
Using Invariants to Optimize Forma1 Specifications Before Code Synthesis *

Ralph D. Jeffords and Elizabeth I. Leonard
Naval Research Laboratory (Code 5546)

Washington, DC 20375 USA
fieffords, leonard} @ i td. nrl. navy.mil

Abstract

Fomzol spec8cations of required system behavior can
be anaIyzed, ver$ed, and validated, giving hiph confidence
11iat the specijkdon captures the desired behavior: Trans-
ferring this confidence to the system intplementntion de-
pends on 0 formal link between requirentents and intple-
ntentatinn. The automtic generation of pmvably correct
code provides just such a link. While optiniization is usu-
ally petj5ornwd on code to achieve eficiency, we propose
to optimize the formal specification bejore generaring code,
thus providing optimi;ation indepeiident of the particular
code generation merhod. This paper investigates the use of
invariants in optimizing code generuted front fomml speci-
fications in the Sojhwe Cost Reduction (SCR) tabular no-
tation. We show rhar inrwiants (I) provide the basis for
siniplifiing expressions that otherwise cannot be iniproved
using frrrdirionol compiler optimization techniques, and (2)
allouv detection and eliniinarion of parts ofthe spec$catimn
tliaf would lead to urireuchable rode.

1. Introduction

Formal requirements specifications are useful because
they can be analyzed to show that they satisfy critical prop-
erties such as safety, security, and timeliness. Additionally,
with executable specifications, the user may symbolically
execute the system to validate that the specification captures
the intended system behavior. Thus, analysis and simulation
can provide confidence that a specification is coii-ect. Trans-
ferring this confidence to the implementation requires a for-
mal link between requirements and implementation. This
formal link may be realized by a sequence of (usually) man-
ual refinements, but the automatic generation of provably

'This research was funded by the Ofice of Naval Research.

correct code provides the highest confidence that the code
captures the specified behavior. We have shown in previous
work [21] how to construct code from requirements speci-
fied in the Software Cost Reduction (SCR) tabular notation.
The development of high-quality SCR requirements speci-
fications is supported by a suite of editing and verification
tools designed and developed by the Naval Research Labo-
ratory. Automatic code synthesis is consistent with our SCR
toolset design phitosophy, the goal of which is to automate
(as much as possible) the process of system specification,
analysis, and implementation using tools and methods de-
signed for practicing engineers.

Both speed and code size are important in code for em-
bedded systems. Compilers generally perform optimiza-
tions for speed, while code size optimization is often done
by hand on either the source code or the compiled code [281.
Rather than perform optimizations only on the code itself,
our approach is to translate the formal specification into an
equivalent form that will lead to smaller, and frequently
faster, code than the originaI specification, thus providing
optimization independent of the particular code generation
method. This will then be followed by more typical opti-
mizations on the code. This paper investigates the use of
requirements level invariants in optimizing code generated
from executable formal requirements specifications repre-
sented in the SCR tabular notation. Invariants are proper-
ties that hold in every reachable state of such an executable
system. In previous work, we have developed algorithms
for automatically generating invariants 116, 171; these and
other invariants that have been established can be used with
our techniques.

To illustrate our notion of optimization, we consider a
simple state machine E with state set (~1~x2). Associated
with C is a variable X, whose value represents the current
state of E, and Boolean variables A and B. The machine
C changes state based on (and in parallel with) changes in
A and B. Here and below, we follow the standard conven-

U.S. Government work not protected by U.S. copyright. tion in which unprimed variables represent values prior to a

0-7803-8509-8/04/$20.00 0 2004 IEEE 73

http://navy.mil

transition and primed variables represent values after a tran-
sition.

source state

5 1

5 1

A h -A’

A - A h A ’

-
B A - B ’ A A

guard target state

A A lA‘ 2 2

B ~ - 4 3 ’ A A 2 2

Figure 1. Simple Example State Machine

I 2 1
x2 1 l A ~ A f I

The SCR method uses similar tables to define state machine
transitions. The above table is a compact representation of
the function defining X’, the value of variable X in the new
state. The standard mathematical definition of the function
is more complex:

X I = { 2 1 if X = z2 A (lA A A’)

The simplification performed above can be used to in-
duce a transformation of the table. -The cells comprising

52 if x = T I A ((A A TA’) v (B A d 3 ’ A A))

X otherwise

the guard column of the table are the focus of our sim-
plifications. We are abte to perform the simplification be-
cause (1) the system is in state 51 (i.e., X = XI), (2) the
invariant (X = 51) + A always holds, and (3) the pre-
vious two facts together imply that A holds. If we take
K = (X = 21) A (X = z1 =+ A) to be the context of
the cell containing the expression B A -E’ A A, then our
simplification may be expressed as follows.

If K is the context for a cell containing the expres-
sion E and K + A then, A may be replaced by
true in E.

