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Abstract—Hybrid storage systems that combine high energy
density and high power density technologies can enhance the
flexibility and stability of microgrids and local energy communi-
ties under high renewable energy shares. This work introduces
a novel approach integrating rule-based (RB) methods with
evolutionary strategies (ES)-based reinforcement learning. Unlike
conventional RB methods, this approach involves encoding rules
in a domain-specific language and leveraging ES to evolve the
symbolic model via data-driven interactions between the control
agent and the environment. The results of a case study with Li-
ion and redox flow batteries show that the method effectively
extracted rules that minimize the energy exchanged between the
community and the grid.

Index Terms—Hybrid storage, control, symbolic, evolutionary
strategies, reinforcement learning

I. INTRODUCTION

Energy storage systems (ESS) will be fundamental in future
power systems with high renewable energy shares, extend-
ing their significance to the microgrid or community level.
Pumped hydro storage stands out as the ESS with the highest
technological maturity, but its applicability is constrained
by specific site conditions. As the energy storage landscape
evolves, various solutions, including electrochemical (batter-
ies, supercapacitors), electrical (superconducting magnets),
mechanical (compressed air), chemical (hydrogen, ammonia),
or thermal technologies, are gaining prominence. Each tech-
nology has its characteristics, which can be combined to better
adapt to its final use. High energy density ESSs (HEDE) are
mainly used to supply loads with slow dynamic response,
while high power density ESSs (HPDE) can cope with high
and fast power fluctuation. Hybrid energy storage systems
(HESS) often combine HPDE and HEDE technologies [1].

In the coming years, HESS will provide services such as
power quality improvement, price arbitrage, peak shaving,
reserve, and lifetime extension. Control methodologies must be
implemented for these use cases to optimize the power alloca-
tion among the technologies during charging and discharging.

The research leading to this work is being carried out as a part of the
ENFIELD (European Lighthouse to Manifest Trustworthy and Green AI)
project, European Union’s Horizon Research and Innovation Programme,
Grant Agreement No. 101120657. Views and opinions expressed are, however,
those of the author(s) only and do not necessarily reflect those of the European
Union. Neither the European Union nor the granting authority can be held
responsible for them.

The control strategies can be divided into three groups [1]:
centralized, decentralized, and distributed.

Examples of centralized approaches are the rule-based (RB)
methods, generally adopted by industry due to their lower
computational complexity, high interpretability to human ex-
perts, and more seamless for real-time applications [2, 3]; the
fuzzy logic control approaches that generate reference power,
which is decomposed into average and transient power [4];
filtration-based control, which consists on the use of a low-
pass filter to split the power between the high energy (low
frequency) device and high power device (high frequency) [5].

The decentralized approach is essentially based on consen-
sus optimization or multi-agent approaches where information
is exchanged between neighboring agents to achieve the global
control goal via a sparse communication network [6]. Fully
decentralized approaches are essentially based on the droop
control concept [7]. Nevertheless, controllers based on artifi-
cial neural networks (ANNs) and reinforcement learning (RL)
are becoming an alternative to complex droop-based control
loops, especially when combined with domain knowledge in
power system control theory [8].

Lin et al. extensively discussed the impact of communica-
tion delays on different control strategies with a competitive
advantage of decentralized methods [7]. However, RB methods
are also unaffected by communication delays since they are
based on switching modes, but, as shown in [4], they lead to
non-optimal solutions. To overcome this limitation, the main
idea behind the present paper is to augment these RB expert
systems by learning and improving from data and learning
new tasks (objectives) without human expert intervention.

This work builds upon the foundation of evolutionary
strategies (ES)-based RL as introduced by OpenAI [9], a
methodology applied to train an ANN for playing different
games. However, instead of having the ANN as the policy,
this approach involves coding the rules in a domain-specific
language, forming a symbolic model. ES is then used to refine
the symbolic model via data collected from the interactions
between the control agent and the environment. To our knowl-
edge, this is the first work to propose an RB method capable
of learning from data while preserving interpretability for
human experts. The following case study is used to assess the
methodology’s effectiveness: Li-ion and redox flow batteries



installed in a residential energy community with centralized
photovoltaic (PV) generation, which is intended to work
towards net-zero energy exchange with the main power grid.

This paper is divided into Section II, which describes the
case study and ESS models; Section III presents a benchmark
RB control method; Section IV describes the augmented expert
system approach. The numerical results and conclusions are
presented in Sections V and VI correspondingly.

