
An Experiment in Applying Knowledge-Based
Software Engineering Technology

Paul D. Bailor, Frank C. D. Young, and Kim Kanzaki
Department of Electrical and Computer Engineering

Air Force Institute of Technology
Wright-Patterson AFB, Ohio 45433-7765

Abstract

This paper presents the results of an experiment
at applying knowledge- based software engineering tech-
nology to hardware/software co-design. The Reacto
Verification System developed b y Kestrel Institute was
used to create a high level, formal-based interface to
VHDL which can effectively model both hardware and
software design components. In addition to the the-
orem proving and simulation capabilities already PTO-

tiided b y Reacto, extensions were made to incorporate
time constraints, and compiler-based language map-
pings for generating VHDL from Reacto specifications
were defined. OUT experimental results clearly indi-
cated the complimentary nature and benefits of devel-
oping high level, formally defined interfaces between
languages like Reacto and VHDL.

1 Introduction

Experiments at applying knowledge-based software
engineering (KBSE) technology to substantial engi-
neering problems is an issue that has not yet been seri-
ously addressed. This paper presents the results of one
such application experiment to systems engineering
problems from the perspective of hardwarelsoftware
co-design. For such tasks, it is desirable to have
high-level, abstract design languages and tools that
provide automated theorem proving, a sophisticated
treatment of time, and automated system generation
support at multiple levels of abstraction via behavior
preserving design refinement techniques.

Ideally, such design languages naturally model en-
gineering techniques for analyzing and designing sys-
tems. Consider one of the basic analysis and design
languages used by both hardware and software en-
gineers - finite state machines (FSMs). FSMs can
model sequential circuits, object behavior, and reac-
tive systems. Also, FSMs are well studied and are
easily formalized for both analysis and synthesis tasks.

Therefore, an appealing approach is to have a system
in which the engineer models a system using FSMs
(in particular hierarchical FSMs) and has a variety of
tools available to support the remaining phases of the
analysis and design effort. For example, a verifier to
prove properties about FSMs, a simulator to simulate
the specified behavior, and a behavior preserving syn-
thesis capability to generate lower level, more efficient
descriptions in languages like Very High Speed Inte-
grated Circuit (VHSIC) Hardware Description Lan-
guage (VHDL) and Ada.

Two goals of such an approach are the formal de-
termination of system properties by means other than
exhaustive testing and the potential to greatly com-
press design to implementation time. KBSE technol-
ogy has been shown to provide support for achiev-
ing the goals listed above, and for this reason, it
was decided to conduct an experiment investigating
the feasibility of applying KBSE technology to the
hardwarelsoftware co-design problem. Our hypothe-
sis was that there exists sufficient KBSE technology to
provide high level, abstract system specification and
design languages with the desired underlying formal
foundations to support verification, simulation, and
highly efficient design transformation tasks.

The remaining sections of this paper describe the
steps used in conducting this experiment. First, a de-
scription of one possible hardwarelsoftware co-design
process is presented, and the Reacto and VHDL tools
are introduced. This is followed by an in-depth dis-
cussion of the experiment itself. This includes the en-
gineering approach taken to integrate the Reacto sys-
tem with VHDL, extensions that were necessary to
augment Reacto with time information, and an inves-
tigation of how to automate the generation of VHDL
code from Reacto specifications. Next, the results of
the experiment are provided based on applying the
technique to two well-known benchmark problems, a
cruise control and an elevator system.

178
U.S. Government work not protected by U.S. copyright.

2 Description of Hardware/Software
CO-Design

From a systems engineering perspective, the intent
of hardwarelsoftware co-design is to initially specify
and design a system without regard to whether indi-
vidual system components are implemented in hard-
ware, software, or a combination of both. The ex-
pectation is that through detailed design analysis, the
proper decisions regarding the implementation form
can be made. For this experiment, our perspective is
one of using higher level, abstract languages to ini-
tially specify and design the system. Through be-
havior preserving design refinements, a language like
VHDL is used to model, simulate, and analyze design
components at a lower level of detail. Once this anal-
ysis is completed, the final decision concerning imple-
mentation form is made, and the VHDL models are
directly used via synthesis techniques to achieve the
final implementation. Concrete results which support
this approach have already been achieved in the syn-
thesis of Very Large Scale Integrated (VLSI) circuits
from VHDL descriptions.

