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In this work, we revisit the Generalized Navier Boundary condition (GNBC) introduced
by Qian et al. in the sharp interface Volume-of-Fluid context. We replace the singular
uncompensated Young stress by a smooth function with a characteristic width 𝜀 that is
understood as a physical parameter of the model. Therefore, we call the model the “Contact
Region GNBC” (CR-GNBC). We show that the model is consistent with the fundamental
kinematics of the contact angle transport described by Fricke, Köhne and Bothe. We
implement the model in the geometrical Volume-of-Fluid solver Basilisk using a “free contact
angle” method. This means that the dynamic contact angle is not prescribed but reconstructed
from the interface geometry and subsequently applied as an input parameter to compute the
uncompensated Young stress. We couple this approach to the two-phase Navier Stokes solver
and study the withdrawing tape problem with a receding contact line. It is shown that the
model is grid-independent and leads to a full regularization of the singularity at the moving
contact line. In particular, it is shown that the curvature at the moving contact line is finite
and mesh converging. We derive the thin film equation for the CR-GNBC and theoretically
justify the finite curvature at the contact line. As predicted by the fundamental kinematics,
the parallel shear stress component vanishes at the moving contact line for quasi-stationary
states (i.e. for ¤𝜃d = 0) and the dynamic contact angle is determined by a balance between the
uncompensated Young stress and an effective contact line friction. Away from the moving
contact line, we confirm that the viscous bending of the interface is well-described by the
asymptotic theory of Cox. A non-linear generalization of the model is proposed, which allows
to reproduce the Molecular Kinetic Theory of Blake and Haynes for quasi-stationary states.

Key words: dynamic contact line, Volume-of-Fluid method, Generalized Navier Boundary
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1. Introduction
The phenomenon of dynamic wetting / dewetting requires a relative motion of the contact
line, i.e. the triple line at which the liquid-fluid interface and the solid support’s surface
meet, against the solid wall. This fundamental process can be modeled in various ways. If
the fluid-interface and the contact line are modeled as a material surface and a material
line, respectively, it is clear that the classical no-slip condition is incompatible with the
dynamic wetting process. Mathematically, it has been shown that, for a material interface
and contact line, the no-slip boundary condition leads to a discontinuity in the velocity as
the contact line is approached. Because of that, a viscous fluid develops a non-integrable
singularity at the moving contact line. This has been first shown in the seminal paper by Huh
& Scriven (1971). Since then, various mathematical models have been developed to resolve
the paradox in the continuum mechanical description. In the framework of diffuse interface
models, where both the fluid interface and contact line have a finite width characterized by
a smooth but rapidly varying order parameter, a motion of the contact line can be achieved
by pure diffusion of the order parameter; see Jacqmin (2000). In this case, the motion is
driven by gradients of the chemical potential and the contact line is not a material line with
respect to the fluid particles. The Interface Formation Model due to Shikhmurzaev (1993,
2008) describes the dynamic wetting process using mass transfer between the bulk phases
of the liquid and the interfaces between fluid and solid and fluid gas. Hence, in this case, the
contact line can move without hydrodynamic slip as the primary mechanism.

A commonly used approach in the sharp interface framework is to model the interface and
the contact line as material objects and to allow for slip between the bulk velocity and the
solid wall. The Navier slip condition states that the amount of tangential slip is determined
by a balance between the tangential component of the viscous stress (described by the
viscous stress tensor S) and a sliding friction force between fluid particles and the solid
surface according to

−𝛽(v∥ − U𝑤) = (Sn𝜕Ω)∥ . (1.1)

This boundary condition introduces the slip length 𝐿 := 𝜂/𝛽 as the key parameter. Here 𝜂

denotes the viscosity of the liquid and 𝛽 > 0 is a coefficient describing the (sliding) friction
between the liquid molecules and the solid surface. Within the Navier slip model, the slip
length can be interpreted geometrically as the distance below the solid surface where the
linearly extrapolated tangential velocity vanishes. It is well-known that the singularity at the
moving contact line is only partially relaxed by the Navier slip condition. A logarithmic
divergence as a function of the distance to the contact line still exists for the curvature
and the pressure, as pointed out by Huh & Mason (1977). However, the singularity is
transformed into an integrable one and, hence, physically meaningful solutions (at least for
the macroscopic flow) are possible. The physical implications of the pressure singularity is
debated in the literature. Shikhmurzaev (2006) argues that the pressure should remain finite
because otherwise the model of an incompressible fluid would no longer be valid. On the
other hand, it has been demonstrated that the Navier slip model is able to describe various
wetting experiments in a satisfactory manner.

Besides the mobility of the contact line, the wettability of the solid surface is another
key parameter for the physical system. It is usually characterized by the equilibrium contact
angle 𝜃e that the free surface forms with the solid boundary in equilibrium. It can be
computed from the surface tension of the liquid-gas, liquid-solid and solid-gas interfaces,
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using the equation introduced by Young (1805), viz.

𝜎 cos 𝜃e +𝜎ls − 𝜎sg = 0. (1.2)

While the latter equation can be easily deduced from variational principles, the dynamics of
the contact angle is a much more complex problem and a large variety of empirical models
exist. Notably, there is one fundamental relation for the dynamics of the microscopic contact
angle 𝜃d in the limit of slow velocities of the contact line, which is shared by many of these
models:

−𝜁𝑈cl = 𝜎(cos 𝜃d − cos 𝜃e). (1.3)

Here 𝑈cl denotes the normal speed of the contact line relative to the solid surface (positive
for advancing and negative for a receding contact line) and 𝜁 is the so-called “contact line
friction” parameter. Equation (1.3) arises, for example, from the molecular kinetic theory of
wetting in the limit of small capillary numbers, i.e. for a slow motion of the contact line (see
Blake & Haynes (1969); Blake et al. (2015)).

Recently, Fricke et al. (2019, 2018) studied the fundamental kinematics of the contact
angle transport and showed that the rate-of-change of the contact angle is fully determined
by the directional tangential derivative of the velocity field v at the contact line, viz.

¤𝜃d = (𝜕𝜏v) · nΣ . (1.4)

Here nΣ denotes the interface normal vector and 𝜏 is a vector tangential to the interface
(see Section 2 for more details). Notably, when applied to the full two-phase flow problem
(assuming sufficient regularity of the solution), Equation (1.4) implies that ¤𝜃d is proportional
to the derivative in the direction normal to the wall of a tangential velocity component. In
other words, (1.4) predicts an “apparent perfect slip” at the moving contact line if the contact
angle does not change in time, i.e. if ¤𝜃d = 0. Indeed, indications of a vanishing shear stress in
the vicinity of the contact line have been observed in molecular dynamics (MD) simulations
by Thompson & Robbins (1989) and others. We will see below, that perfect slip in the sense
of vanishing shear-stress is possible within GNBC model which makes the model consistent
with equation (1.4). On the other hand, Fricke et al. (2019); Fricke & Bothe (2020) showed
that the Navier slip model (1.1) with a contact angle boundary condition like (1.3) is not
consistent with (1.4) and regular solutions (if they exist) show an unphysical behavior.

The “Generalized Navier Boundary Condition” (GNBC) was first described by Qian
et al. (2003, 2006a,b) in the context of diffuse interface models. The key idea of the GNBC
is to introduce the uncompensated Young stress as an additional force density into the
constitutive relation (1.1). So, in this model, the slip velocity relative to the solid surface is a
result of a balance between a sliding friction force, the viscous stress and the uncompensated
Young stress. In a sharp interface and sharp contact line formulation, the GNBC can be
written as (see Gerbeau & Lelièvre (2009))

−𝛽(v∥ − U𝑤) = (Sn𝜕Ω)∥ + 𝜎(cos 𝜃d − cos 𝜃e) nΓ𝛿Γ on 𝜕Ω. (1.5)

Notably, the contact line delta distribution 𝛿Γ appears because, in the sharp contact line formu-
lation, the Young stress is concentrated just on a mathematical curve. Hence, Equation (1.5)
should mathematically be understood as an equality of distributions. This delta function
GNBC formulation is applicable in weak formulations of the two-phase flow problem where
the contact line delta distribution will translate into an integral over the contact line in the
weak formulation (see, e.g, Gerbeau & Lelièvre (2009); Fumagalli et al. (2018)). On the
other hand, there is no contact line delta distribution in the Phase Field formulation of the
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GNBC due to Qian et al., because the thickness of the interface and the contact line is a
finite, physical model parameter in this case. Yamamoto et al. (2013, 2014) implemented the
GNBC approach into a front-tracking-method and studied the dynamics of capillary rise in a
tube. In this method, the contact line is transported by an advection of the Lagrangian marker
points without a prescribed contact angle. Then the dynamic contact angle is evaluated and
used to compute the uncompensated Young stress, which determines the slip velocity profile.
Yamamoto et al. noticed that the viscous stress becomes negligible as the contact line is
approached. Motivated by this observation, they dropped the viscous stress contribution in
(1.5) leading to a “simplified GNBC”, formally reading as

−𝛽(v∥ − U𝑤) = 𝜎(cos 𝜃d − cos 𝜃e) nΓ𝛿Γ . (1.6)

It is evident that, by taking the inner product with the contact line normal vector, Eq. (1.6) can
be formally reduced to an equation equivalent to (1.3) if the delta distribution is approximated
with a regular function over a finite width. Indeed, Yamamoto et al. (2013, 2014) smoothed
the delta distribution over a region of approximately four grid points. Using this estimate as
the characteristic width of the delta function, the authors concluded that

𝑈cl ≈
𝜆

Δ

𝜎(cos 𝜃e − cos 𝜃d)
𝜂

, (1.7)

where Δ is the grid size. Obviously, the contact line speed in (1.7) can only be grid-
independent if also the slip length is chosen in proportion to the grid size, i.e. if 𝜆 ∼ Δ.
Consequently, they fixed the parameter 𝜒 := 𝜆/Δ in their simulations. The approach
was extended by using the Cox-Voinov relation for 𝜃d in Yamamoto et al. (2014). Later,
Yamamoto et al. (2016) used this method to study the withdrawing plate problem with
a single wettable defect. Recently, the GNBC front-tracking approach was extended by
Kawakami et al. (2023) using a so-called “rolling belt-model” inspired by the work of
Lukyanov & Pryer (2017). Chen et al. (2019) used the GNBC in a Front Tracking method
to study the coalescence-induced self-propelled motion of droplets on a solid surface.
Shang et al. (2018) used a quite similar method to study droplet spreading and the motion
of drops on surfaces subject to a shear flow. All these methods have in common that the
uncompensated Young stress is distributed over a characteristic distance, which is related to
the mesh size.