II. SYSTEM DESCRIPTION

The HESS diagram of the test setup is depicted in Fig. 1,
which considers a HEDE (Li-ion battery) and HPDE (redox
flow) storage units, each with its converter. These are con-
nected to a common DC bus, where the PV panels are also
connected. On the same bus, a DC/AC converter allows the
connection to the residential community, which is connected
to the main grid. The DC/DC converters of the HESS are
centrally controlled by an Energy Management System (EMS),
which takes as inputs features of the ESS, their state of charge
(SOC), and the input current (iload) at the given moment.

Fig. 1. Diagram of the proposed HESS structure.

A redox flow battery is a rechargeable ESS in which an
electrolyte flows through an electrochemical cell from one or
more tanks, where electrical and chemical energy conversion
occurs. The energy scalability (or modularity) of redox flow
batteries is easily achieved by increasing the volume of elec-
trolytes in the tanks. However, the power scalability is difficult
to implement since it consists of adding more permutation
membranes. In this setup, a redox flow battery is used as the
HEDE. It is based on the VisFlow 8 kW indoor module, with
a capacity of 100 kWh. Assuming an operation at a nominal
voltage of 60 V, it is calculated that the module has a capacity
of 1666 Ah and a max current bidirectional of 133 A.

Li-ion is a well-established technology with widespread
implementation in various functions. The connection of Li-ion
batteries in series increases the capacity and voltage, while the
connection in parallel allows an increase in the capacity and
maximum charge/discharge current. For this setup, 20 battery
modules were connected in parallel to model the HPDE. The
modules used were PPCB-6030 60V 30Ah, and considering
operation at 60 V, the total capacity is 600 Ah, and the
maximum charge/discharge current was 400 A.

A 1-year dataset containing the hourly load profile of an
aggregate of residential buildings in New Jersey, USA, was
used to simulate the load connected to the DC bus [10]. The
max power observed was 105 kW, a min of 13.6 kW, and
an average of 41.79 kW. From the PV GIS (Photovoltaic
Geographical Information System) platform [11], the produc-
tion profile of a PV power plant with an installed capacity
of 224 kWp and 14% efficiency was obtained for 2016 in
New Jersey. This plant was oversized to produce electricity
to supply the residential load and provide enough energy to
accumulate in the HESS for use in the night hours.

The redox flow and the Li-ion batteries were modeled using
a Coulomb Counting SOC estimator. This is a simple model
based on the integration of the load current (Ibatt) to obtain
the SOC at any given moment, Eq. (1). SOC0 represents the
SOC at the beginning of the simulation, while Crated is the
capacity of the battery in Ah.

SOC(t) = SOC0 +
1

Crated

∫ t

0

Ibattdt (1)

Although many other variables can influence the behavior
of the batteries, this model presents fast computational time,
making it suitable for discovering the control method. It was
considered that both storage devices had protections that would
activate to prevent the SOC from going above 100% or under
their maximum depth of discharge (DOD) of 20%.

A class was created in Python to model the ESS as objects
that have as input the initial SOC, its capacity in Ah, and the
saturation in A. It also contains a function to update the SOC
based on the current in A, the time interval, and the operation
mode, according to Eq. (1).

III. BENCHMARK RULE-BASED CONTROL METHOD

The benchmark RB control is based on the one described
in [2, 4]. This RB is used by the EMS for controlling the
distribution of load between a HEDE and HPDE. These rules
are in the form of if-else statements that consider 8 operation
modes that are described in the flowchart of Fig. 2. The rules
were made with the goal of minimizing the load on the redox
flow battery ird to increase its lifespan, by applying the excess
load to the Li-ion battery (isc) when the demand is high.
The parameters Kt and Kr are calculated with the following
equations:

Kt =
x

x+ y
(2)

Kr =
1− x

2− x− y
(3)

x = αSOC
SOCrd − SOCrd,low

SOCrd,low
(4)

y =
SOCbat − SOCbat,low

SOCbat,low
(5)

αSOC =

SOCbat,high−SOCbat,low

SOCbat,low

SOCrd,high−SOCrd,low

SOCrd,low

(6)



where low and high are used to represent the minimum and
maximum allowable SOC of each device; rd represents the
Redox-flow battery, and bat the Li-ion battery; x, y and αSOC

are intermediate variables; Kt and Kr are used to divide the
load among the devices when they are both charging and
discharging.