A generalization of the above rule to replace any subex-
pression (rather than just the Boolean variable A) is one of
the simplification rules that we have developed. However,
the simplification is not yet complete because this rule says
that B A 4 3 ‘ A A is transformed into B A +?’ A true.
Transforming this expression to B A 1B’ is trivial; we sim-
plify using the identity P A true H p. In the general case,
we apply this and other standard Boolean simplifications.
Transforming the table as described results in a table with a
simplified middle row:

I sourcestate I guard 1 target state I

Note that the simplification rule with the same context has
also been applied to remove the term A from the guard cell
of the first line of the table.

 his simple example i~~ustrates that invariants can pro-
vide the basis for simplifying expressions that cannot be fur-
ther simplified without use of those invariants. Such modi-
fications are a form of contextual siniplification, analogous
to contextual rewriting [35], since they involve the use of a
context of known facts to aid in the simplification. In addi-
tion to the generalization of the above rule, we also develop
rules for detecting and eliminating parts of the specifica-
tion that would lead to unreachable code. Our general ap-
proach is to apply a convergent set of contextual simplifica-
tion rules, each application of which may require additional
non-contextual simplification.

While this paper considers only a set of simple rules for
simplifying propositional formulas, we are in the process of
investigating more sophisticated techniques to include ac-
tual algorithms for doing these optimizations, as well as ex-
tension to contextual simplification of a more general nature
(e.g., simplification of arithmetic expressions).

Section 2 provides background on SCR and on invari-
ants that can be automatically derived from SCR specifi-
cations. Section 3 explains how invariants may be used to

74

simpIify SCR tables by removing portions of the specifica-
tion that would lead to unnecessary or dead code. Examples
are given to illustrate the utility of invariants in this process.
Section 4 discusses related work. Section 5 presents con-
clusions and ideas for future work.

2, Background

Originally formulated to document the requirements of
the flight program of the U.S. Navy’s A-7 aircraft [14], the
SCR requirements method is designed to support detection
and correction of errors during the requirements phase of
software development [13, 91. The SCR toolset provides
a user-friendly approach to writing requirements specifica-
tions in a tabular format and a number of analysis tools,
including a consistency checker [13], a simulator [12], a
model checker [IO], theorem provers [2,4], and an invariant
generator [16, 171. By applying the SCR tools to uncover
errors, a user can develop high confidence that a specifica-
tion correctly captures the required system behavior.

The SCR method has been used successfully by many
organizations in industry and in government (e.g., Bell Lab-
oratories [15], Grumman [261, Lockheed [77, the Naval
Research Laboratory [IO, 201, Ontario Hydro [311, and
Rockwell Aviation {27]) to develop and analyze specifi-
cations of practical systems, including flight control sys-
tems 17,271, weapons systems [IO], space systems [SI, and
cryptographic devices [20]. Most recently, the SCR tools
were used, together with a test case generator, by Lockheed
Martin to detect a critical error described as the “most likely
cause” of a $1 65 million failure in the software controlling
landing procedures in the Mars Polar Lander [5] .

2.1 SCR Requirements Model

In SCR the required system behavior is defined in terms
of monitored and controlled variables, which represent
quantities in the system environment that the system mon-
itors and controls. The environment nondeterministically
produces a sequence of monitored events, where a nzoni-
rored evenr signaIs a change in the value of some monitored
variable. The system, represented in the model as a state
machine, begins execution in some initial state and then re-
sponds to each monitored event in tum by changing state.
In SCR the system behavior is assumed to be synclzronous:
the system completely processes one set of inputs before
processing the next set. Furthermore, the One Input As-
srrniption allows at most one monitored variable to change
from one state to the next.

To specify the required behavior concisely, the SCR
model contains two types of auxiliary variables: made
classes, whose values are called modes, and terms. Each

mode is an equivalence class of system states useful in spec-
ifying as well as understanding the required system behav-
ior. A term is a state variable defined by an expression over
monitored variables, mode classes, or other terms. Mode
classes and terms often capture history-the changes that
occurred in the values of the monitored variables-and help
to make the specification more concise.

The SCR model represents a system as a state machine
C = (S, SO, Em,T), where S is the set of states, SO C S
is the set of initial states, E” is the set of monitored events,
and T is the transform describing the allowed state transi-
tions [131. In our model, the transform T is a function that
maps a monitored event e f Em and the current state s E S
to the next state s’ E S. Further, a stare is a function that
maps each state variable, i.e., each monitored or controlled
variable, mode class, or term, to a type-correct value; a cm-
dirion is a predicate defined on a system state, and an eveltr
is a predicate requiring that two consecutive system states
differ in the value of at least one state variable.

