holds when only conjoining T # ui for 
some subset of the Pi rather than all of the Pi. Thus for 
each cell in the definition of the new value T‘ defined by 
an event table we have the context T # U where TJ is the 
value below the double line at the bottom of the column 
containing that designated cell. For example, in Table 3 this 
gives the context for the “@F(Pressure =High)” cell as 
“Overridden # false.” 

C. THE INVARIANTS (Both Rules): Though any state 
invariant of C can be used as context, this paper only con- 
siders mode invariants, Le., state invariants of the form 
111 = m, =+ Qi, where h f  is a mode class name and Qi 
is a predicate defined on state variables of E. 

3.2. Simplification Rules 

For an intuitive presentation of our simplification tech- 
niques using invariants, we express the simplifications in 
terms of transformations of the cells of an SCR table. A 
tool implementing these simplifications would define these 
transformations directly in terms of the conditional expres- 
sions defining the semantics of each table, but the results 
would be equivalent. For example, consider the event table 
in Table 3. This table, which is adapted from the SCR spec- 
ification of a safety injection system [13], describes how 
the value of the variable Overridden is updated. The se- 
mantics of Table 3 is given as the conditional expression of 
Figure 2. 

Our simplifications apply to cells containing the event 
expressions occurring in event tables (e.g. the cells above 
the double line with header “Events” in Table 3) and mode 
transition tables (the cells with the header “Event” in Ta- 
ble 4). As a special case a cell may contain f &e, meaning 
that the case is impossible. Our simplifications are confex- 
t u d  in the sense that we shall simplify cells in the context of 
the given invariants plus additional facts as described above. 
In this paper, we present only two rules, both defined over a 
logical expression K ,  the context of a cell, and E, the event 
expression contained in that cell. 

Context for Remove-Redundancy: K = (hf  = 
m) A I, where (a) m is the old value of the mode 
class AI associated with the cell, (b) I is some 
state invariant (in the old state). 

Rule Remove-Redundancy: If E is an expres- 
sion containing a subexpression Q for a cell as- 
sociated with mode value m, and K + Q is a 
tautology, then E may be simplified by replacing 
each occurrence of Q within E with true. 

Intuitively, this rule says that if cell E is .being evalu- 
ated in a context where both K and Q are true, then ef- 

fectively the value of E is unchanged by treating each oc- 
currence of Q as true. If applying this rule simplifies E, 
one would naturally further simplify E using standard sim- 
plification algorithms. In this paper, we shall only apply 
Remove-Redundancy to mode transition tables. 

Context for Remove-Unreachable: K = ( M  = 
m) A I A ( T  # U), where (a) m is the old value 
of the mode class A4 associated with the cell con- 
taining E, (b) I is some state invariant (in the old 
state), and (c) w is the new value of T associated 
with the cell. 

Rule Remove-Unreachable: If K A E + false 
is a tautology, then E may be replaced by false. 

Obviously, if the context is false, then the transition as- 
sociated with this cell will never occur. Replacing the cell 
entry with false results in a clearer and more concise spec- 
ification. 

Next, we illustrate several simplifications using Rule 
Remove-Redundancy, Table 4 shows the mode transition 
table for a Cruise Control system [ 111. Applying our previ- 
ously developed invariant generation algorithms, produces 
the following two invariants for the cruise control specifica- 
tion: (1) CruiseMode = Inactive + IgnOn and (2) 
CruiseMode = Override j IgnOnAEngRunning. 
Consider Row 3,of Table 4 and let E be the event expres- 
sion from this row. Let 1 be the invariant (1) and take the 
context K to be I together with the mode context for this 
row, CruiseMode = Inactive. Together these two 
parts of the context imply IgnOn. Applying Rule Remove- 
Redundancy with Q = IgnOn eliminates “And IgnOn” 
from the end of the event expression in the cell (marked in 
italics). Code generated from the simplified table will be 
smaller and faster than code generated from the original ta- 
ble. Similarly, we can simplify line 9 of the mode transition 
table using invariants (1) and (2) to remove the expression 
“And IgnOn And EngRunning” (shown in italics). 

Finally, we illustrate how applying Rule Remove- 
Unreachable will lead to elimination of a row of Table 3. 
This corresponds to elimination of a part of the specifica- 
tion that would produce dead code during synthesis. Let 
E be the cell containing @F(Pressure = High) in the 
event table given in Table 3 and let I be P r e s s u r e  = 
High =$ Overridden = false, one of the gener- 
ated state invariants for this system. Let the context K 
be the invariant I together with the mode class informa- 
tion, Pressure=High, and the old state value informa- 
tion, Over r idden  # false. The three constraints of the 
context K taken together simplify to false; and thus by the 
Rule Remove-Unreachable the cell itself can be replaced by 
false. Because all the cells in the second row of the table 
now are false, the entire row of the table can be eliminated. 
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01dMode I Event I NewMode I 