Some existing tools which support our approach are
StatemateTM and SynopsysTM. Statemate uses a vi-
sual formalism known as statecharts to efficiently and
rigorously describe the behavior of a real-time or reac-
tive system [l, 21, and Statemate can generate VHDL
code as a step towards “silicon compilation” of hi-
erarchical state machines for hardware designers [2].
Synopsys is a tool used to design and synthesize large
and complex circuits using VLSI circuit technology [3].
Synopsys has three high level, non-graphical interface
mechanisms for the engineer: logic equations, FSMs in
the form of decision tables, and a non-executable sub-
set of VHDL. These forms can be input to the Synop-
sys synthesis system which produces both behavioral
and structural VHDL [3]. Both types of VHDL are
compilable and can be executed and tested using stan-
dard VHDL simulators. Structural VHDL is a sub-
set of the VHDL language that provides a one-to-one
mapping between its syntax and silicon components.
Behavioral VHDL is algorithmic in nature and can be
converted into structural VHDL or languages like Ada
or C if a software implementation is desired.

While Synopsys provides an excellent structural
VHDL to silicon component synthesis capability, it
lacks a formal-based, abstract language one can use
to model systems, and it lacks a transformation-based
facility for behavioral VHDL. Statemate has the stat-
echart formalism and a VHDL generation capability.
However, Statemate does not contain a proof-based

verification coniponent nor does it use transformation-
based code synthesis techniques. Additionally, State-
mate has limitations in working with multiple in-
stances of identical state machines [4]. Statemate gen-
erates VHDL as a flat structure of processes consisting
of procedures, and it is currently difficult to use the be-
havioral VHDL generated by Statemate for chip man-
ufacture without a major restructuring [5]. Another
drawback of Statemate and Synopsys are their inabil-
ity to specify and verify temporal constraints. For
these reasons, KBSE technology was investigated to
provide the desired features of an abstract and formal-
based systems engineering language and tools.

The KBSE technology selected for our experiment
was the Reacto Verification System developed by
Kestrel Institute. However, this should not be inter-
preted that Reacto was the best or only KBSE tech-
nology available. We selected Reacto because it was
readily available and its development was sponsored
by the Department of Defense. Additionally, we se-
lected it because of its use of hierarchical FSMs in
the form of statecharts. FSMs are a well-known and
proven technique for specifying real-time systems, and
the incorporation of time constraints was very impor-
tant to our research sponsors.

2.1 Reacto Verification System

Reacto is a tool for modeling reactive systems via
hierarchical FSMs in the form of statecharts, and it
contains facilities for verification of system properties,
simulation, and synthesis of lower level representations
such as VHDL and Ada [6]. The Reacto specification
language is built on top of the Software RefineryTM
environment which is used to provide [6]: a graphical
interface for creating statechart-based specifications, a
verification subsystem that includes a verification con-
dition generator and theorem prover, a simulator for
the rapid prototyping of specification behavior, and a
transformation system. Reacto has three subsystems,
the Reacto Editor, Reacto Compiler, and the Reacto
Simulator.

0

0

179

The Reacto editor is used to create and edit
the graphical structure of the FSM by specify-
ing and naming hierarchical states and transitions
between states.

The Reacto Compiler transforms a Reacto state
machine Specification (R-Spec) into Refine exe-
cutable target rode. The Reacto Compiler’s con-
sistency checking function checks to see if the
R-Spec satisfies the syntactic and semantic con-
straints iniposed by the system [6]. The Reacto

Compiler’s verifier function proves consistency of
R-Spec behavior with regard to any well-formed
state assertions users make [6].

e The Reacto Simulator highlights active states and
transitions in a graphical display window depict-
ing FSM behavior to users. This capability allows
users to execute and examine the behavior of an
R-Spec.