The notation “@T (c) WHEN d” denotes a conditioned
en”, which is defined by

@ T i c) WHEN d e f - c h c ‘ A d ,

where the unprimed conditions c and d are evaiuated in the
current state and the primed condition c’ is evaluated in the
next state. The event @T (c) WHEN d occurs when its
defining expression evaluates to true. We also define

2.2 The SCR Tables

The transform T is a composition of smaller functions
called table furrcrions, which are derived from the condi-
tion tables, event tables, and mode transition tables in SCR
requirements specifications. These tables define the values
of the dependenr iwiables-the controlled variables, mode
classes, and terms. For T to be well-defined, no circular de-
pendencies are allowed in the definitions of the dependent
variables. The variables are partially ordered based on the
dependencies among the next state values.

Each table defining a term or controlled variable is ei-
ther a condition table or an event table. A candifion tu-
ble associates a mode and a condition in the next state with
a variable value in the next state, whereas an rvenr ruble
associates a mode and a conditioned event with a variable
value in the next state. Each table defining’a mode class
is a nzode trunsirion table, which associates a source mode
and an event with a target mode. Our formal model requires
the information in each table to satisfy certain properties,
guaranteeing that each table describes a total function [13].
Some SCR tables may be modeless, i.e., they define the
value of a variable without referring to any mode class.

75

I OldMode I Event 1 NewMode 1

Mode

I TooLow I bT(WaterPres2Low) I Permit ted I

Conditions

I Permitted I OTWaterTres2Permit) I High I

TOOLOW I Overridden

I Permitted I BT(WaterPres<Low) I TOOLOW I

NOT Overridden

1 HiQh I @T(waterPres < Permit) 1 Pernitted 1

Safe ty- In jec t ion I O€ f On

Table 2. Condition Table for Safe ty- In jec t ion .

To illustrate the SCR tabular notation, three example ta-
bles are presented. These tables define the values of the
three dependent variables in a simplified version of a safety
injection system (SIS) [131 for a nuclear power plant. The
SZS system monitors water pressure, and if the pressure is
too low, the system injects coolant into the reactor core.

Table 1 is a mode transition table defining the new value
of the mode class Pressure as a function of the current
mode and the monitored variables. For example, the first
row of the table states that if the current mode is TooLow
and the water pressure becomes greater than or equal to the
Low threshold, the new mode is Permitted.

Table 2 is a condition table defining the value of
the controlled variable Safe ty - In j ec t ion as a function
of the modes and the term varjable Overridden. The
first row states that in the High or Permitted modes,
Sa fe ty - In j ec t ion is Off . The second row states
that in the mode TooLou, if Overridden is true then
Safe ty- In jec t ion is Off, and if Overridden is false
then Safety-Injection is On.

Table 3 is an event table defining the term Overridden
as a function of the current mode and the monitored vari-
ables. The first row describes the behavior when the mode
of the system (i.e., the value of Pressure in the old state)
is either TooLou or Permitted. In either of these modes, if
Block switches to On when Reset is U f f , then the new
value of Overridden is true, but if the Pressure be-
comes High or Reset switches to On, then the new value
of Overridden is false.

2.3 Invariants and Code Generation

We consider two forms of invariants in SCR: stufe in-
~nn'unts, expressions over a single state that hold in each
reachable state of the system, and rrunsirion invariants, ex-
pressions over two states that hold for each reachable pair

of consecutive states. We have designed two algorithms
[16, 171 for constructing state invariants from the tables
defining the dependent variables in an SCR specification.
Suppose that dependent variable T has values in a finite set
{ W ~ , ~ J ~ , . . . , V ~) . Ifthevalueof risdefinedbyamodetransi-
tion table or an event table, then, for each vi, the algorithms
generate invariants of the form

where Ci is a predicate over the variables in C on which r
depends. Invariant generation from SCR tables is based on
the following idea: In an SCR specification, T = ut 3 Ci is
an invariant if 1) Ci is always Vue when T'S value changes
to vi, and 2) an event falsifying C, unconditionally causes r
to have a value other than vi. Since stronger invariants may
be computed with knowledge of previously computed in-
variants, the full algorithms repeat the computations of the
invariants until a fixpoint is reached. The current implemen-
tation of the SCR invariant generator applies our algorithms
to both mode transition tables and event-tables. State in-
variants constructed from a mode transition table are called
mode invariants.

We have also developed two prototype code synthesiz-
ers that construct C source code from an SCR requirements
specification 1211. The two synthesizers, each using'a dif-
ferent code generation strategy, are based on Paige's APTS
program transformation system 1301. The first strategy uses
rewrite rules to transform the parse tree of an SCR specifi-
cation into a parse tree for the corresponding C code. The
second strategy associates a relation with each node of the
specification parse tree. Each member of this relation acts
as an attribute, holding the C code corresponding to the tree
at the associated node; the root of the tree has the entire C
program as its member of the relation. The generated code
is efficient but has not been optimized.

7 6

Mode Pressure

TooLow,
Permitted
High

Overridden

t r u e if @T(Block=on) WHEN Reset=off
AND Pressure in {TOOLOW, PermiEted)

Pressure in {TooLow, Permitted}
OR @F(Pressure= High) WHEN Pressure=Higlr

false if @T(Pressure=High) OR @T(Reset=on) WHEN I Overriddm otherwise

Overridden’ =

Events

@T(Block = On)
WHEN Reset = O f f

@T(Pressure = High) OR
@T(Reset =On)

False @F(Pressure =High)

True False

Figure 2. Functional Definition of Overridden Event Table.