2 I n a c t i v e  
3 mac t ive 

4 C r u i s e  

I 1 O f f  I @T(IgnOn) I I n a c t i v e - l  
@F(IgnOn) O f f  

@T(Lever = Cons t) WHEN EngRuMing C r u i s e  
AND NOT Brake AND IgnOn 

@F(IgnOn) O f f  

5 C r u i s e  
6 C r u i s e  
7 Override 
8 Override 
9 Override 

@F(EngRunn ing) I n a c t i v e  
@T(Brake) OR @T(Lever = off )  Override 
@F(IgnOn) O f f  
@F(EngRunning) I n a c t i v e  
@T(Lever = resume) OR @T(Lever = cons t )“  C r u i s e  

NOT Brake AND IgnOn AND EngRunning 

Table 4. Mode Transition Table for Mode Class Variable CruiseMode. 

The more compact table is shown in Table 5. The new table 
will produce less code during synthesis because it omits the 
part of the table that would lead to the construction of dead 
code. 

There is one special case of Remove-Unreachable that 
bears mention. If there is an invxhnt of the form M = m + 
false ,  any row of a table having M = m as the mode class 
context can be eliminated from the table. This one-step opti- 
mization is equivalent to a series of applications of Remove- 
Unreachable (one for each cell in the row), resulting in a 
row of cells having the value f a l se ,  followed by the elimi- 
nation of the row. 

4. Related Work 

The language LUSTRE [SI, developed at VERIMAG, is 
conceptually s i d a r  to the SCR language: it provides a de- 
terministic language, in which all non-input variables are 
simultaneously updated in response to some change in the 
input environment. Efficient code generation is an integral 
part of the LUSTRE toolset, and is based on the use of a 
“control automaton” that remembers a limited part of the 
old state of the system. The VERIMAG group has also ex- 
tended LUSTRE into the hardware area by adding syntac- 
tic sugar for array structures and circuit layout information, 
which the Pollux tool uses to automatically configure the 
hardware gates in Programmable Active Memory [34]. 

Early work on logical simplification in the 1950’s 
and 1960’s addressed Boolean minimization with respect 
to some measure (such as fewest number of literals in 
sum-of-products form) resulting in the well-known Quine- 
McCluskey method [33, 251. Later developments extended 
simplification over first-order theories with interpreted sym- 
bols: Loveland and Shostak [24] extended Quine’s method 
of prime implicants, while Zhang 1361 gives a general 
framework for simplification via cnntexruul rewriting, i.e., 
rewriting formulae in the context of additional information. 

This latter work has been extended to consider use of deci- 
sion procedures in manipulating the context during rewrit- 
ing [3]. The most sophisticated of these techniques have 
resulted in implementations of powerful theorem provers, 
e.g., SIMPLIFY, which is based on the work of Nelson [29j. 
The two rules we have given are special cases of contex- 
tual rewriting as originally defined by Remy t351, who first 
coined the terminology “contextual rewriting.” 

Complementing the early work on logic simplification in 
the 1950’s and 1960’s was the development of techniques 
for machine simplification, e.g., the minimization of the 
number of states of incompletely specified finite state ma- 
chines [32j. The monograph by Kam et al. gives a modem 
perspective on this subject [ 181. 

Invariants have been used for optimization during code 
generation for many years, but for the most part such in- 
variants are related to implementation details rather than re- 
quirements level invariants of reactive, embedded systems 
that we generate from SCR specifications. For example, 
“loop invariants” about the relative values of variables in 
a loop are used during the classic strength-reduction com- 
piler optimization technique [ 11 and the finite differencing 
program transformation technique [30]. More recent work 
on strengthening such invariants has led to additional op- 
timization as well as providing a more general approach 
called incrementalization [231. Another application of in- 
variants during code generation, but at a higher level akin 
to requirements, is the technique of run-time code genera- 
tion [22, 191. In this method, specialized code is generated 
at run-time, given invariants based upon the known input 
values for a specialized (often one-time) use of a program. 

In our simplification of the cells of a table, we use the old 
state value of the variable as means of restricting the calcu- 
Iation of the variable’s new value to only the cases where 
there is to be a change from the old value of the variable. 
This check of the old value of the variable could also be 
generated as part of the synthesized code. If the check were 
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Mode 
TOOLOW, 

Permitted 

Overr idden 

true 

Overridden 

Events 

@T(Block =On) @T(Pressure =High) OR 
WHEN Reser = O f f  @T(Reset =On) 

True F a l x  

if @T(Block=on) WHEN Reset=off 
AND Pressure in {TOOLOW, Permitted} 

Pressure in (TooLow, Permit ted)  

if @T(Pressure=High) OR @T(Reset=on) WHEN 

dherwise 

Figure 3. Functional Definition of Simplified Overridden Event Table. 

generated such that it was a preliminary check before the 
rest of the calculations were performed, it would optimize 
the code by preventing unnecessary calculations. This sort 
of incremental update to the variable (i.e., basing its new 
value upon its old value) as well as the LUSTRE control 
automaton approach to compilation are similar to finite dif- 
ferencing [30]. 