IV. AUGMENTED EXPERT SYSTEM

A. ES: Core Learning Algorithm

The ES is the core learning algorithm to build a symbolic
model with easily interpreted rules to optimize the HESS,
which should be embedded in the EMS. ES is a population-
based meta-heuristic that can be applied to achieve an optimal
solution to an optimization problem [12], i.e., objective func-
tion and constraints. Inspired by natural selection, a population
of individuals (solutions) is mutated for the next generation,
and an evaluation and selection process allows the best-
adapted individuals to be selected for the next generation.
This process occurs in a cycle until a certain stop condition is
reached. Ultimately, the best-performing individual is selected
as the final solution to the problem.

The innovative modification in this work involves a depar-
ture from the conventional approach of seeking a global op-
timal solution for an optimization problem. However, instead,
ES is employed to iteratively conduct symbolic learning within
a predefined template (see IV-B). This iterative process aims
to optimize a reward function (see IV-E), estimated through
interactions between the augmented expert system and the
environment.

B. Symbolic Model

1) HESS Operating Modes: Five operation modes of the
HESS, inspired by [2], are considered and provide the applied
current for each ESS, ibat for Li-ion battery and ird for redox
flow battery. Namely:

• Mode 1: Load divided following parameter K, represent-
ing the percentage of load for each ESS; ibat = iload ∗K
and ird = iload ∗ (K − 1);

• Mode 2: All the load is directed to the Li-ion battery;
ibat = iload and ird = 0;

• Mode 3: All the load is directed to the redox flow battery;
ibat = 0 and ird = iload;

• Mode 4: The load is directed to the Li-ion battery, and
also current (imin) is transferred from the redox flow
battery to charge the Li-ion battery. Depending on the
signals, it can be the opposite; ibat = iload + imin and
ird = −imin;

• Mode 5: It is the opposite of Mode 4, with transfer from
the Li-ion battery to charge the redox flow battery (or
the opposite, depending on the signal); ibat = −imin

and ird = iload + imin;
2) Templates: The presented templates transform the ES

individuals structure into a Python language string that encap-
sulates the rules dictating the load distribution, specifically
indicating the selected mode. Four distinct templates were
examined, each exhibiting an increasing level of complexity.

Notwithstanding their variations, all templates are constructed
with one or more conditional statements, adhering to the
following domain-specific language:

if {[Parameter] [Operator] [Threshold]}:
mode = [Mode]

else:

mode = [Mode]

where the elements inside squared brackets will evolve to
optimize a reward function that was constructed to prioritize
individuals with more suitable rules. The template to be
selected is also a parameter of the population’s members, and
therefore it will also result from the learning process.

Template 1: This template considers only one conditional
statement, with 2 mode options selected. Example:

if {SOC_bat < 0.5}:
mode = 2

else:

mode = 3

Template 2: An additional condition is added to the rule.
Example:

if {SOC_bat < 0.3}:
mode = 2

else:
if {SOC_rd < 0.8}:

mode = 3
else:

mode = 5

Template 3: A third condition is added to Template 2.
Example:

if {SOC_bat < 0.33}:
mode = 2

else:
if {SOC_rd < 0.65}:

mode = 3
else:

if {i_load < i_min}:
mode = 4

else:

mode = 5

Template 4: Based on having two independent expressions
of Template 3, with a previous fixed condition dividing the
cases of iload being positive or negative. Example:

if i_load > 0:
if {SOC_bat < 0.78}:

mode = 2
else:

if {SOC_rd < 0.36}:
mode = 3

else:
if {i_load < i_min}:

mode = 4
else:

mode = 5
else:

if {i_load < i_min}:
mode = 1

else:



Fig. 2. Flowchart of the rule-based control strategy [2, 4].

if {SOC_rd < 0.8}:
mode = 2

else:
if {SOC_bat < 0.66}:

mode = 5
else:

mode = 4

3) Individuals: The individuals are possible solutions to the
learning problem that contain the elements to be placed on
the template, thereby forming the rules. Each individual is
composed of 35 positions containing the elements that can be
mutated, namely:

• 8 positions related to scalar variables divided in 4 SOC
thresholds (2 for Li-ion and 2 for redox flow, in which
one is for positive load and the other for negative load);
2 load current thresholds (positive and negative load);
and 2 parameters K to define the percentage of current
attributed to each ESS (again, one for positive and the
other for negative loads). All these variables are normal-
ized to include values between 0 and 1 only. In the case
of variable Imin, this normalization is referenced by the
value of the current saturation of the HPDE.