In the present work, we propose a “sharp-interface, contact region GNBC” (CR-GNBC)
formulation, where the contact line delta distribution is replaced by a smooth function with
a characteristic width 𝜀 > 0. This width 𝜀 is understood as a physical model parameter and
is, therefore, chosen independently of the computational mesh. It has been shown recently
by Kulkarni et al. (2023) that this model (i.e. the GNBC model with finite 𝜀) admits a
local C2-regularity of the velocity in the vicinity of the moving contact line. We develop an
implementation of the CR-GNBC in a geometrical Volume-of-Fluid method. This method
should be consistent with the fundamental kinematic law (1.4). Therefore, the dynamic
contact angle is not prescribed but is reconstructed from the volume fraction field in a
neighborhood of the contact line. As one important preliminary step, we validate this “free
contact angle” method by studying the advection problem by a prescribed velocity field (see
Fricke et al. (2020)). In this case, the interface and the contact line are transported without
a boundary condition for the contact angle and the results are validated against analytical
solutions of (1.4). We couple this method to the CR-GNBC model and use the reconstructed
contact angle 𝜃d as an input parameter to compute the uncompensated Young stress in the
simulation.

Focus on Fluids articles must not exceed this page length
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Figure 1: Mathematical notation for the withdrawing tape setup.

Structure of this article
We study the withdrawing tape problem as a prototypical example for a dynamic dewetting
process. The setup follows the previous work by Afkhami et al. (2018). The solid wall is
moving upwards with velocity 𝑈𝑤 ⩾ 0 in the laboratory frame (see Figure 1). So, we study
the case of a receding contact line. We define the (global) capillary number with respect to
the wall speed as

Ca :=
𝜂𝑈𝑤

𝜎
. (1.8)

For convenience, we define the contact line capillary number using the negative contact line
speed, i.e. (note that the contact line speed 𝑈cl is always measured relative to the solid)

Cacl :=
𝜂(−𝑈cl)

𝜎
. (1.9)

In a quasi-stationary state, we have −𝑈cl = 𝑈𝑤 and hence Ca = Cacl. With this definition, we
can always work with positive values for the capillary number. Notice that, in the literature,
one will also find the convention that Cacl is negative for a receding contact line and positive
for an advancing contact line.

The mathematical derivation of the GNBC in a sharp-interface framework is revisited
in Section 2. It is shown that the GNBC can be obtained as a combined closure relation for
the dissipation due to slip along the liquid-solid surface and the contact line dissipation.
Using the laws of kinematics, we derive the contact angle evolution equation in Section 2.4
and show that (1.3) holds for quasi-stationary states. Moreover, the GNBC thin film equation
is derived in Section 2.5. The numerical implementation of the method in the geometrical
Volume-of-Fluid solver is described in Section 3. We validate the numerical method by
studying the kinematic transport of the contact angle and the curvature at the contact
line. The results for the withdrawing tape problem are discussed in detail in Section 4. In
particular, it is shown that the results are mesh converging. Notably, we can demonstrate
by a mesh study that, unlike for the Navier slip model, the curvature at the contact line
converges to a finite value. Away from the contact line, we show that the viscous bending
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Table 1: List of Symbols
Symbol Description Units

𝜌 Density kg/m3

𝜂 Viscosity Pa·s
𝜎 Surface Tension N/m
v Velocity m/s
𝛽 Friction Coefficient Pa·s/m
g Gravitational Acceleration m/s2

D Rate-of-Deformation Tensor 1/s
S = 2𝜂D Viscous Stress Tensor Pa

Σ Interface -
𝑉Σ Interface Normal Speed m/s
nΣ Interface Normal -

𝜅 = −∇Σ · nΣ Interface Mean Curvature 1/m
Γ Contact Line -
𝑈cl Contact Line Speed m/s
nΓ Contact Line Normal (tangential to 𝜕Ω) -
𝜕Ω Solid Boundary -
n𝜕Ω Unit Outer Normal to Ω -
𝑈𝑤 Wall Speed m/s
U𝑤 Wall Velocity m/s

𝜆 = 𝜂/𝛽 Slip Length m
Ca Wall Capillary Number -

Cacl Contact Line Capillary Number -
Caloc Capillary Number in the lab frame of reference -
Catr Transition Capillary Number -
𝜁 Contact Line Friction Pa·s
𝜃e Static Contact Angle rad
𝜃d Dynamic Microscopic Contact Angle rad
𝜃Δ Numerical contact angle observed at the contact line rad
𝜃s Steady state contact angle rad

of the interface is well-described by the hydrodynamic theory of Cox. Finally, we conclude
this study by an outlook to a non-linear variant of the GNBC, which can be derived as a
non-linear closure of the entropy production described earlier in Section 2.

2. Mathematical Modeling
2.1. Governing equations

We employ the sharp-interface continuum modeling approach. We start from the incom-
pressible, two-phase Navier Stokes equations with surface tension for Newtonian fluids
under isothermal conditions (see, e.g., Slattery (1999); Prüss & Simonett (2016)). Inside the
fluid phases, the governing equations are

𝜕𝑡 (𝜌v) + ∇ · (𝜌v ⊗ v) + ∇𝑝 = ∇ · S + 𝜌g, (2.1)
∇ · v = 0 (2.2)
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with the viscous stress tensor†
S = 2𝜂D = 𝜂(∇v + ∇vT).

These bulk equations are accompanied by jump conditions at the interface Σ(𝑡). The interface
is modeled as a hypersurface (i.e. it has zero thickness) and separates the domain Ω into two
bulk phases Ω1,2(𝑡) occupied by the two fluid phases (see Fig. 1). Assuming that no phase
change occurs in the system, the normal component of the adjacent fluid velocities v1,2 at the
interface are coinciding and equal to the speed of normal displacement 𝑉Σ of the interface,
resulting in the kinematic boundary condition

𝑉Σ = v · nΣ on Σ(𝑡), (2.3)

where nΣ is the interface unit normal field. Additionally, no-slip between the fluid phases is
usually assumed. Assuming further that the surface tension 𝜎 is constant, the jump conditions
for mass and momentum read as

⟦v⟧ = 0, ⟦𝑝I − S⟧nΣ = 𝜎𝜅nΣ on Σ(𝑡). (2.4)

Here 𝜅 := −∇Σ · nΣ is twice the mean curvature of the interface and

⟦𝜓⟧ (𝑡, x) := lim
ℎ→0+

(𝜓(𝑡, x + ℎnΣ) − 𝜓(𝑡, x − ℎnΣ))

is the jump of a quantity 𝜓 across the interface. We assume that the solid boundary 𝜕Ω is
not able to store mass and we assume it to be impermeable. We consider an inertial frame of
reference, where the wall is moving parallel to itself with a velocity 𝑈𝑤 ⩾ 0 upwards (see
Fig. 1). The impermeability condition in this frame of reference reads as

v⊥ = 0 on 𝜕Ω, (2.5)

where v⊥ = (v · n𝜕Ω) n𝜕Ω denotes the normal part of the velocity with respect to 𝜕Ω.

In order to obtain a closed model, the system of equations (2.1)-(2.5) must be complemented
by (one or more) additional boundary conditions describing

(i) the wettability of the solid (i.e. the static and dynamic contact angle) and
(ii) the mobility of the contact line (i.e. the tangential velocity v∥ at the solid boundary).

These boundary conditions are closure relations for the continuum mechanical description
and must be thermodynamically consistent, i.e. they must obey in particular the second
law of thermodynamics. To arrive at a consistent closure, we consider the available energy
consisting of the kinetic energy of the bulk phases and the surface energies of the liquid-gas
interface as well as the wetted area 𝑊 (𝑡) ⊂ 𝜕Ω, i.e.

𝐸 (𝑡) :=
∫
Ω\Σ (𝑡 )

𝜌 |v|2
2

𝑑𝑉 +
∫
Σ (𝑡 )

𝜎 𝑑𝐴 +
∫
𝑊 (𝑡 )

𝜎𝑤 𝑑𝐴.