5. Conclusions and Future Work 

Though at a preliminary stage, the work reported in this 
paper shows that some benefit can be derived from using in- 
variants to simplify SCR specifications. In future work, we 
pIan to implement a tool’that applies more general invari- 
ants (to include transition invariants) to simplify SCR ta- 
bles using algorithms that support contextual simplification 
in the more general setting of interpreted first-order theo- 
ries, (e.g., arithmetic expressions, enumeration expressions, 
etc.). While the simple idea of a cell and its context pro- 
vide an intuitive framework for explaining the optimization 
of SCR specifications, the implementation will perform the 
optimizations directly on the underlying functional defini- 
tions. The output of this tool will then be used as input for 
our previously developed code synthesizers, allowing us to 
produce code that has been optimized. We plan to perform 
experiments to determine the amount of improvement the 
optimizations provide for typical SCR specifications. We 
also plan to implement the finite differencing optimization 
described in Section 4. 
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A. Soundness 

We have formally proved that both rules are sound, each 
with its own particular definition of context. Although these 
rules appear to be quite simple, careful attention to the al- 
lowable context is required. It would seem intuitive that the 
constraint on the old value of the variable v could be used 
as context with Rule Remove-Redundancy since a transfor- 
mation via Property 1 preserves the function. But this is 
unsound: it is easy to find an SCR table for which applica- 
tion of Rule Remove-Redundancy with the constraint T # v 
as part of the context introduces nondeterminism. 

We now present the proof of the soundness of Rule 
Remove-Unreachable for an event table. The proof is for 
the more general case of application of the rule to all cells 
simultaneousty. To avoid clutter we suppress explicit men- 
tion of the state. We consider the semantics of an event table 
defining the new value of a state variable T as a conditional 
expression: 

I if GI 
... ..+ 

v, if G, 
T otherwise 

... ..+ 

v, if G, 

1 T otherwise 
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where the set of guards Gi ( h l  = mi) A Ei, i = 
1,. . . , n are mutually disjoint; th~s  ensures that this con- 
ditional form represents a function. 

For every i, the Remove-Unreachable context for Ei is 

Ki = ( M  = m+) A 1, A (T # ~ 1 ~ )  

where Iz is some state invariant, which may be chosen dif- 
ferently for each i. Recall: 

Rule Remove-Unreachable: If (Ki A E )  3 
false is a tautology, then replace Ei with f &e. 

After applying this rule for every i ,  we have a new definition 
F:, with each Gi in the definition of F, replaced by G:, 
where 

in which 

(2) 
false  if (Ki  A Ei)  + false 
Ei otherwise. 

Note that (1) and (2) together imply that G: =+ Gi. 
For F,? to define a well-formed table function, the G: 

must be mutually disjoint. But this fact is easily established 
since the only modification to F, is to (possibly) replace 
some of the Ei by false .  

Theorem I Semnticully, n'ith respect to [he reachable 
states of the system, F, I F,'. 

Proof: In our proof, we may assume that all evaluation 
takes place in  a reachable state. 

The definition of F,! expands to 

... . . _  

"=  I v, ifC; 
(3) 

r otherwise 

and the definition of F, expands to 

(4) 
... ... 
'17, if G, 
T otherwise. 

We must show that the values of these two case expressions 
are equal. We need only consider two cases. 

... . . .  
'17, if G, A ( r  # w,) 
r otherwise. 

To show that this expression also evaluates to T ,  it suf- 
fices to show 

VZ : l(Gi A (T # vi)) (6)  

holds. But if (6) is false then there is some i such that 
Gi A ( r  # vi) holds. In this case, T # vi, and since Gi 
holds, we also have Ad = mi and Ei. Further, Ii holds 
because state invariants hold in any reachable state. There- 
fore, we know that Ki = (hf = mi) A Ii A (?- # ai) 
holds. Thus, Ki A Ei holds, which means that Ki A Ei + 
fulse does not hold. ;From this, we know E,' = Ei 
(by (2)), and hence, G: = Gi (by (1)). Because Gi 
holds, Gt also holds. Sut this contradicts the assumption 
Vz : 'Gf. Therefore, we have established (6). 

CASE [3i : GI]: Choose i such that Gr holds. Then 
the case expression in (4) evaluates to vi .  Since G,' + Gi, 
Gi also holds. 3ut this means that the value of the case 
expression in (3) also evaluates to 7 ~ ~ .  Hence, the values of 
the two case expressions are equal. 

CASE vi : -Gf]: In this case, the conditional expres- 
sion in (3) evaluates to r .  Using Property 1 on page 5 we 
can rewrite the conditional expression in (4) to: 
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