2.2 Description of VHDL

For the lower level co-design representations,
VHDL was selected since it supports the design of
components that can be implemented in either hard-
ware or software [7,8], and it is already an IEEE stan-
dard [9], a DoD standard (MIL-STD-454), and proven
VHDL compilers and simulators are readily available.
Additionally, VHDL allows for the description of con-
current units with temporal constraints, i.e., real-time
designs.

The basic VHDL unit of description is a design en-
tity. A design entity represents individual components
or functions which make-up a system, and multiple
copies of an entity can be instantiated in a system.
A design entity consists of an Entity Declaration and
an Architecture Body. Entity Declarations define the
inputs and outputs so that other components can in-
terface with it, and the Architecture Body describes
the design entity as either a structural description (a
composition of existing design entities) or a behavioral
description (an algorithmic description of the entity’s
transformation of inputs to outputs).

Algorithms used to define behavioral descriptions
are implemented as processes. A process is a commu-
nicating sequential program, defined in an architec-
ture body, which runs concurrently with all other pro-
cesses during a VHDL simulation. Entities communi-
cate via Signals. Signals are like variables, except they
are managed by signal drivers which hold the current
value and all currently scheduled future values for the
signal it is associated with. The event driven simula-
tor updates all signals according to values scheduled
for the current simulation time in the signal driver,
then it executes all processes that are sensitive to the
events. When there are no more signal events sched-
uled for the current time, the simulator increments
the clock to the next event time. The simulation cycle
ends when no processes are sensitive to any updated
signals.

180

3 Engineering Design Approach with
Reacto and VHDL

Figure 1 provides a “big picture” perspective of the
focus of this experiment. From the System Specifica-
tion store, behavior and constraints information are
extracted to generate a Reacto state machine Speci-
fication (R-Spec). Three activities can be performed
next. The Reacto Verification activity consists of us-
ing Reacto’s automated verification system to formally
verify properties of the R-Spec. The Reacto Simu-
lation activity exercises the R-Spec interactively by
updating inputs to the state machine manually or by
inputting a simulation file. In the Reacto-to-VHDL
Transformation activity R-Spec objects are used to
generate a formal VHDL state machine Specification
(V-Spec).

While Figure 1 represents the focus of this effort,
there are significant supporting activities necessary to
implement it. Getting to the point where we can ap-
ply Reacto and VHDL to hardware/software co-design
problems requires additions to the Reacto system to
manage time, concurrency of state machines, and a
definition of the transformation process from Reacto-
to-VHDL. The time and transformation issues were
addressed in this experiment; however, the concur-
rency issue was left for future research.

3.1 Reacto Augmentations to Specify
Time Constraints

The Reacto system doesn’t model time, and we de-
fined a means to track and quantify time by declaring
a global variable, clock, of type integer. One time
unit is referred to as the simulation granularity, and
for each domain, a small enough time value is chosen
to allow meaningful examination of system behavior.
Time constraints are modeled as stimulus-response
(the time between an input event and the respond-
ing system’s output event) and response-response (the
time between consecutive system output events) con-
straints [IO].

Constants of type integer are declared to represent
time constraints. Maximum stimulus-response con-
straints are called time limits and minimum stimulus-
response constraints are called min times. We call
response-response constraints durations. Additionally,
some means to express the amount of time work takes
is needed. We use transition delay to express the
amount of time the work assigned to a transition takes.
Like the clock and time constraints, transition delays
are declared as constants of type integer. To model the

System nts
Specification

Modifications

Figure 1: Reacto and VHDL Validation Process

passing of time, the clock is incremented by the value
of the transition delay when the transition executes.

Next, we define a means to validate that the FSM
behavior does meet the stimulus-response time con-
straints. We could use error states and error transi-
tions to the error states to verify FSM behavior as
described in Dasarathy [ll], but by using Reacto as-
sertions, we can discover inappropriate temporal be-
havior without error states. To do so, we mark the
time that events occur using start time logs to measure
stimulus-response time constraints. A transition uses
start time logs to log the time when it starts respond-
ing to an event. As the transition executes, it updates
the clock by its delay. After the transition moves the
FSM to the next state, Reacto evaluates the state as-
sertion and notifies us if the transition failed to meet
the time constraint. The general form of a Reacto as-
sertion to check a stimulus-response time constraint
on the object X with both a minimum and maximum
constraint is shown below.