3, Simplifying SCR Tables Using Invariants

This section presents two simplification rules that make
use of invariants: (1) a rule to remove unreachable parts of
the specification and (2) another rule to remove redundant
parts of the specification. Since invariants are properties
that hold in any reachable state, invariants may be used to
simplify the expression of the next state function, the func-
tion from which code is ultimately generated. Note that,
to simplify an expression E, it is not sufficient to simply
conjoin the invariants with E and apply some simplification
procedure, because this might entail the simplification of
bofh E and the invariants, when all we want to simplify is
E itself. Thus, some form of expression simplification that
uses the invariants as context is desired.

3.1. Contexts

For each cell to be simplified, several different forms of
information may be assumed as context: the current value
of the associated mode class, a constraint on the old value
of the variable being defined in the table, and the set of in-
variants. However, for a technical reason (as explained in
the appendix) the contextual information involving the old
value of the variable may only be used as context for the
Rule Remove-Unreachable.

A. THE MODE CLASS (Both Rules): Usually an
event table in SCR has an associated mode class A T ; that
is, the value of the variable defined by the table is described
as a function of that mode class and an event. Except for
mode-less event tables, the mode in the old state can be used
as part of a cell’s context. For mode transition tables, the
vaIue of the mode in the old state can be used as context for
the cell in the corresponding event column. For example,

in Table 3 the mode context for the celI “@F(Pressure
= High)” obtained from the associated mode class Pres-
sure is “Pressure = High,” while the mode context for
the cell in row 2 in Table 4 on page 7 is “CruiseMode =
Inactive.”

B. CONSTRAINT ON THE OLD VALUE (Rule
Remove-Unreachable Only): For an event table, a con-
straint on the old value of the variable being defined can also
be used as part of the context of a cell. Event tables have
a default “no change” condition, meaning that for a given
cell, we only need to consider the value of the variable if
the actual value of the variable changes. This is supported
by the following property related to the formal definition of
tables as given in [13], of which Figure 2 is an example.

Property 1 For a variable r having 11ie set of possible i d -

ues {VI, . . . , un}, thefunction definition

is equivalent to the definition

if the sei { P I , P2, ..., P,,} satisfies Di.rjointness, i.e. i #
j + -.(F‘, A Pj) for all 1 5 i, j 5 n..

77

This property also holds when only conjoining T # ui for
some subset of the Pi rather than all of the Pi. Thus for
each cell in the definition of the new value T‘ defined by
an event table we have the context T # U where TJ is the
value below the double line at the bottom of the column
containing that designated cell. For example, in Table 3 this
gives the context for the “@F(Pressure =High)” cell as
“Overridden # false.”

C. THE INVARIANTS (Both Rules): Though any state
invariant of C can be used as context, this paper only con-
siders mode invariants, Le., state invariants of the form
111 = m, =+ Qi, where h f is a mode class name and Qi
is a predicate defined on state variables of E.

3.2. Simplification Rules

For an intuitive presentation of our simplification tech-
niques using invariants, we express the simplifications in
terms of transformations of the cells of an SCR table. A
tool implementing these simplifications would define these
transformations directly in terms of the conditional expres-
sions defining the semantics of each table, but the results
would be equivalent. For example, consider the event table
in Table 3. This table, which is adapted from the SCR spec-
ification of a safety injection system [13], describes how
the value of the variable Overridden is updated. The se-
mantics of Table 3 is given as the conditional expression of
Figure 2.

Our simplifications apply to cells containing the event
expressions occurring in event tables (e.g. the cells above
the double line with header “Events” in Table 3) and mode
transition tables (the cells with the header “Event” in Ta-
ble 4). As a special case a cell may contain f &e, meaning
that the case is impossible. Our simplifications are confex-
t u d in the sense that we shall simplify cells in the context of
the given invariants plus additional facts as described above.
In this paper, we present only two rules, both defined over a
logical expression K , the context of a cell, and E, the event
expression contained in that cell.

Context for Remove-Redundancy: K = (hf =
m) A I, where (a) m is the old value of the mode
class AI associated with the cell, (b) I is some
state invariant (in the old state).

Rule Remove-Redundancy: If E is an expres-
sion containing a subexpression Q for a cell as-
sociated with mode value m, and K + Q is a
tautology, then E may be simplified by replacing
each occurrence of Q within E with true.

Intuitively, this rule says that if cell E is .being evalu-
ated in a context where both K and Q are true, then ef-

fectively the value of E is unchanged by treating each oc-
currence of Q as true. If applying this rule simplifies E,
one would naturally further simplify E using standard sim-
plification algorithms. In this paper, we shall only apply
Remove-Redundancy to mode transition tables.