Here 𝜎 = 𝜎lg > 0 denotes the surface tension of the liquid-gas interface and

𝜎w = 𝜎ls − 𝜎sg

is the specific energy density for wetting the solid surface. Note that 𝜎w might be negative,
as we see from Young’s equation

𝜎 cos 𝜃e +𝜎w = 0, (2.6)

which defines the “static” or “equilibrium” contact angle 𝜃e. It is a purely mathematical
exercise (see Fricke (2021) (Appendix A) for details) to compute the rate of change ¤𝐸 for a

† We use the symbol D = 1
2 (∇v + ∇vT) for the rate-of-deformation tensor.
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sufficiently regular solution of (2.1)-(2.5) (in the absence of external forces, i.e. for g = 0).
The result reads as
𝑑𝐸

𝑑𝑡
= −

∫
Ω\Σ (𝑡 )

S : D 𝑑𝑉 +
∫
𝜕Ω

(v∥ − U𝑤) · (Sn𝜕Ω)∥ 𝑑𝐴 +
∫
Γ (𝑡 )

𝜎(cos 𝜃d − cos 𝜃e)𝑈cl 𝑑𝑙.

(2.7)

In this formulation with a continuous velocity field, the scalar contact line speed (measured
relative to the solid) is given as

𝑈cl = v · nΓ −𝑈𝑤 .

Closure relations are required to satisfy the second law of thermodynamics† ¤𝐸 ⩽ 0. The first
contribution in (2.7) has a negative sign as we consider incompressible Newtonian fluids, i.e.
S = 2𝜂D. A linear closure for the second integral in (2.7) yields the well-known Navier slip
condition, i.e.

−𝛽(v∥ − U𝑤) = (Sn𝜕Ω)∥ with a friction coefficient 𝛽 ⩾ 0. (2.8)

Using the slip length parameter 𝜆 = 𝜂/𝛽, one may reformulate (2.8) as

v∥ + 2𝜆(Dn𝜕Ω)∥ = U𝑤 . (2.9)

The third integral in (2.7) suggests that the dynamic contact angle 𝜃d, which is mathematically
defined as the angle of intersection‡ of the free surface Σ with the solid boundary 𝜕Ω, i.e.

cos 𝜃𝑑 := −nΣ · n𝜕Ω at Γ(𝑡),

should be linked to the contact line speed 𝑈cl. A linear closure leads to the well-known
condition

−𝜁𝑈cl = 𝜎(cos 𝜃d − cos 𝜃e) with a (contact line) friction coefficient 𝜁 ⩾ 0. (2.10)

Note that also more general contact angle boundary conditions are possible if a non-linear
closure relation is employed. To summarize, the “standard model”¶ based on the Navier slip
condition is given by Equations (2.1)-(2.5), (2.9) together with (2.10) or a non-linear variant
of the form

𝜃d = 𝑓 (𝑈cl) on Γ(𝑡). (2.11)
To ensure thermodynamic consistency, we require that

𝜂 ⩾ 0, 𝜎 ⩾ 0, 𝜆 ⩾ 0, 𝑈cl( 𝑓 (𝑈cl) − 𝜃e) ⩾ 0.

As shown by Fricke & Bothe (2020), there is an inconsistency of boundary conditions in
the standard model because the evolution of the contact angle is determined by the contact
angle boundary condition (say (2.10)) as well as by the flow in the vicinity of the contact
line according to (1.4). As a consequence, a regular solution of the system does not exist but
a weak singularity is present at the contact line as shown already in Huh & Mason (1977).

† Note that we assume an isothermal system here. In this case, we may directly consider the change in
available energy.
‡ Note that, in order to define the contact angle 𝜃d, we have to assume that interfaceΣ(𝑡) has a well-defined

normal field up to the boundary. This is the case even if the curvature has a logarithmic, hence integrable,
singularity.

¶ The mathematical model (2.1)-(2.5), (2.9), (2.10) is one of the most commonly applied models for
dynamic wetting in the literature. However, there are many more modeling approaches which aim at a
regularization of the singularity and a prediction of the dynamics of wetting. For a survey of the field, we
refer to the references de Gennes et al. (2004); Blake (2006); Shikhmurzaev (2008); Bonn et al. (2009);
Snoeijer & Andreotti (2013a); Marengo & De Coninck (2022).
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2.2. Formal derivation of the GNBC
It is important to note that the GNBC was originally formulated in a diffuse interface
framework (see Qian et al. (2003, 2006a)). However, the GNBC can be formally understood
in the sharp interface model as a combined closure for the terms in the entropy production
(2.7) which arises from the contact line motion and from slip at the solid-liquid boundary.
The combined closure leads to a single boundary condition instead of the two independent
conditions in the standard Navier slip model. Hence, the number of boundary conditions is
reduced and one can show that the inconsistency at the contact line is resolved (see below).

As a starting point, we consider the sum of the wall and the contact line dissipation,
given as

T =

∫
𝜕Ω

(v∥ − U𝑤) · (Sn𝜕Ω)∥ 𝑑𝐴 + 𝜎

∫
Γ (𝑡 )

(cos 𝜃d − cos 𝜃e)𝑈cl 𝑑𝑙.

By introducing the contact line delta distribution 𝛿Γ, one can rewrite T as a single integral
over the entire solid boundary 𝜕Ω according to

T =

∫
𝜕Ω

(
(Sn𝜕Ω)∥ + 𝜎(cos 𝜃d − cos 𝜃e) nΓ𝛿Γ

)
· (v∥ − U𝑤) 𝑑𝐴.

Note that it is possible to factor out the common co-factor (v∥ − U𝑤) because the contact
line speed can be written as𝑈cl = (v∥ −U𝑤) ·nΓ. A linear† closure relation is now provided
by the generalized Navier boundary condition

−𝛽(v∥ − U𝑤) = (Sn𝜕Ω)∥ + 𝜎(cos 𝜃d − cos 𝜃e) nΓ𝛿Γ on 𝜕Ω (2.12)

with a friction coefficient 𝛽 > 0. Notice that the “delta function GNBC” should be understood
in the sense of distributions.

2.3. Contact Region GNBC (CR-GNBC) model
To obtain the CR-GNBC model, we replace the contact line delta distribution in (2.12) by a
smooth function defined over a finite transition region with characteristic width 𝜀 such that

𝛿𝜀Γ ⩾ 0,
∫

𝛿𝜀Γ (𝑥) d𝑥 = 1.

Note that this approach also requires to extend the definition of the contact angle 𝜃d and the
contact line normal nΓ away from the sharp contact line. In fact, the existence of the solid
boundary, touching the interface at an angle strictly between 0 and 𝜋, provides a means for
this extension of the contact line to a finite region. Then, the deviation of the contact angle
from the equilibrium value appears in the velocity boundary condition leading to a balance
between sliding friction forces due to slip along the solid boundary, the tangential component
of the viscous stress at the boundary and the uncompensated Young force:

−(v∥ − U𝑤) = 2𝜆(Dn𝜕Ω)∥ +
𝜎

𝛽
[(cos 𝜃d − cos 𝜃e) nΓ𝛿

𝜀
Γ ] . (2.13)

Notably, the dynamic contact angle is not prescribed explicitly in this approach. Instead, the
dynamics of the contact angle is determined by (2.13) and the kinematics of the interface
transport.

† A non-linear generalization of the closure is discussed in Section 6.
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2.4. Kinematics of the dynamic contact angle
We derive the evolution law for the contact angle, given a sufficiently regular solution of the
CR-GNBC model (2.1)-(2.5) and (2.13). Below, we consider the limit of the free surface
case, where one phase is assumed to be a dynamically passive gas at a constant pressure.
We assume that 𝛿𝜀

Γ
evaluated at the contact line yields a value of 1/𝜀. Then, the CR-GNBC

condition, evaluated at the contact line, reads as

𝛽(v∥ − U𝑤) + (Sn𝜕Ω)∥ +
1
𝜀
𝜎(cos 𝜃d − cos 𝜃e) nΓ = 0 at Γ. (2.14)

By taking the inner product with the contact line normal vector nΓ (normal to the contact
line and tangential to the solid), we obtain the relation

𝑈cl
𝜆

+ ⟨nΓ, (∇v) n𝜕Ω⟩ + ⟨(∇v) nΓ, n𝜕Ω⟩ +
𝜎

𝜀𝜂
(cos 𝜃d − cos 𝜃e) = 0 at Γ. (2.15)

Using the kinematic evolution equation for the contact angle derived in Fricke et al. (2019),
one can show that the rate-of-change of the contact angle ¤𝜃d is given as

2 ¤𝜃d = − ⟨nΓ, (∇v) n𝜕Ω⟩ . (2.16)

Moreover, it follows from the impermeability condition that the term ⟨∇v nΓ, n𝜕Ω⟩ vanishes
for a flat solid boundary. Therefore, we obtain the contact angle evolution law for a regular
solution of the CR-GNBC model. It reads as

¤𝜃d =
𝑈cl
2𝜆

+ 1
𝜀

𝜎

2𝜂
(cos 𝜃d − cos 𝜃e). (2.17)

Remarks
(i) Compared to the standard Navier slip model (see Fricke et al. (2019) for details), the

uncompensated Young stress leads to an additional term in the equation for ¤𝜃d, which reads
as

1
𝜀

𝜎

2𝜂
(cos 𝜃d − cos 𝜃e).

Obviously, the latter term is negative for 𝜃d > 𝜃e (and positive for 𝜃d < 𝜃e) and, hence, drives
the system towards equilibrium.