• The following 26 positions define which variables go
to each position of the used template. They define the
8 modes, the 12 parameters (SOC or iload that are
compared, and 6 comparison operators (> or <) that are
used.

• The final position in each individual is an integer deter-
mining the template to employ.

It is important to highlight that the decisive factor in deter-
mining the template lies in the last element of the individual.
Consequently, this element defines which scalars and variables
are effectively integrated into the rules.

C. ES Initialization

The program starts with the definition of 3 hyper-
parameters: the number of iterations n it, the population POP,
and the mutation rate σ. Then, the second step is to define the
lists with the possible discrete variables to take the 26 middle
positions of the individual, which are:

comp_par = [[’soc_bat’, ’soc_bat_comp’],
[’soc_rd’, ’soc_rd_comp’],
[’i_load’, ’i_min’]]

comp_par_n = [[’soc_bat’, ’soc_bat_comp_n’],
[’soc_rd’, ’soc_rd_comp_n’],
[’i_load’, ’i_min_n’]]

log_op = [’<’, ’>’]
modes = list(range(1, 6))

templates = list(range(1,5))

where comp par contains 3 sub-lists with the possible param-
eters being compared and their threshold, and comp par n
is the same but for negative loads. List log op contains the
considered logical operators. As for modes and templates, they
contain all numbers between 1 and 5 (number of operation
modes) and between 1 and 4 (number of templates), respec-
tively.

A population of POP random solutions is created to start
the ES. For each, 8 scalars are selected with a random function
of uniform distribution between 0 and 1. Then, 4 elements are
randomly sampled from modes, 3 from comp par and from
comp par n. 6 logical operators are randomly chosen from
log op and 1 is chosen from the list templates. For this case
study, a population of 50 was considered.

After the initialization, the ES will enter its loop phase,
which lasts until the stopping criterion is met. In this case,
a limit of 1000 (n it) iterations was established. The general
pseudocode is presented in Algorithm 1.

Algorithm 1 ES Algorithm
Require: n it, POP, σ, input load
B ← initialize()
for it in range(n it) do
B ← duplicate(B,POP )
B ← mutate(B,POP, σ)
C ← evaluate(B,POP, input load)
B,C ← select(B,POP,C)

end for

D. Duplicate and Mutate

The first step in the cycle is duplicating the population to
form the descendants. The descendants will then be subject to
a mutation process to produce new solutions to the problem.
This mutation process is done following the procedure in
Algorithm 2. The scalar values are updated by adding small
increments based on the product of the σ parameter by a



randomly generated number with a Gaussian distribution of
mean 0 and standard deviation 1. The remaining elements are
updated as in the initialization (section IV-C). During the last
100 iterations, only the scalar values are mutated to reduce
variability and increase the precision of the solutions found at
that point.

Algorithm 2 Mutation Algorithm
Require: B,n it, it, POP, σ

for i in range(POP,POP× 2) do
for j in range(8) do

new value← B[i][j] + (σ × random.gauss(0, 1))
B[i][j]← max(0,min(new value, 1))

end for
if it < (n it− 100) then
B ← update parameters()
B ← update modes()
B ← update template()

end if
end for
return B

E. Evaluate and Select

At this point, the simulations using each of the individuals
are conducted. The individuals are translated into the rules
used by the EMS to divide the load between the two ESS.

For each of the ESS, two lists are obtained. The first shows
the current set-point as calculated by the EMS (i cal bat and
i cal rd), and the second list is the current that effectively
consumed/injected from the ESS when considering the protec-
tions for DOD and for saturation (i lim bat and i lim rd).

To evaluate the performance of the RB control, a reward
function (R = |R1 +R2|) that exploits the difference between
the current set-point calculated by the augmented expert sys-
tem (i cal(t)) and the current that is effectively consumed/in-
jected from the ESS (i lim(t)) was adopted, Eq. (7-8).

R1 =

tmax∑
t

(|i cal bat(t)| − |i lim bat(t)|) (7)

R2 =

tmax∑
t

(|i cal rd(t)| − |i lim rd(t)|) (8)

The 50% of the individuals in the population with higher R
are selected to become the progenitors of the next generation.