Context for Remove-Unreachable: K = (M =
m) A I A (T # U), where (a) m is the old value
of the mode class A4 associated with the cell con-
taining E, (b) I is some state invariant (in the old
state), and (c) w is the new value of T associated
with the cell.

Rule Remove-Unreachable: If K A E + false
is a tautology, then E may be replaced by false.

Obviously, if the context is false, then the transition as-
sociated with this cell will never occur. Replacing the cell
entry with false results in a clearer and more concise spec-
ification.

Next, we illustrate several simplifications using Rule
Remove-Redundancy, Table 4 shows the mode transition
table for a Cruise Control system [111. Applying our previ-
ously developed invariant generation algorithms, produces
the following two invariants for the cruise control specifica-
tion: (1) CruiseMode = Inactive + IgnOn and (2)
CruiseMode = Override j IgnOnAEngRunning.
Consider Row 3,of Table 4 and let E be the event expres-
sion from this row. Let 1 be the invariant (1) and take the
context K to be I together with the mode context for this
row, CruiseMode = Inactive. Together these two
parts of the context imply IgnOn. Applying Rule Remove-
Redundancy with Q = IgnOn eliminates “And IgnOn”
from the end of the event expression in the cell (marked in
italics). Code generated from the simplified table will be
smaller and faster than code generated from the original ta-
ble. Similarly, we can simplify line 9 of the mode transition
table using invariants (1) and (2) to remove the expression
“And IgnOn And EngRunning” (shown in italics).

Finally, we illustrate how applying Rule Remove-
Unreachable will lead to elimination of a row of Table 3.
This corresponds to elimination of a part of the specifica-
tion that would produce dead code during synthesis. Let
E be the cell containing @F(Pressure = High) in the
event table given in Table 3 and let I be P r e s s u r e =
High =$ Overridden = false, one of the gener-
ated state invariants for this system. Let the context K
be the invariant I together with the mode class informa-
tion, Pressure=High, and the old state value informa-
tion, Over r idden # false. The three constraints of the
context K taken together simplify to false; and thus by the
Rule Remove-Unreachable the cell itself can be replaced by
false. Because all the cells in the second row of the table
now are false, the entire row of the table can be eliminated.

78

01dMode I Event I NewMode I

2 I n a c t i v e
3 mac t ive

4 C r u i s e

I 1 O f f I @T(IgnOn) I I n a c t i v e - l
@F(IgnOn) O f f

@T(Lever = Cons t) WHEN EngRuMing C r u i s e
AND NOT Brake AND IgnOn

@F(IgnOn) O f f

5 C r u i s e
6 C r u i s e
7 Override
8 Override
9 Override

@F(EngRunn ing) I n a c t i v e
@T(Brake) OR @T(Lever = off) Override
@F(IgnOn) O f f
@F(EngRunning) I n a c t i v e
@T(Lever = resume) OR @T(Lever = cons t)“ C r u i s e

NOT Brake AND IgnOn AND EngRunning

Table 4. Mode Transition Table for Mode Class Variable CruiseMode.

The more compact table is shown in Table 5. The new table
will produce less code during synthesis because it omits the
part of the table that would lead to the construction of dead
code.

There is one special case of Remove-Unreachable that
bears mention. If there is an invxhnt of the form M = m +
false , any row of a table having M = m as the mode class
context can be eliminated from the table. This one-step opti-
mization is equivalent to a series of applications of Remove-
Unreachable (one for each cell in the row), resulting in a
row of cells having the value f a l se , followed by the elimi-
nation of the row.

4. Related Work

The language LUSTRE [SI, developed at VERIMAG, is
conceptually s i d a r to the SCR language: it provides a de-
terministic language, in which all non-input variables are
simultaneously updated in response to some change in the
input environment. Efficient code generation is an integral
part of the LUSTRE toolset, and is based on the use of a
“control automaton” that remembers a limited part of the
old state of the system. The VERIMAG group has also ex-
tended LUSTRE into the hardware area by adding syntac-
tic sugar for array structures and circuit layout information,
which the Pollux tool uses to automatically configure the
hardware gates in Programmable Active Memory [34].

Early work on logical simplification in the 1950’s
and 1960’s addressed Boolean minimization with respect
to some measure (such as fewest number of literals in
sum-of-products form) resulting in the well-known Quine-
McCluskey method [33, 251. Later developments extended
simplification over first-order theories with interpreted sym-
bols: Loveland and Shostak [24] extended Quine’s method
of prime implicants, while Zhang 1361 gives a general
framework for simplification via cnntexruul rewriting, i.e.,
rewriting formulae in the context of additional information.

This latter work has been extended to consider use of deci-
sion procedures in manipulating the context during rewrit-
ing [3]. The most sophisticated of these techniques have
resulted in implementations of powerful theorem provers,
e.g., SIMPLIFY, which is based on the work of Nelson [29j.
The two rules we have given are special cases of contex-
tual rewriting as originally defined by Remy t351, who first
coined the terminology “contextual rewriting.”