(ii) An important consequence of the CR-GNBC for quasi-stationary states is that it
defines a functional dependence between the dynamic contact angle and the contact line
speed. In fact, setting ¤𝜃d = 0 leads to the relation

Cacl =
𝜂(−𝑈cl)

𝜎
=
𝜆

𝜀
(cos 𝜃d − cos 𝜃e), (2.18)

or, equivalently, to

−(𝛽𝜀)𝑈cl = 𝜎(cos 𝜃d − cos 𝜃e). (2.19)

By comparing (2.19) with (2.10), we see that the contact line friction parameter can be
indentified with the product of the “bulk friction” in the Navier slip condition and the width
of the contact line region, i.e.

𝜁 = 𝛽𝜀. (2.20)

The latter equation has been proposed before by Blake et al. (2015) in the context of the
molecular kinetic theory. Physically, it indicates that, within the present modeling framework,
there is only one friction mechanism that affects both the slip at the solid boundary and the

Rapids articles must not exceed this page length
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Figure 2: Different cases for the apparent slip length 𝜆𝑎: positive, perfect and negative slip
(reference frame with 𝑈𝑤 = 0).

dynamics of the microscopic contact angle. In this sense, the contact line friction 𝜁 can be
understood as the lumped wall friction of the contact region.

(iii) From (2.16) we conclude that the stress component ⟨nΓ, (∇v) n𝜕Ω⟩ vanishes at the
contact line for quasi-stationary states, i.e. for ¤𝜃 = 0. So, there appears to be “perfect slip”
at the contact line in that case. Actually, the concepts of the “apparent slip length” 𝜆𝑎

(see Fig. 2) and the physical slip parameter defined as 𝜆 = 𝜂/𝛽 must be distinguished for
the GNBC model. In fact, the uncompensated Young stress is able to reverse the sign of
the velocity gradient at the contact line. In this case, fluid particles at the solid boundary
may have a larger tangential velocity than fluid particles slightly above the boundary. This
situation corresponds to a negative apparent slip length (see Fig. 2). It is, however, caused by
the uncompensated Young stress in the velocity boundary condition. The physical slip length
parameter 𝜆 is still positive and finite in all cases.

(iv) Note that (2.17) can be phrased as a generalized mobility law of the form

𝑈cl = 𝑓 (𝜃d, ¤𝜃d). (2.21)

Therefore, the contact line speed depends on the contact angle 𝜃d but also on its rate-of-
change ¤𝜃d which, in turn, can be computed from ∇v (see Fricke et al. (2019)). In this sense,
the contact line speed in the GNBC model depends on the flow in the vicinity of the contact
line.

(v) Moreover, the GNBC can be understood as an inhomogeneous Robin condition for
the velocity. Hence, the GNBC enforces a flow whenever 𝜃d ≠ 𝜃e. In contrast to the standard
model, the GNBC model is able to describe the relaxation process of the contact angle.

2.5. The CR-GNBC thin film equation
We now derive the thin film equation for the CR-GNBC and compare it with other known
thin film equations in the context of dynamic contact lines. The coordinate system is shown
in Figure 1. Under the thin film assumption, we consider that the pressure remains constant
along the 𝑦-axis and that the Laplace pressure jump across the interface can be expressed as

Δ𝑝 = − 𝜎𝐻
′′

(1 + 𝐻
′2)3/2

≈ −𝜎𝐻 ′′
.

The 𝑥-momentum equation

− 1
𝜌

𝜕𝑝

𝜕𝑥
+ 𝑔 + 𝜂

𝜌

𝜕2𝑣

𝜕𝑦2 = 0. (2.22)

is supplemented by a free surface condition

𝜕𝑣

𝜕𝑦
(𝑥, 𝐻) = 0.
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Since we are in the reference frame of the contact line, we can write the CR-GNBC as

𝑣(𝑥, 0) + 𝜆
𝜕𝑣

𝜕𝑦
(𝑥, 0) = 𝑈𝑤 [1 − f

( x
𝜀

)
], (2.23)

where f
( x
𝜀

)
is the smoothed Dirac function that will be defined in (3.6). For further details

on the formulation in the reference frame of the contact line, we refer to Kulkarni et al.
(2023). Given the contact line boundary condition, the free surface condition and the Laplace
pressure jump, the 𝑥-momentum equation (2.22) can now be written as an ordinary differential
equation in terms of 𝐻

𝐻
′′′ + 1

lc2 = −
3 Ca

(
1 − f

( x
𝜀

))
𝐻 (𝐻 − 3𝜆) − −3𝜂𝑄

𝜎𝐻2(𝐻 − 3𝜆)
, (2.24)

where lc is the capillary length and 𝑄 = −
∫ 𝐻

0 𝑣 𝑑𝑠 is the total flux. Assuming steady state,
where𝑄 = 0, and in the vicinity of the contact line that 𝐻 ′′′ ≫ 1/lc2 we obtain the CR-GNBC
thin film equation

𝐻
′′′
=

3 Ca
(
tanh2 ( 𝑥

𝜀

) )
𝐻 (𝐻 − 3𝜆) . (2.25)

From (2.25), we can see that for 𝑥 ≪ 𝜀, 𝐻 ′′ does not diverge and approaches a constant value
at the contact line (𝑥 = 0). Hence, the equation is singularity-free. Our CR-GNBC model can
therefore be viewed as Navier slip with a smoothening well of width 𝜀 around the contact
line where the uncompensated Young stress acts. A comparison of thin film equations from
the literature and their respective smoothness in presented in Table 2.

3. Numerical Methods
3.1. The Volume-of-Fluid method

The Volume-of-Fluid (VOF) method for representing fluid interfaces coupled with a flow
solver is well-known to be suited for solving interfacial flows (see e.g. Scardovelli & Zaleski
(1999); Popinet & Zaleski (1999); Tryggvason et al. (2011); Marić et al. (2020)). We use
the free software Basilisk, a platform for the solution of partial differential equations on
adaptive Cartesian meshes (Popinet (2009, 2015, 2018)). For a two-phase flow, the volume
fraction 𝑐(x, 𝑡) is defined as the integral of the first fluid’s characteristic function in the
control volume. The volume fraction 𝑐(x, 𝑡) is used to define the density and viscosity in the
control volume according to

𝜌(𝑐) ≡ 𝑐𝜌1 + (1 − 𝑐)𝜌2,

𝜇(𝑐) ≡ 𝑐𝜇1 + (1 − 𝑐)𝜇2,
(3.1)

with 𝜌1, 𝜌2 and 𝜇1, 𝜇2 the densities and viscosities of the phase 1 and 2 respectively.
The advection equation for the density is then replaced by the equation for the volume fraction

𝜕𝑡𝑐 + v · ∇𝑐 = 0. (3.2)

The projection method is used to solve the incompressible Navier-Stokes equations combined
with a Bell-Collela-Glaz advection scheme and a VOF method for interface tracking. The
resolution of the surface tension term is directly dependent on the accuracy of the curvature
calculation. The Height-Function method, described in Afkhami & Bussmann (2008, 2009),
is a VOF-based technique for calculating interface normals and curvatures. About each

http://basilisk.fr/
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Table 2: Thin film equations for various contact line boundary conditions

Boundary condition Thin film equation form Smoothness

No slip: 𝑣 = 𝑈𝑤 𝐻
′′′

=
1
𝐻2 Singular 𝐻′

Duffy & Wilson (1997) (angle singularity)

Navier slip: 𝑣 − 𝜆
𝜕𝑣

𝜕𝑦
= 𝑈𝑤 𝐻

′′′
=

3 Ca
𝐻2 + 3𝜆𝐻

Singular 𝐻′′ ∼ log 𝑥

Eggers (2004) (curvature singularity)

Super-slip: 𝑣 − 𝜆2 𝜕
2𝑣

𝜕𝑦2 = 𝑈𝑤 𝐻
′′′

=
Ca

𝐻2 + 𝜆2 Regular 𝐻′′

Hocking (2001) (singularity-free)

Super-slip: 𝑣 − 𝜆 𝜕𝑣
𝜕𝑦

− 𝜆2 𝜕2𝑣
𝜕𝑦2 = 𝑈𝑤 𝐻

′′′
=

Ca
𝐻2/3 + 𝜆𝐻 + 𝜆2 Regular 𝐻′′

Devauchelle et al. (2007) (singularity-free)

CR-GNBC 𝐻
′′′

=
3 Ca(tanh2 𝑥

𝜀 )
𝐻 (𝐻 − 3𝜆) Regular 𝐻′′

current paper (singularity-free)

interface cell, fluid ‘heights’ are calculated by summing fluid volume in the grid direction
closest to the normal of the interface. In two dimensions, a 7 × 3 stencil around an interface
cell is constructed and the heights are evaluated by summing volume fractions horizontally,
i.e.

