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Abstract 

This paper presents the results of an experiment 
at applying knowledge- based software engineering tech- 
nology to hardware/software co-design. The Reacto 
Verification System developed b y  Kestrel Institute was 
used to create a high level, formal-based interface to 
VHDL which can effectively model both hardware and 
software design components. In addition to the the- 
orem proving and simulation capabilities already PTO- 

tiided b y  Reacto, extensions were made to incorporate 
time constraints, and compiler-based language map- 
pings for generating VHDL from Reacto specifications 
were defined. OUT experimental results clearly indi- 
cated the complimentary nature and benefits of devel- 
oping high level, formally defined interfaces between 
languages like Reacto and VHDL. 

1 Introduction 

Experiments at applying knowledge-based software 
engineering (KBSE) technology to substantial engi- 
neering problems is an issue that has not yet been seri- 
ously addressed. This paper presents the results of one 
such application experiment to systems engineering 
problems from the perspective of hardwarelsoftware 
co-design. For such tasks, it  is desirable to  have 
high-level, abstract design languages and tools that 
provide automated theorem proving, a sophisticated 
treatment of time, and automated system generation 
support at multiple levels of abstraction via behavior 
preserving design refinement techniques. 

Ideally, such design languages naturally model en- 
gineering techniques for analyzing and designing sys- 
tems. Consider one of the basic analysis and design 
languages used by both hardware and software en- 
gineers - finite state machines (FSMs). FSMs can 
model sequential circuits, object behavior, and reac- 
tive systems. Also, FSMs are well studied and are 
easily formalized for both analysis and synthesis tasks. 

Therefore, an appealing approach is to have a system 
in which the engineer models a system using FSMs 
(in particular hierarchical FSMs) and has a variety of 
tools available to support the remaining phases of the 
analysis and design effort. For example, a verifier to 
prove properties about FSMs, a simulator to simulate 
the specified behavior, and a behavior preserving syn- 
thesis capability to generate lower level, more efficient 
descriptions in languages like Very High Speed Inte- 
grated Circuit (VHSIC) Hardware Description Lan- 
guage (VHDL) and Ada. 

Two goals of such an approach are the formal de- 
termination of system properties by means other than 
exhaustive testing and the potential to greatly com- 
press design to implementation time. KBSE technol- 
ogy has been shown to provide support for achiev- 
ing the goals listed above, and for this reason, it 
was decided to conduct an experiment investigating 
the feasibility of applying KBSE technology to the 
hardwarelsoftware co-design problem. Our hypothe- 
sis was that there exists sufficient KBSE technology to 
provide high level, abstract system specification and 
design languages with the desired underlying formal 
foundations to support verification, simulation, and 
highly efficient design transformation tasks. 

The remaining sections of this paper describe the 
steps used in conducting this experiment. First, a de- 
scription of one possible hardwarelsoftware co-design 
process is presented, and the Reacto and VHDL tools 
are introduced. This is followed by an in-depth dis- 
cussion of the experiment itself. This includes the en- 
gineering approach taken to integrate the Reacto sys- 
tem with VHDL, extensions that were necessary to 
augment Reacto with time information, and an inves- 
tigation of how to automate the generation of VHDL 
code from Reacto specifications. Next, the results of 
the experiment are provided based on applying the 
technique to two well-known benchmark problems, a 
cruise control and an elevator system. 
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2 Description of Hardware/Software 
CO-Design 

From a systems engineering perspective, the intent 
of hardwarelsoftware co-design is to initially specify 
and design a system without regard to whether indi- 
vidual system components are implemented in hard- 
ware, software, or a combination of both. The ex- 
pectation is that  through detailed design analysis, the 
proper decisions regarding the implementation form 
can be made. For this experiment, our perspective is 
one of using higher level, abstract languages to  ini- 
tially specify and design the system. Through be- 
havior preserving design refinements, a language like 
VHDL is used to model, simulate, and analyze design 
components at a lower level of detail. Once this anal- 
ysis is completed, the final decision concerning imple- 
mentation form is made, and the VHDL models are 
directly used via synthesis techniques to achieve the 
final implementation. Concrete results which support 
this approach have already been achieved in the syn- 
thesis of Very Large Scale Integrated (VLSI) circuits 
from VHDL descriptions. 