Complementing the early work on logic simplification in
the 1950’s and 1960’s was the development of techniques
for machine simplification, e.g., the minimization of the
number of states of incompletely specified finite state ma-
chines [32j. The monograph by Kam et al. gives a modem
perspective on this subject [181.

Invariants have been used for optimization during code
generation for many years, but for the most part such in-
variants are related to implementation details rather than re-
quirements level invariants of reactive, embedded systems
that we generate from SCR specifications. For example,
“loop invariants” about the relative values of variables in
a loop are used during the classic strength-reduction com-
piler optimization technique [11 and the finite differencing
program transformation technique [30]. More recent work
on strengthening such invariants has led to additional op-
timization as well as providing a more general approach
called incrementalization [231. Another application of in-
variants during code generation, but at a higher level akin
to requirements, is the technique of run-time code genera-
tion [22, 191. In this method, specialized code is generated
at run-time, given invariants based upon the known input
values for a specialized (often one-time) use of a program.

In our simplification of the cells of a table, we use the old
state value of the variable as means of restricting the calcu-
Iation of the variable’s new value to only the cases where
there is to be a change from the old value of the variable.
This check of the old value of the variable could also be
generated as part of the synthesized code. If the check were

79

Mode
TOOLOW,

Permitted

Overr idden

true

Overridden

Events

@T(Block =On) @T(Pressure =High) OR
WHEN Reser = O f f @T(Reset =On)

True F a l x

if @T(Block=on) WHEN Reset=off
AND Pressure in {TOOLOW, Permitted}

Pressure in (TooLow, Permit ted)

if @T(Pressure=High) OR @T(Reset=on) WHEN

dherwise

Figure 3. Functional Definition of Simplified Overridden Event Table.

generated such that it was a preliminary check before the
rest of the calculations were performed, it would optimize
the code by preventing unnecessary calculations. This sort
of incremental update to the variable (i.e., basing its new
value upon its old value) as well as the LUSTRE control
automaton approach to compilation are similar to finite dif-
ferencing [30].

5. Conclusions and Future Work

Though at a preliminary stage, the work reported in this
paper shows that some benefit can be derived from using in-
variants to simplify SCR specifications. In future work, we
pIan to implement a tool’that applies more general invari-
ants (to include transition invariants) to simplify SCR ta-
bles using algorithms that support contextual simplification
in the more general setting of interpreted first-order theo-
ries, (e.g., arithmetic expressions, enumeration expressions,
etc.). While the simple idea of a cell and its context pro-
vide an intuitive framework for explaining the optimization
of SCR specifications, the implementation will perform the
optimizations directly on the underlying functional defini-
tions. The output of this tool will then be used as input for
our previously developed code synthesizers, allowing us to
produce code that has been optimized. We plan to perform
experiments to determine the amount of improvement the
optimizations provide for typical SCR specifications. We
also plan to implement the finite differencing optimization
described in Section 4.

Acknowledgments. We thank our colleague Connie Heit-
meyer for the “constraint on the old value” form of context,
and suggestions for improving the presentation of this work.
The anonymous reviewers and our colleagues Myla Archer
and Michael Colbn also provided helpful comments. Myla

helped to improve the proof in the appendix and she fur-
nished Figure l.

References

A. V. Aho, R. Sethi, and J. D. Ullman. Coinpilers: Princi-
ples, Techniques, and Tonis. Addison Wesley, Reading, MA,
1988.
M. Archer. TAME: Using PVS strategies for special-purpose
theorem proving. Annals of Mathernutics and Art$cid In-
telligence, 29(1-41, February 2001.
A. Armando and S. Ranise. Constraint contextual rewriting.
J. o f s ~ d d i c Compmtion, 36(1/2): 193-216, JulylAupst
2003.
R, Bharadwaj and S. Sims. Salsa: Combining constraint
solvers with BDDs for automatic invariant checking. In
Proc. Tools and Algorirlzms for the Construction and Analy-
sis of Sysrems (TACAS ’20001, Berlin, Mar. 2000.
M. Blackbum, R. Knickerbocker, and R. Kasuda. Apply-
ing the test automation framework to the Mars lander touch-
down monitor. In Lockheed Martin Joint Symposium, 2001.
S. Easterbrook, R. Lutz, R. Covington, Y. Ampo, and
D. Hamilton. Experiences using lightweight formal methods
for requirements modeling. IEEE Transucrions on Softwore
Engineering, 24(1), Jan. 1998.
S. R. Faulk, L. Finneran, J. Kirby. Jr., S. Shah, and J. Sutton.
Experience applying the CORE method to the Lockheed C-
1303. In Proc. 9th Annual Con$ on Computer Assurance
(COMPASS ’94), Gaithersburg. MD, June 1994.
N. Halbwachs, E Lagnier, and C. Ratel. Programming and
verifying real-time systems by me& of the synchronous
data-flow language LUSTRE. IEEE Trans. So@. Engin.,
18(9):785-793, Sept. 1992.
C. Heitmeyer. Software cost reduction. In J. J. Marciniak,
editor, Encyclopedia of Snfrwnre Engineering. John Wiley
& Sons, Inc., New York, NY, second edition, 2002.
C. Heitmeyer, J. Kirby, B. Labaw, M. Archer, and
R. Bharadwaj. Using abstraction and model checking to de-
tect safety violations in requirements specifications. IEEE
Trans. on S o f i . B i g . , 24(11). NOV. 1998.