assertion Clock - MinXStart-Time 2 Minx-Time &
Clock - MaxXStart-Time 5 X-TimeLimit

As transitions perform behavior subject to a
response-response constraint, they set timers. Reacto
examines transition predicates sensitive to response-
response constraints and executes the response-
response sensitive transition when the predicate is
true. Response-response constraints always generate
a transition whose predicate involves a time value of
the form below.

predicate Clock - X-TimerDuration 2 X-Timer

The Reacto FSM as we have defined it represents a
“filing cabinet” allowing us to organize the theoretical
process model as described in Levi and Agrawala [12].

181

The FSMs follow the Mealy machine model, and each
transition action represents a process. Computation
time is transition delay. Begin constraint is the time
the transition predicate becomes true. Process period
is the highest frequency of events the transition is ex-
pected to respond to. Process deadline is defined by
the start time plus the time constraint the transition
is meeting.

3.2 Generation of VHDL

For this experiment, a more traditional compiler-
based language mapping approach was taken as an ini-
tial step. The disadvantages of such an approach are
the loss of flexibility provided by a knowledge-based
synthesis approach as well as the need for extensive
testing of the defined language mappings. While a
synthesis approach was out of the scope of this initial
effort (but is planned as future work), the compiler-
based approach provided a sufficient specification of
a Reacto-to-VHDL language mapping that provides a
substantial code generation capability.

The first step in defining the mapping of an R-
Spec into a V-Spec is to verify that the Reacto state
machine and corresponding VHDL state machine dis-
play equivalent behavior. Reacto primitive states and
transitions map directly to VHDL states and transi-
tions. Although the two state machines are basically
the same, Reacto and VHDL themselves are signifi-
cantly different. We attempted to provide a general
behavior preserving mapping from Reacto FSMs to
VHDL FSMs. However, a more rigorous and formal
mapping between the two is necessary to insure that
all Reacto FSMs can be transformed into VHDL in

a behavior-preserving manner. A general mapping of
Reacto elements to VHDL elements is shown in Ta-
ble l.

One fundamental difference between the R-Spec
and V-Spec models is clock handling. In Reacto,
the clock is controlled with the FSM transitions. In
VHDL, the simulator controls the clock. Therefore,
events in the VHDL model may occur independently of
transition execution, i.e., we can model asynchronous
events in VHDL. Events are no longer constrained to
happen at discrete times dictated by transition up-
dates of the clock. This allows us to model what we
call a Preemptive Ezecution Model (PEM) in VHDL.
In the PEM, a transition executing at time 7 changes
the internal and external state of the FSM at time I+
Transition-Delay. If subsequent input events occur
before time I+ Transition-Delay such that a higher
priority transition predicate becomes true, the higher
priority transition executes preempting the scheduled
state changes of the lower priority transition. Investi-
gating the effects of asynchronous events in the VHDL
PEM can shed a great deal of light on transition de-
pendencies when analyzing the behavioral specifica-
tion.

Developing the Reacto-to-VHDL mapping required
a mapping of their data and control models. The
data model is relatively straightforward with a few
exceptions in transforming higher level data types like
sets to equivalent data types in VHDL. However, the
VHDL control model is very rich and presents many
possible choices for implementing the Reacto control
model. For this experiment, a canonical form based
on implementing VHDL FSMs as processes was used.
A summary of our VHDL code generation technique
is provided below:

0 Generating Entity Declarations - VHDL entity
declarations are used to define the architecture
of FSM entities and their interface to the out-
side world. Inputs and outputs declared in the
R-Spec are used to generate input and output
port declarations. The first part of the architec-
ture consists of variable declarations and VHDL
signal and constant declarations, and these are
generated from the Reacto constant and variable
declarations. The architecture body and its asso-
ciated declarations are generated as a concurrent
process to model the behavior of the FSM entity.

0 Generating Auxiliary VHDL Functions - We
must generate functions to perform operations
which are defined in Reacto, Refine, or Lisp but
not in VHDL. Simple examples include the re-

fine operator implies, the Lisp operator Min, set
types, set operations, and logical quantifiers.