Some existing tools which support our approach are 
StatemateTM and SynopsysTM. Statemate uses a vi- 
sual formalism known as statecharts to efficiently and 
rigorously describe the behavior of a real-time or reac- 
tive system [l, 21, and Statemate can generate VHDL 
code as a step towards “silicon compilation” of hi- 
erarchical state machines for hardware designers [2]. 
Synopsys is a tool used to  design and synthesize large 
and complex circuits using VLSI circuit technology [3]. 
Synopsys has three high level, non-graphical interface 
mechanisms for the engineer: logic equations, FSMs in 
the form of decision tables, and a non-executable sub- 
set of VHDL. These forms can be input to  the Synop- 
sys synthesis system which produces both behavioral 
and structural VHDL [3]. Both types of VHDL are 
compilable and can be executed and tested using stan- 
dard VHDL simulators. Structural VHDL is a sub- 
set of the VHDL language that  provides a one-to-one 
mapping between its syntax and silicon components. 
Behavioral VHDL is algorithmic in nature and can be 
converted into structural VHDL or languages like Ada 
or C if a software implementation is desired. 

While Synopsys provides an excellent structural 
VHDL to  silicon component synthesis capability, it 
lacks a formal-based, abstract language one can use 
to model systems, and it lacks a transformation-based 
facility for behavioral VHDL. Statemate has the stat- 
echart formalism and a VHDL generation capability. 
However, Statemate does not contain a proof-based 

verification coniponent nor does it use transformation- 
based code synthesis techniques. Additionally, State- 
mate has limitations in working with multiple in- 
stances of identical state machines [4]. Statemate gen- 
erates VHDL as a flat structure of processes consisting 
of procedures, and it is currently difficult to use the be- 
havioral VHDL generated by Statemate for chip man- 
ufacture without a major restructuring [5]. Another 
drawback of Statemate and Synopsys are their inabil- 
ity to specify and verify temporal constraints. For 
these reasons, KBSE technology was investigated to 
provide the desired features of an abstract and formal- 
based systems engineering language and tools. 

The KBSE technology selected for our experiment 
was the Reacto Verification System developed by 
Kestrel Institute. However, this should not be inter- 
preted that Reacto was the best or only KBSE tech- 
nology available. We selected Reacto because it was 
readily available and its development was sponsored 
by the Department of Defense. Additionally, we se- 
lected it because of its use of hierarchical FSMs in 
the form of statecharts. FSMs are a well-known and 
proven technique for specifying real-time systems, and 
the incorporation of time constraints was very impor- 
tant to  our research sponsors. 

2.1 Reacto Verification System 

Reacto is a tool for modeling reactive systems via 
hierarchical FSMs in the form of statecharts, and it 
contains facilities for verification of system properties, 
simulation, and synthesis of lower level representations 
such as VHDL and Ada [6]. The Reacto specification 
language is built on top of the Software RefineryTM 
environment which is used to provide [6]: a graphical 
interface for creating statechart-based specifications, a 
verification subsystem that includes a verification con- 
dition generator and theorem prover, a simulator for 
the rapid prototyping of specification behavior, and a 
transformation system. Reacto has three subsystems, 
the Reacto Editor, Reacto Compiler, and the Reacto 
Simulator. 

0 

0 
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The Reacto editor is used to create and edit 
the graphical structure of the FSM by specify- 
ing and naming hierarchical states and transitions 
between states. 