30

11 11 C. Heitmeyer, J. Kirby, Jr,, and 8. Labaw. Tools for formal
specification, verification, and validation of requirements.
In Pmc. 12th Annual Con$ on Computer Assumace (CUM-
PASS ’97), Gaithersburg, MD. June 1997.

[I21 C. Heitmeyer, J. Kirby, Jr., B. Labaw, and R. Bharadwaj.
SCR*: A toolset for specifying and analyzing software re-
quirements. In Proc. Computer-Aided VeriJicarion, 10th An-
nual Conf (CAV’98), Vancouver, Canada, 1998.

[13] C. L. Heitmeyer, R. D. Jeffords, and B. G. Labaw. Auto-
mated consistency checking of requirements specifications.
A CM Transactions on Sofiare Engineering and Methodol-
ogy, 5(3):231-261, April-June 1996.

(141 K. Heninger, D. t. Parnas, J. E. Shore, and J. W. Kallan-
der. Software requirements for the A-7E aircraft. Technical
Report 3876, NRL, Wash., DC, 1978.

[I51 S. D. Hester, D. L. Pamas, and D. E Utter. Using documen-
tation as a software design medium. Bell System Tech. J.,
60(8):1941-1977, Oct. 1981.

1161 R. Jeffords and C. Heitmeyer, Automatic generation of state
invariants from requirements specifications. In P roc. Sixth
ACM SIGSOFT Syinp. on Fuundarions of Sof iare Engi-
neering, Nov. 1998.

An algorithm for
strengthening state invariants generated from requirements
specifications. In Pmc. of tile Fijh IEEE bitenlational Spn-
posium on Requirertients Engineering, Aug. 2001.

[Is] T. Kam, T. Villa, R. K. Brayton, and A. L. Sangiovanni-
Vincentelli. Syntliesis of Finite Stale Machines: Funcrioiial
Oprbnizdoa. Kluwer, Boston,MA, 1996.

[191 S . Kamin. Routine run-time code generation. In Proc. UOP-
SIA’U3. pages 208-220, AnaheimCA, Oct. 2003.

[20] J. Kirby, Jr., M. Archer, and C. Heitmeyer. SCR: A practical
approach to building a high assurance COMSEC system. In
Proceedings of the 15th Annita1 Conpiter Securie Appli-
cutioiu Conference (ACSAC ’99). IEEE Computer Society
Press, Dec. 1999.

[21] E. I. Leonard and C. L. Heitmeyer. Program synthesis from
formal requirements specifications using APTS. Higher-
Order and Symbolic Coinpurafion, 16(1/2):63-92, MarlJune
2003.

[22] M. Leone and P. Lee. A declarative approach to run-time
code generation. In Workshop an Carnpiler Siippon for Sys-
tem Sofhvare (WCSSS), Feb. 1996.

[23] Y. A. Liu, S. D. Stoller, and T. Teitelbaum. Strengthening
invariants for efficient computation. In Pmc. 23rd Annual
ACM Sjmp. OR Principles of Pmg. h n g . (POPL), St. Pe-
tersburg Beach, FL, Jan. 1996.

[24J D. W. Loveland and R. E. Shostak. Simplifying interpreted
formulas. In W. Bibel and R. Kowalski, editors, Proc.

. 5th Cont 011 Automated Deduction (CADE), volume 87 of
LNCS, pages 97-109, Les Arcs, France, 19x0. Springer-
Vedag.

1251 E. J. McCluskey. Minimization of boolean functions. Bell
Sys. Tech. J., 35:I417-1444, Nov. 1956.

[26] S. Meyers and S. White. Software requirements methodol-
ogy and tool study for A6-E technology transfer. Techni-
cal report, Gruman Aerospace Corp., Bethpage, NY, July
1983.

[17] R. D. Jeffords and C. L. Heitmeyer.

[27] S. Miller. Specifying the mode logic of a flight guidance
system in CORE and SCR. In Proc. 2nd ACM Workshop on
Formal Methods in Sofhvare Practice (FMSP‘98). 1998.

[28] M. Naik and J. Palsberg. Compiling with code-size con-
straints. ACM Transactions on Embedded Computing Sys-
tems, 3(1):163-181, February 2004.

[29] G. Nelson. Techniquesfor Program Verification. PhD thesis,
Stanford Univ., Stanford, CA, June 198 1.