0 Generating Assertion Procedures - R-Spec as-
sertions are the key to verifying R-Spec behavior
and consistency. We use them to verify our V-
Spec by transforming them into V-Spec assertion
procedures.

0 Generating Transition Procedures - We generate
V-Spec transition procedures from each R-Spec
transition action.

0 Generating the FSM Process Body - The FSM
process body consists of a simple if statement and
a controlling case statement. The if statement re-
sets the transition priority after the VHDL simu-
lator completes a scheduled transition execution.
This allows any transition whose predicate is true
to execute subject to the case statement. The
case statement controls the V-Spec FSM. It main-
tains the current state and calls the assertion and
transition procedures. There is a case statement
option for each primitive state in the FSM. It
evaluates transition predicates in priority order,
executing the first transition with a true predi-
cate if that transition’s priority is greater than
any currently scheduled priority.

0 Testbench Generation - We do not generate the
Testbench from the R-Spec. A Testbench has two
parts, an entity declaration, and an architecture
containing the behavioral description of the Test-
bench. The ,final step before VHDL simulation is
to generate the test configuration. The test con-
figuration simply identifies which library compo-
nents we wish to connect into the Testbench ar-
chitecture.

3.3 Automating The Transformation

Most of the transformation process can be auto-
mated. The automated transformation can use the
R-Spec source files as input or simply use the R-Spec
represented as an abstract syntax tree in the Refine
knowledge base producing the V-Spec source code di-
rectly from it. Since Reacto is more abstract than
VHDL, we typically generate a lot of VHDL code to
support Reacto operators, sets, and set operations.
Additionally, several other complications make it dif-
ficult to completely automate the transformation pro-
cess.

1. VHDL allows for asynchronous and multiple syn-
chronous events. Resolving potential consistency

182

Table 1: Reacto to VHDL Mapping

Reacto - VHDL
~

States
Name
Own-Vars
Assertion
Runtime-Check

Transition
Predicate
Label
Action

Type Declarations
Sequences
Sets
Tuples

Input Variables
Output Variables

Global Variables
Const ants
Functions
Quantification

Current-State declaration
Signals and Variables
Assertion Procedure
Assertion Procedure

if-then-else predicate
Procedure Name
Transition Procedure Body
Type Declarations
Arrays
Integer Sets
Records
Entity declaration, in Port
Entity declaration, inout Port

and Variable Declaration
Signal and Variable Declarations
Constants
Functions
Functions

problems associated with these capabilities re-
quires the use of event history data. VHDL pro-
vides this capability via attributes on signals.
Therefore, the VHDL assertion procedures gen-
erated for Reacto assertions must be augmented
with this consistency preserving code. A general
procedure for generating this code still needs to
be developed.

2. Generating the V-Spec entity declaration requires
knowing which Reacto variables are inputs and
which are outputs. The R-Spec inputs and out-
puts are identified by comments and such com-
ments are not currently present in Refine’s knowl-
edge base. Adding a Reacto graphical interface
specification capability for inputs and outputs
would make it easier to specify them and under-
stand the state machine in the context of its en-
vironment.

3. VHDL is more strongly typed than Reacto. This
causes some difficulty mapping from Reacto sym-
bol types to VHDL enumerated types. Strong
typing also causes problems with expressions of
type time since VHDL’s strong typing forces us
to add a conversion factor and explicit type con-
version.

4. The concept of a testbench used by VHDL to
configure and perform simulation test cases is
not used by Reacto. Generalized mechanisms for
automating the generation of VHDL testbenches
still need to be developed.

4 Results

The engineering design process described in Sec-
tion 3 was validated using two benchmark specifica-
tion problems -- a cruise control and lift system. The
cruise control problem was a valuable first problem be-
cause it has well-defined response-response constraints
and there are many published solutions. The lift prob-
lem tests the ability of the proposed process to accom-
modate larger designs as well as the ability to model
instantiations of an arbitrary number of identical ob-
jects. Additionally, the lift system includes response-
response, average response time, and both minimum
and maximum stimulus-response timing constraints.
The lift system also has many published solutions.