The Reacto Compiler transforms a Reacto state 
machine Specification (R-Spec) into Refine exe- 
cutable target rode. The Reacto Compiler’s con- 
sistency checking function checks to see if the 
R-Spec satisfies the syntactic and semantic con- 
straints iniposed by the system [6]. The Reacto 



Compiler’s verifier function proves consistency of 
R-Spec behavior with regard to any well-formed 
state assertions users make [6]. 

e The Reacto Simulator highlights active states and 
transitions in a graphical display window depict- 
ing FSM behavior to users. This capability allows 
users to execute and examine the behavior of an 
R-Spec. 

2.2 Description of VHDL 

For the lower level co-design representations, 
VHDL was selected since it supports the design of 
components that  can be implemented in either hard- 
ware or software [7,8], and it is already an IEEE stan- 
dard [9], a DoD standard (MIL-STD-454), and proven 
VHDL compilers and simulators are readily available. 
Additionally, VHDL allows for the description of con- 
current units with temporal constraints, i.e., real-time 
designs. 

The basic VHDL unit of description is a design en- 
tity. A design entity represents individual components 
or functions which make-up a system, and multiple 
copies of an entity can be instantiated in a system. 
A design entity consists of an Entity Declaration and 
an Architecture Body. Entity Declarations define the 
inputs and outputs so that  other components can in- 
terface with it, and the Architecture Body describes 
the design entity as either a structural description (a 
composition of existing design entities) or a behavioral 
description (an algorithmic description of the entity’s 
transformation of inputs to outputs). 

Algorithms used to  define behavioral descriptions 
are implemented as processes. A process is a commu- 
nicating sequential program, defined in an architec- 
ture body, which runs concurrently with all other pro- 
cesses during a VHDL simulation. Entities communi- 
cate via Signals. Signals are like variables, except they 
are managed by signal drivers which hold the current 
value and all currently scheduled future values for the 
signal it is associated with. The event driven simula- 
tor updates all signals according to values scheduled 
for the current simulation time in the signal driver, 
then it executes all processes that are sensitive to the 
events. When there are no more signal events sched- 
uled for the current time, the simulator increments 
the clock to  the next event time. The simulation cycle 
ends when no processes are sensitive to  any updated 
signals. 
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3 Engineering Design Approach with 
Reacto and VHDL 

Figure 1 provides a “big picture” perspective of the 
focus of this experiment. From the System Specifica- 
tion store, behavior and constraints information are 
extracted to  generate a Reacto state machine Speci- 
fication (R-Spec). Three activities can be performed 
next. The Reacto Verification activity consists of us- 
ing Reacto’s automated verification system to formally 
verify properties of the R-Spec. The Reacto Simu- 
lation activity exercises the R-Spec interactively by 
updating inputs to the state machine manually or by 
inputting a simulation file. In the Reacto-to-VHDL 
Transformation activity R-Spec objects are used to 
generate a formal VHDL state machine Specification 
(V-Spec). 

While Figure 1 represents the focus of this effort, 
there are significant supporting activities necessary to 
implement it. Getting to the point where we can ap- 
ply Reacto and VHDL to hardware/software co-design 
problems requires additions to the Reacto system to 
manage time, concurrency of state machines, and a 
definition of the transformation process from Reacto- 
to-VHDL. The time and transformation issues were 
addressed in this experiment; however, the concur- 
rency issue was left for future research. 

3.1 Reacto Augmentations to Specify 
Time Constraints 

The Reacto system doesn’t model time, and we de- 
fined a means to track and quantify time by declaring 
a global variable, clock, of type integer. One time 
unit is referred to as the simulation granularity, and 
for each domain, a small enough time value is chosen 
to allow meaningful examination of system behavior. 
Time constraints are modeled as stimulus-response 
(the time between an input event and the respond- 
ing system’s output event) and response-response (the 
time between consecutive system output events) con- 
straints [IO]. 