ℎ 𝑗 =

𝑘=𝑖+3∑︁
𝑘=𝑖−3

𝑐 𝑗 ,𝑘 Δ, (3.3)

with 𝑐 𝑗 ,𝑘 the volume fraction and Δ the grid spacing. The heights are then used to compute
the interface normal nΣ and the curvature 𝜅 according to

nΣ = (ℎ𝑥 ,−1),

𝜅 =
ℎ𝑥𝑥(

1 + ℎ2
𝑥

)3/2 ,
(3.4)

where ℎ𝑥 and ℎ𝑥𝑥 are discretized using second-order central differences. The orientation
of the interface, characterized by the contact angle – the angle between the normal to the
interface at the contact line and the normal to the solid boundary – is imposed in the contact
line cell. It is important to note that a numerical specification of the contact angle affects the
overall flow calculation in two ways:

(i) it defines the orientation of the interface reconstruction in cells that contain the contact
line;

(ii) it influences the calculation of the surface tension term by affecting the curvature
computed in cells at and near the contact line.
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We now present the numerical implementation of the Generalized Navier Boundary Con-
dition as written in (2.14). The boundary condition is applied on the solid surface with a
smoothing function that takes into account the relative position along the boundary with
respect to the contact line

𝛽(v∥ − U𝑤) + (Sn𝜕Ω)∥ + f
( x
𝜀

)
𝜎(cos 𝜃d − cos 𝜃e) nΓ = 0 on 𝜕Ω, (3.5)

with f
( x
𝜀

)
the discrete Dirac function defined as

f
( x
𝜀

)
=

(
1 − tanh2

( 𝑥
𝜀

))
𝜀

. (3.6)

This specific function is smooth, symmetric and preserves the area for varying 𝜀, charac-
teristics that are necessary for the well-posedness of the discrete boundary condition. The
boundary condition can be expressed as an inhomogeneous Robin boundary condition for
the parallel velocity v∥ , as outlined above:

v∥ +
1
𝛽
(Sn𝜕Ω)∥ = U𝑤 + 1

𝛽
f
( x
𝜀

)
𝜎(cos 𝜃e − cos 𝜃d) nΓ on 𝜕Ω. (3.7)

We use the Navier boundary condition (Navier slip) that was implemented in the same
framework in Fullana et al. (2020) and tested as a localized slip boundary condition in Lācis
et al. (2020). The difference lies now in the space dependent right-handside of (3.7). The
uncompensated Young’s stress, that only acts at the contact line through the discrete Dirac
function, needs to be computed at each grid point.

The numerical approach in this study stands out for its free contact angle method. Instead
of setting the dynamic angle 𝜃d, we reconstruct it from the interface geometry and use it as
an input parameter to calculate the right-hand side of (3.7). To reconstruct such a consistent
angle from the volume fraction field, we use a Taylor expansion of the contact angle along
the coordinate direction normal to the boundary (see 𝑦-axis in Fig. 3). This Taylor expansion
uses the height function representation of the interface to compute the contact angle at the
boundary from the inclination angle (or ”apparent angle”) 𝜃𝑎 one cell layer above and the
interface curvature at this location according to the formula

𝜃𝑑 = 𝜃𝑎 +
3
2
Δ
𝜅

√︃
1 + ℎ2

𝑦

sin 𝜃𝑎
. (3.8)

Here, 𝜃𝑑 represents the extrapolated angle, 𝜃𝑎 is the apparent angle, Δ denotes the grid
spacing, 𝜅 stands for curvature at the location of the apparent angle, and ℎ𝑦 represents the
first-order derivative of the height function in the 𝑦 direction (normal to the wall) computed
using central differences. Figure 3 provides a schematic illustration of this extrapolation
process. Once the extrapolated angle is computed, we enforce it through appropriate local
modification of heights functions in the ghost layer, similar to a regular contact angle.
Algorithm 1 is a concise summary of the two-step procedure to apply the CR-GNBC in the
VOF framework.

3.2. Kinematic transport of the contact angle
We validate the free contact angle method presented in (3.8) through an analysis of
the kinematic transport of the contact angle in a simplified setup. Leveraging kinematic
considerations, Fricke et al. (2020); Fricke (2021) derived analytical solutions for the
transport of the contact angle and the curvature for some specific velocity fields. To validate
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Figure 3: Extrapolation of the contact angle 𝜃d using the apparent angle 𝜃𝑎 located 3/2 Δ

away from the wall.ℎ0 to ℎ2 denote the horizontal heights.

Algorithm 1: Free contact angle CR-GNBC pseudo-code
for each boundary cell do

1. Locate the contact line cell
2. Locate the cell one grid point above the contact line
3. Compute the apparent angle 𝜃𝑎 using the unit normal nΣ

4. Compute the first order derivative ℎ𝑥 of the height function
5. Compute the interface curvature 𝜅

6. Compute the extrapolated angle 𝜃d using (3.8)
end
7. Apply 𝜃d at the contact line through height functions
for each boundary cell do

8. Compute the right-hand-side of (3.7) using 𝜃d and 𝜃e
end
9. Apply the boundary condition for v∥ using (3.7)

the present approach within the VOF framework, we conduct advection testcases for an
initially circular interface in contact with the domain boundary. These advection tests are
carried out for various grid sizes.

The setup involves a disk with a dimensionless diameter 𝐷 = 1 in a 2× 2 domain, initially
placed over a static substrate with a contact angle of 𝜃0 = 90°. The velocity field across the
entire domain is defined as:

𝑣𝑥 = 𝑐1 cos(𝜋𝑡) 𝑥 + 𝑐2 cos(𝜋𝑡) 𝑦,
𝑣𝑦 = −𝑐1 cos(𝜋𝑡) 𝑦. (3.9)

Here, 𝑣𝑥 and 𝑣𝑦 represent the 𝑥 and 𝑦 components of the velocity, while 𝑐1 and 𝑐2 are positive
constants. We aim to validate the accuracy and reliability of the angle extrapolation method
under varying grid sizes, where we only consider the advection equation of the color function
(3.2).

The prescribed incompressible velocity field (3.9) will induce oscillations of the interface
in both vertical and horizontal directions. The angle formed at the contact line is determined
by this motion and varies in time. From the relations derived in Fricke et al. (2020), we
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Figure 4: Validation of the angle extrapolation method for varying grid sizes. (a)-(b)
Temporal evolution of angle and curvature for cases with a prescribed 90° contact angle.
(c)-(d) Temporal evolution of angle and curvature for cases employing the extrapolated

contact angle. These figures highlight divergence in the 90° case and convergence toward
the analytical solution in the alternative scenario for both quantities.

compare the observed numerical contact angle with the analytical one 𝜃an, given by the
formula

𝜃an(𝑡) =
𝜋

2
+ tan−1

(
−1

tan 𝜃0
𝑒2 𝑐1 𝑆 (𝑡 ) + 𝑐1

2 𝑐2
𝑒2 𝑐1 𝑆 (𝑡 ) − 1

)
(3.10)

with

𝑆(𝑡) = sin(𝜋𝑡)
𝜋

. (3.11)

Moreover, we validate the evolution of the curvature by comparison with the reference one
𝜅an, which is given as the solution of the ordinary differential equation (see Fricke (2021))

𝑑 𝜅an
𝑑𝑡

= −3 𝜅an cos(𝜋𝑡) [𝑐1 cos2(𝜃an) − 𝑐2 cos(𝜃an) sin(𝜃an) − 𝑐1 sin2(𝜃an)] (3.12)

with the initial condition 𝜅0 = 2/𝐷 = 2. We conduct two sets of simulations to evaluate the
method. In the first set, the contact angle remains constant at 90° (corresponding to a default
symmetric boundary condition for the volume fraction 𝑐), while in the second set, we enforce
the extrapolated angle. The simulations run until a final dimensionless time 𝑇 = 10, and we
examine the convergence of the method with grid sizes varying from 16 to 128 points per
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U

Figure 5: Steady-state meniscus example for Ca = 0.1 using the present CR-GNBC with
𝜀 = 0.05. The image is in the contact line’s reference frame, where the left plate is pulled

up with 𝑈𝑤 =
√

Ca. The inset, a zoomed image depicting the flow field, highlights the
contact line as a stagnation point. Notably, there is an additional stagnation point in the

upper phase, as indicated by the streamlines. The slip length is set equal to contact region
width 𝜀.

diameter. In Figure 4 summarizes the obtained results. The extracted contact angles show
an increased accuracy and rapid convergence towards the analytical solution, thanks to the
angle extrapolation method. Furthermore, the curvature is accurately transported with this
method, while it diverges in the fixed at 90° contact angle case.

4. Results
We apply the numerical method for the CR-GNBC model to the pulling plate setup, following
the approach discussed in Section 1. This setup is akin to the one investigated by Afkhami
et al. (2018). Figure 5 displays the results of a steady-state simulation. The image is presented
in the reference frame of the contact line, where the contact line remains stationary, while
the left wall is pulled upwards. The velocity field relaxes, creating a stagnation point at the
contact line. Additionally, the streamlines reveal another stagnation point formed above the
interface in the lighter phase. It is worth noting that the characteristics of this additional
stagnation point depend on the viscosity ratio, although our primary focus is not on this
aspect.