Both problems were modeled and simulated using
the Reacto system; however, the Reacto verifier was
not used in this phase of the experiment. Addition-
ally, VHDL code was manually generated using the
procedures outlined in Section 3.2, and the code was

183

extensively tested using the VHDL simulator. Both
scope limitations were made only to ensure the mas-
ters student performing this experiment would be able
to complete his work on time. Use of the verifier, au-
tomation of the VHDL generation, and some other
research areas are currently being pursued and are ex-
plained later in Section 4.1.

Space limitations prevent a detailed example from
being presented in this paper (Both example problems
are developed in detail in Young’s masters thesis [13]
which is publicly available from the Defense Techni-
cal Information Center or the authors). However, a
summary of the specification and design improvements
directly attributable to using Reacto and VHDL are
provided next.

The specification and design improvements can be
categorized into two areas: behavioral and temporal.
Behavioral improvements correct errors in the rela-
tionship between FSM inputs and FSM outputs (func-
tional requirements). Temporal improvements cor-
rect errors in the relationship between input and out-
put events, i.e., correct behavior that violates timing
constraints (non-functional requirements). Unfortu-
nately, we did not have a set of specifications based on
informal techniques like Real-Time Structured Analy-
sis (RTSA) that were produced in a controlled, experi-
mental environment. Therefore, we used published so-
lutions (many of them partial at best) based on RTSA.
As expected, the use of formalized FSMs alone made
significant improvements over the RTSA based behav-
ioral specifications. The formality of the Reacto spec-
ifications tended to uncover and provide a means of
clarify ambiguities in the problem statement. Addi-
tionally, even though our version of Reacto did not
allow for the simulation of concurrent FSM’s, it im-
proved the definition of the interfaces between commu-
nicating and potentially concurrent FSMs. The single
largest benefit of Reacto over the RTSA was the abil-
ity to simulate the specification and produce results
without assertion errors!

In terms of improvements made from the Reacto to
the VHDL design representations, we discovered the
following. For the cruise control problem no behav-
ioral improvements were made; however, three tem-
poral improvements were made. For the lift system
problem, three behavioral improvements were made
and eight temporal improvements were made. The
behavioral improvements were achieved because of
VHDL’s ability to combine FSM’s together and sim-
ulate them concurrently. Also, the ability to easily
generate more powerful test cases in VHDL helped to
uncover problems. The temporal improvements were

184

achieved because of VHDL’s sophisticated treatment
of time-based simulations. This provided the ability to
examine the effects of asynchronous and multiple syn-
chronous events. Without this ability, dependencies
between transition actions may go unnoticed. Some
example dependencies discovered were:

A dependency between the transition for accept-
ing new lift destinations and the transition for
turning on/off panel lights.

A dependency between the transition for accept-
ing new lift destinations and the emergency but-
tons.

A dependency between the transitions for han-
dling external events from the lift environment
and the transitions for handling internal events
used for lift scheduling purposes.

One other result worth mentioning is that this ex-
periment was performed by a masters degree student.
This student had an excellent background in com-
puter engineering and software engineering; however,
his knowledge and experience with automated theo-
rem proving was limited. Without this background,
use of the theorem prover was not practical. Fortu-
nately, this didn’t turn out to be a significant prob-
lem, and the student was able to perform extremely
well on all other aspects of this experiment. Thus,
while an advanced computer/software engineering ed-
ucation was needed to perform this experiment, this
education is well within the realm of a masters pro-
gram in computer or software engineering.

4.1 Future Work

Results from the two example problems clearly in-
dicated three limitations of the Reacto system. First,
it needs to be extended to allow concurrency. Sec-
ond, it needs to have a more sophisticated treatment
of time. Last. the ability to better define FSM in-
puts and outputs in the context of its environment
needs to improved. Since this experiment was con-
ducted, concurrency features have been added to Re-
acto along with axiomatically defined abstract data
types. The formally defined abstract data types help
with the FSM input/output problems leaving an im-
proved treatment of time as the only major limita-
tion of Reacto. Under a Small Business Innovation
Research contract with Rome Laboratory [14], a bet-
ter treatment of time is being incorporated into Re-
acto. Also, the VHDL generation capabilities based on
compiler like language mappings will be replaced by

knowledge-based software synthesis techniques. The
goal is to have a system that performs correctness pre-
serving design refinements on well-founded engineer-
ing models to produce both structural and behavioral
VHDL design components.