Constants of type integer are declared to  represent 
time constraints. Maximum stimulus-response con- 
straints are called time limits and minimum stimulus- 
response constraints are called min times. We call 
response-response constraints durations. Additionally, 
some means to express the amount of time work takes 
is needed. We use transition delay to express the 
amount of time the work assigned to  a transition takes. 
Like the clock and time constraints, transition delays 
are declared as constants of type integer. To model the 



System nts 
Specification 

Modifications 

Figure 1: Reacto and VHDL Validation Process 

passing of time, the clock is incremented by the value 
of the transition delay when the transition executes. 

Next, we define a means to validate that the FSM 
behavior does meet the stimulus-response time con- 
straints. We could use error states and error transi- 
tions to  the error states to verify FSM behavior as 
described in Dasarathy [ll], but by using Reacto as- 
sertions, we can discover inappropriate temporal be- 
havior without error states. To do so, we mark the 
time that  events occur using start time logs to measure 
stimulus-response time constraints. A transition uses 
start time logs to log the time when it starts respond- 
ing to  an event. As the transition executes, it updates 
the clock by its delay. After the transition moves the 
FSM to the next state, Reacto evaluates the state as- 
sertion and notifies us if the transition failed to meet 
the time constraint. The general form of a Reacto as- 
sertion to check a stimulus-response time constraint 
on the object X with both a minimum and maximum 
constraint is shown below. 

assertion Clock - MinXStart-Time 2 Minx-Time & 
Clock - MaxXStart-Time 5 X-TimeLimit 

As transitions perform behavior subject to a 
response-response constraint, they set timers. Reacto 
examines transition predicates sensitive to response- 
response constraints and executes the response- 
response sensitive transition when the predicate is 
true. Response-response constraints always generate 
a transition whose predicate involves a time value of 
the form below. 

predicate Clock - X-TimerDuration 2 X-Timer 

The Reacto FSM as we have defined it represents a 
“filing cabinet” allowing us to organize the theoretical 
process model as described in Levi and Agrawala [12]. 
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The FSMs follow the Mealy machine model, and each 
transition action represents a process. Computation 
time is transition delay. Begin constraint is the time 
the transition predicate becomes true. Process period 
is the highest frequency of events the transition is ex- 
pected to respond to. Process deadline is defined by 
the start time plus the time constraint the transition 
is meeting. 

3.2 Generation of VHDL 

For this experiment, a more traditional compiler- 
based language mapping approach was taken as an ini- 
tial step. The disadvantages of such an approach are 
the loss of flexibility provided by a knowledge-based 
synthesis approach as well as the need for extensive 
testing of the defined language mappings. While a 
synthesis approach was out of the scope of this initial 
effort (but is planned as future work), the compiler- 
based approach provided a sufficient specification of 
a Reacto-to-VHDL language mapping that provides a 
substantial code generation capability. 

The first step in defining the mapping of an R- 
Spec into a V-Spec is to verify that the Reacto state 
machine and corresponding VHDL state machine dis- 
play equivalent behavior. Reacto primitive states and 
transitions map directly to VHDL states and transi- 
tions. Although the two state machines are basically 
the same, Reacto and VHDL themselves are signifi- 
cantly different. We attempted to provide a general 
behavior preserving mapping from Reacto FSMs to 
VHDL FSMs. However, a more rigorous and formal 
mapping between the two is necessary to insure that 
all Reacto FSMs can be transformed into VHDL in 



a behavior-preserving manner. A general mapping of 
Reacto elements to  VHDL elements is shown in Ta- 
ble l. 

One fundamental difference between the R-Spec 
and V-Spec models is clock handling. In Reacto, 
the clock is controlled with the FSM transitions. In 
VHDL, the simulator controls the clock. Therefore, 
events in the VHDL model may occur independently of 
transition execution, i.e., we can model asynchronous 
events in VHDL. Events are no longer constrained to 
happen at discrete times dictated by transition up- 
dates of the clock. This allows us to model what we 
call a Preemptive Ezecution Model (PEM) in VHDL. 
In the PEM, a transition executing at time 7 changes 
the internal and external state of the FSM at time I+ 
Transition-Delay. If subsequent input events occur 
before time I+ Transition-Delay such that  a higher 
priority transition predicate becomes true, the higher 
priority transition executes preempting the scheduled 
state changes of the lower priority transition. Investi- 
gating the effects of asynchronous events in the VHDL 
PEM can shed a great deal of light on transition de- 
pendencies when analyzing the behavioral specifica- 
tion. 