In the pulling plate setup, a distinctive characteristic is the presence of a de-wetting
transition capillary number Catr, marking the point beyond which liquid film entrainment
occurs, leading to an absence of a steady-state position for the contact line. Previous numerical
results by Afkhami et al. (2018) identified this transition capillary number, but it was grid-
dependent. Using the CR-GNBC method, with 𝜀 resolved (i.e. larger than the grid size Δ),
we obtain a grid-independent Catr. This is depicted in Figure 6, which shows the contact line
position representing the fluid film height over time. For Ca ⩽ 0.12, a steady-state height
is eventually reached; however, for Ca = 0.14, the height continually increases. Thus, we
determine that Catr for this case is Ca = 0.13±0.01. The influence of Young’s stress is evident
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(a) (b)

CR-GNBCNavier slip

Figure 6: Vertical height of the contact line as a function of time for different capillary
numbers Ca, presented separately for (a) simple Navier boundary condition and (b)

CR-GNBC. Steady-state heights are achieved, and a transition Catr is observed, beyond
which the liquid film rises continuously. In both (a) and (b), Catr = 0.13. Simulations are

conducted with 𝜀 = 0.05, 𝜃e = 90°, and a resolution of 𝜀/Δ = 5.12.

when comparing Figure 6a with Figure 6b. The Catr remains the same, but the steady-state
height exhibits a slight decrease. A convergence study demonstrating the grid independence
of the CR-GNBC is presented in Appendix A. Furthermore, with the present approach, the
parameters influencing Catr are 𝜀, the slip length 𝜆 and the equilibrium contact angle 𝜃e. The
dependence of these parameters on the Catr is presented in Appendix B.

4.1. Relaxation towards steady state
Starting from a horizontal two-fluid interface at rest, we now compare the transient character-
istics. A distinctive feature of the present CR-GNBC model is that the contact angle is not fixed
a priori. Figure 7a illustrates the contact angle 𝜃d as a function of time. The angle initiates at
90° and subsequently relaxes to a steady-state value different from 90°. Despite converging
to a steady state, the observed value of 𝜃d exhibits spurious oscillations. These oscillations
intensify with increasing Ca; however, their influence is minor, with amplitudes remaining
below 0.5° and diminishing with grid refinement. In Figure7a, we observe an interesting trend
when plotting 𝜃d against Caloc, as shown in Figure 7b. Here, Caloc represents the contact line
𝐶𝑎 in the lab frame. It starts at 0 since everything is initially at rest and eventually returns
to 0 in a quasi-stationary state. During the transient phase, although we set the solid velocity
to 𝑈𝑤 instantly, Caloc takes some time to reach its maximum value. This time, defined as
𝑡𝜀 = 𝜀/𝑈𝑤 , represents a relaxation timescale due to contact line friction. While a detailed
examination of the behavior for 𝑡 < 𝑡𝜀 is beyond the current study’s scope, we observe that,
once Caloc reaches its peak, it begins to relax to the steady state where Caloc = 0, and 𝜃d
follows the GNBC law (2.18).

In Figure 8, we illustrate the behavior of each term of the CR-GNBC equation (3.7). We
analyze and present each outcome for three different boundary conditions:
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(a) (b)

Figure 7: (a) Evolution of the dynamic contact angle 𝜃d in the CR-GNBC simulation for
various Ca. The angle begins to deviate from the initial value of 90° and eventually

reaches a steady state. Around Catr, the angle exhibits oscillations over time. (b) The
relaxation plot on a 𝜃 − Ca plane. Here, Caloc represents the contact line capillary number.

Time progresses from right to left, and a maximum in Caloc is reached at 𝑡𝜀 = 1, which
corresponds to the slip length timescale (𝜀/𝑈𝑤). After this point, Caloc starts relaxing

towards a steady state (Caloc = 0). Above Catr, Caloc reaches a minimum and starts rising
again. This set of simulations are the same as in Figure 6b.

(i) Navier slip with a constant contact angle 𝜃d = 𝜃e:

v∥ +
1
𝛽
(Sn𝜕Ω)∥ = U𝑤 on 𝜕Ω, (4.1)

(ii) No slip with uncompensated Young stress, with the ”free angle” method (3.8):

v∥ = U𝑤 + 1
𝛽

f
( x
𝜀

)
𝜎(cos 𝜃e − cos 𝜃d) nΓ on 𝜕Ω, (4.2)

(iii) Full CR-GNBC as written in (3.7) which combines contributions from both the above
cases.

We conducted simulations for each individual case (i), (ii), and (iii) and illustrate the
behavior of each term in Figure 8. In Figure 8a we see the angle as a function of time. Since
we start from a horizontal surface, all plots begin at 90°. The green curves, representing the
Navier slip case, converge to the constant imposed value of 90°. The relaxation to a steady-
state angle is accompanied by oscillations, whose amplitude decreases with grid refinement.
The blue curves, representing the behavior of uncompensated Young’s stress with a no-slip
boundary condition, show the effect of the free contact angle. Because the Young stress
term involves the free contact angle method, the steady-state angle differs from 90° and
relaxes to the GNBC law contact angle as the grid is refined. These spurious oscillations
are less pronounced than in the Navier slip case. Finally, the red curves represent the full
CR-GNBC model. At the same level of grid refinement, the CR-GNBC model outperforms
the Young stress case (blue curves) by being closer to the expected GNBC law contact angle
and outperforms the Navier slip (green curves) by having fewer spurious oscillations. In the
plot of Caloc vs time, we see that, although all the curves eventually relax to the steady state
of Caloc = 0, there is a difference in the initial relaxing stage. As soon as the simulation is
started we see that since blue curves have no slip, they rise to the Caloc = Ca in dimensionless
time 𝑡𝜀 and then relax to the steady state value, while the CR-GNBC and slip cases rise to
the value equal to Caloc < Ca.
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Figure 8: The relaxation plots Navier slip (green curves), CR-GNBC (red curves) and
no-slip with Young stress (blue curves). All the plots are done for Ca = 0.04 and 𝜀 = 0.05.

The grid resolution is reported in terms of 𝜀/Δ, and color intensity is increased to show
higher resolution. Figure (a) shows the contact angle 𝜃d and the contact line speed in the

lab frame of reference Caloc as a function of time. In (b) we show the phase diagram
resulting from figure (a). The dashed black line represents the GNBC law angle in the

steady state. Time flows from right to left and aligns the curves. Each curve set has its own
characteristic feature. The oscillations, present in (a), are faded in the phase diagram for

clarity.

Figure 8b shows the phase diagram on a Caloc −𝜃 plane. This figure sums up the the overall
behaviour of the contact line dynamics in each case and a characteristic behaviour of each
set could now be identified. The timeline in this figure progresses from right to left.

(i) In the Navier slip case, we observe that at 𝑡 = 0 and for 𝜃d = 90°, when the interface
is horizontal, Caloc is null. Then, Caloc suddenly rises to a maximum value, which remains
lower than the imposed Ca. This rapid rise occurs within the relaxation time 𝑡𝜀 , where 𝜀 is the
slip length. This behavior aligns with the discussion in Figure 7b. Subsequently, the contact
line relaxes to a steady state where Caloc returns to zero. This relaxation is accompanied by
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Figure 9: Curvature profiles relative to the radial distance from the contact line. The red
curves represent curvature under the Navier slip boundary condition (slip), showing a

logarithmic divergence. In contrast, the blue curves (GNBC), demonstrate the
convergence to a finite curvature value and thus, the removal the singularity present in the
NBC. Simulations are conducted with Ca = 0.08 and 𝜀 = 0.05. The equilibrium angle is
𝜃e = 90°, and Δ denotes the grid size. Various color intensities denote grid refinement,

where lighter shades correspond to a coarse mesh, and darker shades indicate a fine mesh.

spurious oscillations in the contact angle 𝜃d. Ideally, in this case, the system should relax to
𝜃d = 90° throughout the motion and also in the steady state (given that we impose a constant
𝜃d = 𝜃e = 90°), which is indeed observed as the grid is refined. The final angle 𝜃d converges
to 90°, and spurious oscillations diminish with increasing grid refinement.

(ii) In the no-slip with Young’s stress, we notice an interesting pattern. At the start (t=0),
the simulation begins with Caloc = 0 and 𝜃d = 90° at the lower right of Figure 8. However, as
soon as we advance in time, Caloc increases to a maximum value equal to Ca, subsequently,
starts relaxing to 0. With the presence of uncompensated Young stress, it ideally should relax
to the GNBC law contact angle indicated by the dashed line in Figure 8. We observe that
oscillations are decreasing with grid refinement and the final value of the contact angle is
converging towards the GNBC law angle.

(iii) In the CR-GNBC case, we observe characteristics from both (i) and (ii). Initially, both
Caloc and 𝜃d start from zero. Subsequently, Caloc reaches a maximum during the relaxation
time and eventually relaxes to the GNBC law contact angle. The notable advantage of the
CR-GNBC is that even with a modest resolution of 5 grid points per slip length, the spurious
oscillations, compared to case (i) at the same resolution, are significantly reduced. Moreover,
the accuracy in relaxing towards the GNBC law contact angle (dashed line) is substantially
improved compared to case (ii). Further grid refinement leads to a continued reduction in
spurious oscillations and enhances accuracy.

4.2. Steady-state contact line dynamics: the GNBC smoothing signature
We now demonstrate the full regularization of the contact line singularity achieved by the
present CR-GNBC method. Figure 9 presents the curvature as a function of the distance from
the contact line for various grid resolutions. The Navier slip model exhibits a logarithmic
divergence in curvature, consistent with the analytical findings of Devauchelle et al. (2007)
and Kulkarni et al. (2023). While the singularity in the Navier slip model is integrable and
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Figure 10: (a) Wall shear stress in a steady-state simulation plotted against the vertical
position 𝑦. The dashed line corresponds to the Navier slip boundary condition, while the
solid line corresponds to the CR-GNBC case. Both curves largely overlap, except for a

small region shown in the zoom-ins for Navier slip and CR-GNBC in (b). The zoomed-in
figures are normalized by the contact line position, where 0 on the x-axis corresponds to
the contact line position. Notably, in the CR-GNBC case, the shear stress at the contact
line is zero, whereas it is not the case for the Navier slip. The simulations are conducted

with fixed Ca = 0.08 and 𝜀 = 0.05 and varying grid sizes.

considered “weak”, it induces a pressure singularity, rendering the slip model physically
ill-posed. In contrast, the present CR-GNBC model regularizes the logarithmically singular
curvature at the contact line (𝜅 ∼ log 𝑟), establishing it as a physically well-posed model.