As an aside, an interesting observation made dur-
ing the course of this experiment was the significant
impact KBSE technology could have on analyzing and
manipulating existing VHDL code as a part of reengi-
neering efforts; however, this was not directly pursued
as a part of this experiment.

5 Summary and Conclusions

The Reacto Verification System developed by
Kestrel Institute was used to develop a high level,
formal-based interface with VHDL that provides in-
creased analysis and design level support for hard-
ware/software co-design problems. This experiment
demonstrated that existing KBSE technology can be
quickly applied to substantial engineering problems,
and this application can be performed by master’s
level graduate students. In addition to the theo-
rem proving and simulation capabilities already pro-
vided by Reacto, extensions were made to incorporate
time constraints and compiler-based language map-
pings were defined to automate the process of gener-
ating VHDL design components from Reacto speci-
fications. Experiments with sample problems clearly
indicated the complimentary nature and benefits of
developing such interfaces between high level, formally
defined analysis and design languages like hierarchical
finite state machines and lower-level design and imple-
mentation langauges like VHDL or Ada.

6 Acknowledgments

We would like to thank Cordell Green, Allen
Goldberg, Li-Mei Gilham, and David Zimmerman of
Kestrel Institute for their responsive and professional
help during the course of this experiment. Funding
for this experiment was provided in part by the Air
Force Office of Scientific Research and the Avionics
Directorate of the Air Force Wright Laboratories.

References

[l] D. Harel, “On visual formalisms,” Communica-
tions of the ACM, vol. 31, pp. 514-530, May 1988.

[2] D. Harel et al., “Statemate: A working environ-
ment for the developmeiit of complex reactive sys-

tems,” IEEE Transactions on Software Engineer-
ing, vol. 16, pp. 403-414, April 1990.

Synopsys, Inc., Synopsys Design Compiler Refer-
ence Manual, 1991. Version 2.2.

S. L. Smith and S . L. Gerhart, “Statemate and
cruise control: A case study,” in Proceedings of
the Twelfth Annual International Computer Soft-
ware and Applications Conference (COMPSAC
881, (New York), pp. 49-56, IEEE, Oct. 1988.

M. S. Cohen, “Graphical Behavior Capture to
VHDL,” in Proceedings of the Conference on Us-
ing VHDL in System Design, Test, and Manufac-
turing, (Scottsdale, AZ), pp. 1-8, VHDL Interna-
tional User’s Forum, May 1992.

Kestrel Institute, Reacto Users Manual, 1992.
Version 2.0.

R. Lipsett et al., VHDL: Hardware Description
and Design. Boston: Kluwer Academic Publish-
ers, 1989.

D. L. Perry, VHDL. New York: McGraw-Hill
Book Company, 1991.

IEEE Press, New York, IEEE Standard VHDL
Language Reference Manual - IEEE Std 1076-
1987, 1988.

A. M. Davis, Software Requirements : Analysis
and Specification. Englewood Cliffs NJ: Prentice
Hall, 1990.

B. Dasarathy, “Timing Constraints of Real-Time
Systems: Constructs for Expressing Them, Meth-
ods of Validating Them,” IEEE Transactions on
Software Engineering, vol. 11, pp. 80-86, January
1985.

S.-T. Levi and A. K. Agrawala, Real- Time System
Design. New York: McGraw-Hill Book Company,
1990.

F. C. D. Young, “Formalizing, Validating, and
Verifying Real-Time System Requirements with
Reacto and VHDL,” Master’s thesis, School of
Engineering, Air Force Institute of Technology
(AU), Wright-Patterson AFB OH, Dec. 1992

Kestrel Institute, Design Verification and Trans-
formation of Hardware Specifications to VHDL,
1993. Rome Laboratories SBIR: F30602-93-C-
0150.

(AD-A259224).

185