Developing the Reacto-to-VHDL mapping required 
a mapping of their data  and control models. The 
data  model is relatively straightforward with a few 
exceptions in transforming higher level data  types like 
sets to equivalent data  types in VHDL. However, the 
VHDL control model is very rich and presents many 
possible choices for implementing the Reacto control 
model. For this experiment, a canonical form based 
on implementing VHDL FSMs as processes was used. 
A summary of our VHDL code generation technique 
is provided below: 

0 Generating Entity Declarations - VHDL entity 
declarations are used to define the architecture 
of FSM entities and their interface to  the out- 
side world. Inputs and outputs declared in the 
R-Spec are used to  generate input and output 
port declarations. The first part of the architec- 
ture consists of variable declarations and VHDL 
signal and constant declarations, and these are 
generated from the Reacto constant and variable 
declarations. The architecture body and its asso- 
ciated declarations are generated as a concurrent 
process to model the behavior of the FSM entity. 

0 Generating Auxiliary VHDL Functions - We 
must generate functions to  perform operations 
which are defined in Reacto, Refine, or Lisp but 
not in VHDL. Simple examples include the re- 

fine operator implies, the Lisp operator Min, set 
types, set operations, and logical quantifiers. 

0 Generating Assertion Procedures - R-Spec as- 
sertions are the key to  verifying R-Spec behavior 
and consistency. We use them to verify our V- 
Spec by transforming them into V-Spec assertion 
procedures. 

0 Generating Transition Procedures - We generate 
V-Spec transition procedures from each R-Spec 
transition action. 

0 Generating the FSM Process Body - The FSM 
process body consists of a simple if statement and 
a controlling case statement. The if statement re- 
sets the transition priority after the VHDL simu- 
lator completes a scheduled transition execution. 
This allows any transition whose predicate is true 
to execute subject to the case statement. The 
case statement controls the V-Spec FSM. It main- 
tains the current state and calls the assertion and 
transition procedures. There is a case statement 
option for each primitive state in the FSM. It 
evaluates transition predicates in priority order, 
executing the first transition with a true predi- 
cate if that transition’s priority is greater than 
any currently scheduled priority. 

0 Testbench Generation - We do not generate the 
Testbench from the R-Spec. A Testbench has two 
parts, an entity declaration, and an architecture 
containing the behavioral description of the Test- 
bench. The ,final step before VHDL simulation is 
to generate the test configuration. The test con- 
figuration simply identifies which library compo- 
nents we wish to connect into the Testbench ar- 
chitecture. 

3.3 Automating The Transformation 

Most of the transformation process can be auto- 
mated. The automated transformation can use the 
R-Spec source files as input or simply use the R-Spec 
represented as an abstract syntax tree in the Refine 
knowledge base producing the V-Spec source code di- 
rectly from it. Since Reacto is more abstract than 
VHDL, we typically generate a lot of VHDL code to 
support Reacto operators, sets, and set operations. 
Additionally, several other complications make it dif- 
ficult to completely automate the transformation pro- 
cess. 

1. VHDL allows for asynchronous and multiple syn- 
chronous events. Resolving potential consistency 
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Table 1: Reacto to VHDL Mapping 

Reacto - VHDL 
~ 

States 
Name 
Own-Vars 
Assertion 
Runtime-Check 

Transition 
Predicate 
Label 
Action 

Type Declarations 
Sequences 
Sets 
Tuples 

Input Variables 
Output Variables 

Global Variables 
Const ants 
Functions 
Quantification 

Current-State declaration 
Signals and Variables 
Assertion Procedure 
Assertion Procedure 

if-then-else predicate 
Procedure Name 
Transition Procedure Body 
Type Declarations 
Arrays 
Integer Sets 
Records 
Entity declaration, in Port 
Entity declaration, inout Port 

and Variable Declaration 
Signal and Variable Declarations 
Constants 
Functions 
Functions 

problems associated with these capabilities re- 
quires the use of event history data. VHDL pro- 
vides this capability via attributes on signals. 
Therefore, the VHDL assertion procedures gen- 
erated for Reacto assertions must be augmented 
with this consistency preserving code. A general 
procedure for generating this code still needs to 
be developed. 