In Section 2, we showed that assuming a 𝐶1 velocity field up to the contact line in the
reference frame of the moving wall, the rate of change of the contact angle scales with the
shear stress at the contact line. In steady state, where ¤𝜃d = 0, the shear stress must approach
zero as it reaches the contact line. A non-zero shear stress would indicate a violation of the
smoothness assumption made by Fricke et al. (2019). This violation occurs in the Navier
slip model, as non-zero shear stress is necessary for contact line motion. In Figure 10, we
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Figure 11: The behavior of the quasi-stationary value of 𝜃d vs Ca is illustrated for various
𝜃e and compared with the GNBC law (2.18). The solid lines represent the analytical
expression of the steady-state behavior expected from (2.18), while the dots depict

simulation results. The different colors represent various 𝜃e, progressing from left to right
(black to red) as 45°, 60°, 75°, 90°, and 120°, respectively. The horizontal lines denote the
Catr for each equilibrium angle considered. An excellent agreement between simulations

and the GNBC law is observed up to 𝐶𝑎 < Catr.

observe the behavior of shear stress for both Navier slip and CR-GNBC in steady state. At
the contact line, the shear stress converges to zero within the 𝜀 region in the CR-GNBC case,
aligning with the expected smoothness of the flow field. However, for the Navier slip model,
the shear stress fails to converge to zero.

Having demonstrated that the shear stress at the contact line in the steady state is zero using
the CR-GNBC, we proceed to compare the quasi-stationary state GNBC relation (2.18) with
our simulation results in Figure 11. Remarkably, we observe excellent agreement between
the simulation outcomes and the quasi-stationary GNBC law, particularly for Ca < Catr.
It is essential to note that the behavior of Cacl = 𝑓 (𝜃s) in Figure 11, as predicted by the
quasi-stationary GNBC law (2.15), is not explicitly imposed but is a direct outcome from the
simulations.

4.3. Asymptotic matching to the Cox region
The smoothing is observed only within the 𝑟 < 𝜀 region, indicating that the outer region
solution and intermediate asymptotics remain consistent with those well-known in the
literature (Afkhami et al. 2018). Cox (1986a) performed an asymptotic expansion in powers
of Ca and demonstrated that for any slip-like model, there exists an intermediate scale where
the interface bending follows the Cox-law:

𝐺 (𝜃d) − 𝐺 (𝜃 (𝑟)) = −Ca log
𝑟

𝜆
+ Ca

𝑎0
𝑓 (𝜃d, 𝜒)

+ O(Ca2). (4.3)

In this equation, 𝐺 (𝜃) is the Cox function which can be approximated as 𝐺 (𝜃) = 𝜃3/9. Here,
𝜃d is the contact angle and 𝜃 (𝑟) is the local angle measured at a distance 𝑟 from the contact
line. Other parameters include the slip length 𝜆 such that the inner region physics is captured
only inside 𝑟 < 𝜆. Furthermore, 𝜒 is the viscosity ratio and 𝑎0 is a constant obtained by
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Figure 12: The Cox law matching to the inner region for CR-GNBC and Navier slip. The
Cox solution becomes comparable to the inner region at a certain scale 𝑟 = 𝑐𝜆. The value
of 𝑐 is 0.08 for the Navier slip and 0.25 for the CR-GNBC. The higher value of 𝑐 indicates
a stronger influence from the inner region. The simulations are conducted for Ca = 0.08

and 𝜀 = 𝜆 = 0.05 with 20 grid points per slip length.

matching to the outer solution. Afkhami et al. (2018) verified the above law and presented a
wetting theory derived from the numerics with the Cox law (4.3) written as

𝐺 (𝜃d) − 𝐺 (𝜃 (𝑟)) = Ca log(𝑟/ℓ𝑚𝑖𝑐) +Φ, (4.4)

where ℓ𝑚𝑖𝑐 is the microscopic length scale equal to the grid sizeΔ in their work, corresponding
to 𝜆 in the current work. In (4.4), Φ is a gauge function which would be obtained numerically.
For further details, the reader is referred to the original work of Cox (1986a) and the numerical
work by Afkhami et al. (2018).

We verify the existence of the region predicted by equation (4.4) in Appendix C. Based
on the asymptotic matching section presented in the work by Kulkarni et al. (2023), an
intermediate region exists, where the Cox solution and the inner region solution are of
similar order. The Cox law in theory gives us a family of curves in the intermediate region.
The final curve is then determined by matching the family to the inner region. In the present
case, this means that the matching happens at 𝑟 = 𝑐𝜆 where 𝑐 depends on whether we use
the Navier boundary condition or the CR-GNBC. A smaller value of Φ implies that the CR-
GNBC smoothing influence region is stronger than the Navier slip one, that is 𝑐gnbc > 𝑐slip.
This is explicitly shown in Figure 12. We can identify the following two regions, (a) an inner
region present at 𝑟 ≪ 𝑐𝜆 and (b) an intermediate region 𝑟 ≫ 𝑐𝜆 where we see the interface
bending. The matching happens when the two regions are of similar order at 𝑟 = 𝑐𝜆.

5. Conclusion
To summarize, we have developed an implementation of the Contact Region Generalized
Navier Boundary Condition (CR-GNBC) in a geometrical Volume-of-Fluid method. In this
method, the dynamic contact angle is not prescribed but is controlled by kinematics through
the velocity boundary condition. This is achieved by reconstructing the contact angle at
the boundary using the interface normal and the curvature one cell layer away from the
boundary. We validate the resulting free contact angle method by studying the interface
advection problem in the presence of a moving contact line in Section 3.2. In the present
approach, the uncompensated Young stress is distributed over a characteristic width 𝜀, that
is defined independently of the mesh size. Using the kinematic evolution equation of the
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dynamic contact angle (1.4), we show rigorously that the solution obeys the GNBC law
(2.17), if the solution has a C1-regularity up to the contact line. Indeed, we show in Section 4
that the weak singularity at the contact line is removed in the GNBC model with finite 𝜀.
We find a mesh-converging curvature at the contact line (see Figure 9) and the numerical
solution satisfies the GNBC law in a quasi-stationary state (i.e. for ¤𝜃d = 0). These results
are consistent with the recent findings of Kulkarni et al. (2023) who demonstrated that this
model indeed shows a local C2-regularity at the contact line. As expected from kinematics,
the tangential stress component goes to zero at the contact line in quasi-stationary states
(see Figure 10). In this sense, we observe perfect apparent slip at the moving contact line. A
natural follow-up of this work would be to extend the CR-GNBC to non-flat surfaces.

We now discuss in detail the implications and scope of the specific developments achieved
in this paper.

1. Development of the free contact angle method
We have developed a method that allows us to transport the contact angle in a kinematically
consistent manner. This is a major difference to the traditional approaches of imposing
constant contact angle or an angle based on a mobility law. A mobility law relates the contact
angle with the contact line velocity and other fluid properties like the viscosity ratio, surface
tension, surface roughness etc. Vast literature already exists on many of such mobility laws
(Xia & Steen 2018; Snoeijer & Andreotti 2013b; Ludwicki et al. 2022). In steady-state
wetting, where the contact angle remains constant over time, there is a natural inclination to
impose a constant contact angle. At this stage, we have made the hypothesis that a constant
contact angle exists at nanoscopic scales in steady-state wetting processes. The next question
that arises is how to determine the value of this contact angle. Typically, this is decided by
solving the Stokes flow equation while assuming a constant contact angle and predicting
the interface shape as a function of the capillary number, capillary length, and the contact
angle. Several well-known relations exist, such as the Cox law for small angles (Cox 1986b;
Voinov 1977) and the generalized Cox-Voinov law with the slip boundary condition of
Chan et al. (2020). Mathematically, a simple mobility law is written as 𝑈𝐶𝐿 = 𝑓 (𝜃), or in
an inverse form 𝜃 = 𝑔(𝑈𝐶𝐿). However, one could define generalized mobility laws such

that 𝑈𝐶𝐿 = 𝑓 (𝜃, ¤𝜃, ¥𝜃, ...), or in an inverse form 𝜃 = 𝑔(𝑈𝐶𝐿 ,
𝜕𝑢

𝜕𝑦
,
𝜕2𝑢

𝜕𝑦2 , ...). Note that the

generalized version of the second one involves the gradients of the velocity field at the
contact line which would in turn include the outer scales. We interpret the CR-GNBC in
section 2.3 as one kind of generalized mobility law. Note that unlike with a simple mobility
law, we cannot impose a contact angle directly based on the contact line speed. Here, our
free-angle extrapolation scheme proves beneficial. Having successfully demonstrated its
capability in the CR-GNBC case, future work could explore its applicability in other forms
of the generalized mobility law.