[30] R. Paige and S . Koenig. Finite differencing of computable
expressions. ACM Transactions on Programming Lon-
guages clnd Systems, 4(3):402454, July 1982.

I311 D. L. Pamas, G. Asmis, and J. Madey. Assessment of safety-
critical software in nuclear power plants. Nuclear Safeoj,
32(2), April-June 1991.

1321 M. C. Paul1 and S. H. Unger. Minimizing the number of
states in incompletely specified sequential switching func-
tions. IRE Trans. on Elecrronic Computers, EC-8:35&367,
Sept. 1959.

[33] W. V. Quine. The problem of simplifying truth functions.
Am. Math. Monrlzl~~, 59521-531, Oct. 1952.

[34] E Rocheteau and N. Halbwachs. POLLUX: a LUSTRE
based hardware design environment. In P. Quinton and
Y. Robert, editors, CO$ on Algorithm and Parallel VLSl
Archirecfures U, Chateau de Bonas,France, 1991.

[35] H. Zhang. Implementing contextual rewriting. In M. Rusi-
nowitch and J.-L. Remy, editors, Proc. Third Inr’l Work-
shop on Conditional Tern1 &writing Systetirs (CTRS), vol-
ume 656 of LNCS, pages 363-377. Springer, 1992.

[36] H. Zhang. Contextual rewriting in automated reasoning.
Fuundamenru htfonnaricae, 24(1/2): 107-123, Sept. 1995.

A. Soundness

We have formally proved that both rules are sound, each
with its own particular definition of context. Although these
rules appear to be quite simple, careful attention to the al-
lowable context is required. It would seem intuitive that the
constraint on the old value of the variable v could be used
as context with Rule Remove-Redundancy since a transfor-
mation via Property 1 preserves the function. But this is
unsound: it is easy to find an SCR table for which applica-
tion of Rule Remove-Redundancy with the constraint T # v
as part of the context introduces nondeterminism.

We now present the proof of the soundness of Rule
Remove-Unreachable for an event table. The proof is for
the more general case of application of the rule to all cells
simultaneousty. To avoid clutter we suppress explicit men-
tion of the state. We consider the semantics of an event table
defining the new value of a state variable T as a conditional
expression:

I if GI
... ..+

v, if G,
T otherwise

... ..+

v, if G,

1 T otherwise

81

where the set of guards Gi (h l = mi) A Ei, i =
1,. . . , n are mutually disjoint; th~s ensures that this con-
ditional form represents a function.

For every i, the Remove-Unreachable context for Ei is

Ki = (M = m+) A 1, A (T # ~ 1 ~)

where Iz is some state invariant, which may be chosen dif-
ferently for each i. Recall:

Rule Remove-Unreachable: If (Ki A E) 3
false is a tautology, then replace Ei with f &e.

After applying this rule for every i , we have a new definition
F:, with each Gi in the definition of F, replaced by G:,
where

in which

(2)
false if (Ki A Ei) + false
Ei otherwise.

Note that (1) and (2) together imply that G: =+ Gi.
For F,? to define a well-formed table function, the G:

must be mutually disjoint. But this fact is easily established
since the only modification to F, is to (possibly) replace
some of the Ei by false .

Theorem I Semnticully, n'ith respect to [he reachable
states of the system, F, I F,'.

Proof: In our proof, we may assume that all evaluation
takes place in a reachable state.

The definition of F,! expands to

... . . _

"= I v, ifC;
(3)

r otherwise

and the definition of F, expands to

(4)
... ...
'17, if G,
T otherwise.

We must show that the values of these two case expressions
are equal. We need only consider two cases.

... . . .
'17, if G, A (r # w,)
r otherwise.

To show that this expression also evaluates to T , it suf-
fices to show

VZ : l(Gi A (T # vi)) (6)

holds. But if (6) is false then there is some i such that
Gi A (r # vi) holds. In this case, T # vi, and since Gi
holds, we also have Ad = mi and Ei. Further, Ii holds
because state invariants hold in any reachable state. There-
fore, we know that Ki = (hf = mi) A Ii A (?- # ai)
holds. Thus, Ki A Ei holds, which means that Ki A Ei +
fulse does not hold. ;From this, we know E,' = Ei
(by (2)), and hence, G: = Gi (by (1)). Because Gi
holds, Gt also holds. Sut this contradicts the assumption
Vz : 'Gf. Therefore, we have established (6).

CASE [3i : GI]: Choose i such that Gr holds. Then
the case expression in (4) evaluates to vi . Since G,' + Gi,
Gi also holds. 3ut this means that the value of the case
expression in (3) also evaluates to 7 ~ ~ . Hence, the values of
the two case expressions are equal.

CASE vi : -Gf]: In this case, the conditional expres-
sion in (3) evaluates to r . Using Property 1 on page 5 we
can rewrite the conditional expression in (4) to:

82