2. Generating the V-Spec entity declaration requires 
knowing which Reacto variables are inputs and 
which are outputs. The R-Spec inputs and out- 
puts are identified by comments and such com- 
ments are not currently present in Refine’s knowl- 
edge base. Adding a Reacto graphical interface 
specification capability for inputs and outputs 
would make it easier to specify them and under- 
stand the state machine in the context of its en- 
vironment. 

3. VHDL is more strongly typed than Reacto. This 
causes some difficulty mapping from Reacto sym- 
bol types to  VHDL enumerated types. Strong 
typing also causes problems with expressions of 
type time since VHDL’s strong typing forces us 
to add a conversion factor and explicit type con- 
version. 

4. The concept of a testbench used by VHDL to 
configure and perform simulation test cases is 
not used by Reacto. Generalized mechanisms for 
automating the generation of VHDL testbenches 
still need to be developed. 

4 Results 

The engineering design process described in Sec- 
tion 3 was validated using two benchmark specifica- 
tion problems -- a cruise control and lift system. The 
cruise control problem was a valuable first problem be- 
cause it has well-defined response-response constraints 
and there are many published solutions. The lift prob- 
lem tests the ability of the proposed process to accom- 
modate larger designs as well as the ability to  model 
instantiations of an arbitrary number of identical ob- 
jects. Additionally, the lift system includes response- 
response, average response time, and both minimum 
and maximum stimulus-response timing constraints. 
The lift system also has many published solutions. 

Both problems were modeled and simulated using 
the Reacto system; however, the Reacto verifier was 
not used in this phase of the experiment. Addition- 
ally, VHDL code was manually generated using the 
procedures outlined in Section 3.2, and the code was 
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extensively tested using the VHDL simulator. Both 
scope limitations were made only to ensure the mas- 
ters student performing this experiment would be able 
to complete his work on time. Use of the verifier, au- 
tomation of the VHDL generation, and some other 
research areas are currently being pursued and are ex- 
plained later in Section 4.1. 

Space limitations prevent a detailed example from 
being presented in this paper (Both example problems 
are developed in detail in Young’s masters thesis [13] 
which is publicly available from the Defense Techni- 
cal Information Center or the authors). However, a 
summary of the specification and design improvements 
directly attributable to  using Reacto and VHDL are 
provided next. 

The specification and design improvements can be 
categorized into two areas: behavioral and temporal. 
Behavioral improvements correct errors in the rela- 
tionship between FSM inputs and FSM outputs (func- 
tional requirements). Temporal improvements cor- 
rect errors in the relationship between input and out- 
put events, i.e., correct behavior that violates timing 
constraints (non-functional requirements). Unfortu- 
nately, we did not have a set of specifications based on 
informal techniques like Real-Time Structured Analy- 
sis (RTSA) that were produced in a controlled, experi- 
mental environment. Therefore, we used published so- 
lutions (many of them partial at best) based on RTSA. 
As expected, the use of formalized FSMs alone made 
significant improvements over the RTSA based behav- 
ioral specifications. The formality of the Reacto spec- 
ifications tended to  uncover and provide a means of 
clarify ambiguities in the problem statement. Addi- 
tionally, even though our version of Reacto did not 
allow for the simulation of concurrent FSM’s, it im- 
proved the definition of the interfaces between commu- 
nicating and potentially concurrent FSMs. The single 
largest benefit of Reacto over the RTSA was the abil- 
ity to  simulate the specification and produce results 
without assertion errors! 