When all iterations run, the individual with the best per-
formance in reward is selected as the final solution for the
problem.

V. NUMERICAL RESULTS

For this section, the data generated with the system from
Section II was partitioned into the following: from every four
consecutive weeks, the last week was designated to the testing
dataset, and the preceding weeks were assigned to the training
dataset. This approach yielded 39 weeks dedicated to training

and 13 weeks to testing, effectively covering the seasonality
effect. The augmented RB expert system from Section IV was
applied to the training set in parallel for 12 different random
seeds, requiring a computational time of 22 hours. All seeds
converged to solutions using template 4, the template with
more conditions that better partition the search space. The best
RB model found by the ES-based algorithm (i.e., with the
lower reward per week) both for the training and testing was:

1 K=0.543 # s c a l a r used i n mode 1
2

3 i f i l o a d > 0 :
4 i f s o c r d < 0 . 2 4 2 :
5 mode = 2
6 e l s e :
7 i f i l o a d < 1 4 0 . 8 :
8 mode = 3
9 e l s e :

10 i f s o c b a t < 0 . 0 5 :
11 mode = 4
12 e l s e :
13 mode = 1
14 e l s e :
15 i f s o c r d < 0 . 0 6 1 :
16 mode = 1
17 e l s e :
18 i f s o c b a t > 0 :
19 mode = 4
20 e l s e :
21 i f i l o a d > −133 .2 :
22 mode = 5
23 e l s e :
24 mode = 3

Upon examining the learned rule, it is noticeable that the
first condition for negative load (line 15) is impossible for
negative load due to the set DOD of 20%. Likewise, the
second condition (line 18) is always true since the Li-ion
battery SOC is always above the DOD of 20%. Consequently,
these rules could be simplified so that whenever the load is
negative, the mode is 4. This is how the algorithm was found to
automatically create a simpler template, eliminating the need
for extraneous modes to achieve convergence.

Fig. 3 depicts the reward as a function of the number
of iterations throughout the training process, starting from
higher values until converging to a final solution. Notably,
the influence of exclusively evolving the scalar parameters
in the template becomes evident at iteration 900, effectively
narrowing the search space and expediting the discovery of
improved solutions.
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Fig. 3. Reward vs iterations during the training phase for each seed.
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Fig. 4. Evolution of SOC, mode, and currents for the two methods.

Table I presents the total reward achieved in both the
training and test sets for the augmented expert system and
the benchmark RB method [2]. The reward was reduced
approximately 3 fold for the training and 2 fold for the testing
compared to the benchmark. This implies that the derived rules
with the proposed approach exhibit better adaptability to the
specific objective of the case study. It is essential to emphasize
that the existing RB system was successfully evolved through
the proposed methodology to learn a new objective or task
based on the available data.

TABLE I
TOTAL REWARD FOR TRAINING AND TESTING SETS

Train Test
Benchmark Expert System [2] 45868 27066

Augmented Expert System 15115 14819

The SOC of the devices, the modes, the current set-point
and the effective current obtained with each ruleset for the
4th week of August 2016 are depicted in Fig. 4. The curve
labelled ”Set-Point” corresponds to the current values as
determined by the rules, while the curve labelled ”Effective”
(blue) corresponds to the current values that were effectively
supplied after considering saturation and availability of stored
energy. It can be noted how the new rules attempt to better
distribute the load between both ESS compared to the original
rules, which mainly rely on the Li-ion battery to supply the
load, with the redox flow battery supplying the Li-ion battery
in some situations.

VI. CONCLUSIONS

The effectiveness of the proposed methodology in devel-
oping a symbolic model for RB control in a HESS within
a community, aiming to minimize transactions with the main
grid, has been successfully demonstrated. The ES as a base for
reinforcement learning allowed for optimizing the rules to the
available data and the reward function, showing good perfor-
mance for the training and testing set. This methodology serves
as a promising initial step for extracting highly interpretable
rules. It can be a powerful decision-making system that
could be applied across diverse domains where comprehending
and explaining the reasoning behind algorithmic decisions is
paramount.

Future work consists of extending this framework to au-
tomatically design decentralized control schemes and handle
multiple HESS with different capacities. The control of the
DC bus voltage could also be considered in future work.
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