In terms of improvements made from the Reacto to 
the VHDL design representations, we discovered the 
following. For the cruise control problem no behav- 
ioral improvements were made; however, three tem- 
poral improvements were made. For the lift system 
problem, three behavioral improvements were made 
and eight temporal improvements were made. The 
behavioral improvements were achieved because of 
VHDL’s ability to  combine FSM’s together and sim- 
ulate them concurrently. Also, the ability to easily 
generate more powerful test cases in VHDL helped to 
uncover problems. The temporal improvements were 
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achieved because of VHDL’s sophisticated treatment 
of time-based simulations. This provided the ability to  
examine the effects of asynchronous and multiple syn- 
chronous events. Without this ability, dependencies 
between transition actions may go unnoticed. Some 
example dependencies discovered were: 

A dependency between the transition for accept- 
ing new lift destinations and the transition for 
turning on/off panel lights. 

A dependency between the transition for accept- 
ing new lift destinations and the emergency but- 
tons. 

A dependency between the transitions for han- 
dling external events from the lift environment 
and the transitions for handling internal events 
used for lift scheduling purposes. 

One other result worth mentioning is that this ex- 
periment was performed by a masters degree student. 
This student had an excellent background in com- 
puter engineering and software engineering; however, 
his knowledge and experience with automated theo- 
rem proving was limited. Without this background, 
use of the theorem prover was not practical. Fortu- 
nately, this didn’t turn out to be a significant prob- 
lem, and the student was able to perform extremely 
well on all other aspects of this experiment. Thus, 
while an advanced computer/software engineering ed- 
ucation was needed to perform this experiment, this 
education is well within the realm of a masters pro- 
gram in computer or software engineering. 

4.1 Future Work 

Results from the two example problems clearly in- 
dicated three limitations of the Reacto system. First, 
it needs to  be extended to allow concurrency. Sec- 
ond, it needs to have a more sophisticated treatment 
of time. Last. the ability to better define FSM in- 
puts and outputs in the context of its environment 
needs to improved. Since this experiment was con- 
ducted, concurrency features have been added to Re- 
acto along with axiomatically defined abstract data 
types. The formally defined abstract data types help 
with the FSM input/output problems leaving an im- 
proved treatment of time as the only major limita- 
tion of Reacto. Under a Small Business Innovation 
Research contract with Rome Laboratory [14], a bet- 
ter treatment of time is being incorporated into Re- 
acto. Also, the VHDL generation capabilities based on 
compiler like language mappings will be replaced by 



knowledge-based software synthesis techniques. The 
goal is to have a system that  performs correctness pre- 
serving design refinements on well-founded engineer- 
ing models to produce both structural and behavioral 
VHDL design components. 

As an aside, an interesting observation made dur- 
ing the course of this experiment was the significant 
impact KBSE technology could have on analyzing and 
manipulating existing VHDL code as a part of reengi- 
neering efforts; however, this was not directly pursued 
as a part of this experiment. 

5 Summary and Conclusions 

The Reacto Verification System developed by 
Kestrel Institute was used to develop a high level, 
formal-based interface with VHDL that provides in- 
creased analysis and design level support for hard- 
ware/software co-design problems. This experiment 
demonstrated that  existing KBSE technology can be 
quickly applied to  substantial engineering problems, 
and this application can be performed by master’s 
level graduate students. In addition to the theo- 
rem proving and simulation capabilities already pro- 
vided by Reacto, extensions were made to incorporate 
time constraints and compiler-based language map- 
pings were defined to automate the process of gener- 
ating VHDL design components from Reacto speci- 
fications. Experiments with sample problems clearly 
indicated the complimentary nature and benefits of 
developing such interfaces between high level, formally 
defined analysis and design languages like hierarchical 
finite state machines and lower-level design and imple- 
mentation langauges like VHDL or Ada. 
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