2. A grid independent contact region GNBC
Grid independent results are obtained for a fixed 𝜀 and 𝜆 with varying grid size Δ, given that
Δ << 𝜀 and Δ << 𝜆. We have obtained converging results even with 𝜀/Δ = 5. Obtaining
grid-independent results is crucial for predicting the transition Capillary number as a
function of 𝜀 and 𝜆 so that it could have a potential scope of comparison with experiments.
Note that the study of Afkhami et al. (2018) was with no-slip boundary condition giving
rise to the grid-dependent results in the Volume-of-Fluid framework. Such grid dependency
is removed by using a Navier slip and resolving the slip length. We have shown that the
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curvature diverges logarithmically at the contact line for the Navier slip boundary condition.
A divergence in curvature implies a divergence in the pressure field making the model
physically ill-posed. Unlike the non-integrable stress singularity that results from the no-slip
boundary condition, the Navier slip has an integrable singularity and hence grid-independent
steady-state results can be found. A logarithmic divergence of curvature is accompanied by
the convergence of the contact angle this case. With the CR-GNBC, given a fixed 𝜀, we were
able to confirm the finite curvature as predicted by the thin film equation 2.5 and Kulkarni
et al. (2023) and get a smooth flow field. A resolution as low as five grid points in the contact
region was sufficient to get converged results.

3. Shear stress and the GNBC law
This singularity-free behaviour of CR-GNBC over the Navier slip can be seen as a result of
incorporating the uncompensated Young stress. Without the uncompensated Young stress,
the CR-GNBC reduces back to a classical Navier slip. From Kulkarni et al. (2023), we
know that the Navier slip results in an only continuous velocity field at the contact line. This
implies that the shear stress is mathematically not defined at the contact line. Numerical
results in Figure 10b show that we have a non-converging spiked behaviour of shear stress
at the contact line. From the stream-function solution of Kulkarni et al. (2023), we can
show that the shear stress remains bounded up to the contact line while the differentiability
for the shear stress is lost at the contact line. We also observe, from Figure 10, that once
uncompensated Young stress is added, the shear stress at the contact line goes to zero in a
converging and smooth manner. The GNBC law that relates the steady state value for the
contact angle and the velocity of the contact line as one would expect in the vanishing shear
stress limit. This is perfectly in-line with requirement for a smooth flow from Fricke et al.
(2018, 2019). Notably, this smooth behaviour of shear stress going to zero in the CR-GNBC
happens only within the 𝜀 width, i.e. within the contact region. In the derivation of the GNBC
from entropy principles (Fricke et al. 2020), we introduced a smoothed uncompensated
Young stress as a Dirac function. This smoothed region can be seen as a physical contact
region. However, for mathematical coupling of terms, it remains to be seen how the shear
stress would behave if we retained a delta function GNBC formulation. That is, considering
an uncompensated Young stress in the singular form of a true delta function, and how it
would interact with the singularity of the Navier slip. An investigation of this case is left as
a future task.

4. The Cox law asymptotics
We have shown in Section 4.3 that with the CR-GNBC, we observe the slip-like Cox law
at an intermediate scale 𝜀 < 𝑟 < 𝑙𝑐, where 𝑙𝑐 is the capillary length. This suggests that
CR-GNBC primarily smoothens the contact region solution (𝑟 ≪ 𝜀), while preserving
the appropriate solution at intermediate and outer scales. Our setup involves a receding
contact line scenario with Ca ≪ 1, allowing validation against the Cox law. However, it
remains to be investigated how CR-GNBC would impact dynamic wetting systems with an
advancing contact line where Ca ∼ O(1). It is important to note that the physical speed in
the advancing contact line setup can result in a 𝐶𝑎 value that exceeds the range of the linear
GNBC law. Section 6 is dedicated to this outlook of the non-linear GNBC whose numerical
implementation is left as a future scope.

5. Extension to transient regime
In the paper we have dealt with the steady-state flow characteristics of the GNBC. The work
should now be extended to incorporate the setups that have a transient contact line behaviour.
Examples of such setups include nano-scale shear droplet (Lācis et al. 2022) and a spreading
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drop. Mohammad Karim et al. (2016) showed that despite using the same fluids and solid
material, the overall configuration of the system can result in different values of the apparent
contact angle even for equal contact line speeds. The forced wetting case of a plunging plate
exhibited a different apparent angle than the spontaneous wetting case of a spreading drop,
even when the contact line speed is equal to the plate velocity. Thus a simple mobility law
cannot capture this dependence. However, the GNBC contains a term representing the rate
of change of the contact angle 2.17 which makes spontaneous wetting different from the
forced wetting and whether CR-GNBC could explain the experimental behaviour remains
an unanswered question. The CR-GNBC should also be extended to setups having sustained
oscillatory states. The vibrating drop is a famous example of this setup Xia & Steen (2018).
There have been several models to describe such oscillatory setups, but most of them rely
on empirical relations (Kistler 1993). Sakakeeny & Ling (2021) numerically predicted the
first and second modal frequencies of a vibrating droplet in two limiting cases (a) a pinned
contact line and (b) a free-slip contact line. In reality, the contact line is expected to behave
in between these two limits. Whether a fundamental boundary condition like the CR-GNBC
could recover the modal frequencies on large scale as well as the contact line hysteresis at
micrometre scale as observed by Xia & Steen (2018), remains to be tested.

6. Outlook: A non-linear generalization of the GNBC
As discussed in detail in Section 2.2, the CR-GNBC in the form

−𝛽(v∥ − U𝑤) = (Sn𝜕Ω)∥ + 𝜎(cos 𝜃d − cos 𝜃e) nΓ𝛿
𝜀
Γ on 𝜕Ω (6.1)

is obtained as a linear closure relation, to render the dissipation integral

T =

∫
𝜕Ω

(
(Sn𝜕Ω)∥ + 𝜎(cos 𝜃d − cos 𝜃e) nΓ𝛿

𝜀
Γ

)
· (v∥ − U𝑤) 𝑑𝐴 (6.2)

non-positive. Since, according to kinematics, the viscous stress contribution vanishes in a
quasi-stationary state (see Section 2), we obtain the dynamic contact angle relation

−𝜁𝑈cl = 𝜎(cos 𝜃d − cos 𝜃e) (6.3)

with the contact line friction coefficient 𝜁 = 𝛽𝜀. Notably, equation (6.3) is also found in the
Molecular Kinetic Theory (MKT) in the limit of low capillary number (see, e.g., Blake et al.
(2015)). However, for higher capillary numbers, the MKT predicts that†

𝑈cl = 2𝜅0Λ sinh [𝜎 (cos 𝜃e − cos 𝜃d) /(2𝑛𝑘𝐵𝑇)] . (6.4)

Therefore, it is interesting to formulate a closure relation for (6.2) that will lead to the
relation (6.4) in quasi-stationary states. Notice that (6.4) can be linearized for 𝑈cl → 0
using sinh(𝑥) = 𝑥 + O(𝑥3). Hence, the contact line friction coefficient is identified as
𝜁 = (𝑛𝑘𝐵𝑇)/(𝜅0Λ).

For simplicity, let us assume that U𝑤 = 0 in the following (the generalization to U𝑤 ≠ 0
is obvious). To proceed, it is useful to decompose the integral in (6.2) into its components
normal and tangential to the contact line, according to

v∥ = (v∥ · nΓ) nΓ + (v∥ · tΓ) tΓ .

† In this case, the average distance and equilibrium frequency of molecular jumps are denoted by Λ and
𝜅0, respectively. Moreover, 𝑛 is the number of adsorption sites per unit area, 𝑘𝐵 is the Boltzmann constant
and 𝑇 is the absolute temperature; see Blake et al. (2015) for more details.
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Here, we denote by tΓ the tangent vector to the contact line. We obtain the representation

T = T⊥ + T∥ (6.5)

with

T∥ =
∫
𝜕Ω

(
tΓ · (Sn𝜕Ω)∥

)
(tΓ · v∥ ) 𝑑𝐴

and

T⊥ =

∫
𝜕Ω

(
nΓ · (Sn𝜕Ω)∥ + 𝜎(cos 𝜃d − cos 𝜃e) 𝛿𝜀Γ

)
(nΓ · v∥ ) 𝑑𝐴. (6.6)

We are now looking for closure relations to ensure that T⊥ ⩽ 0 and T∥ ⩽ 0. A general
non-linear closure for T⊥ reads as

nΓ · (Sn𝜕Ω)∥ + 𝜎(cos 𝜃d − cos 𝜃e) 𝛿𝜀Γ = − 𝑓 (nΓ · v∥ ), (6.7)

where the scalar function 𝑓 satisfies the inequality

𝑥 𝑓 (𝑥) ⩾ 0 ∀𝑥 ∈ R.

Such a closure is consistent with the second law of thermodynamics because it implies that

T⊥ = −
∫
𝜕Ω

(nΓ · v∥ ) 𝑓 (nΓ · v∥ ) ⩽ 0.

The linear version of the GNBC is recovered as 𝑓 (𝑥) = 𝛽𝑥. Motivated by (6.4), a special
choice is

𝑓 (𝑥) = 𝑏 arcsinh(𝑥/𝑎). (6.8)

with positive constants 𝑎 = 2𝜅0Λ and 𝑏 = 2𝑛𝑘𝐵𝑇 . Clearly, Equation (6.8) reduces by
linearization to the original GNBC (6.1) with 𝛽 = 𝑏/𝑎 if v∥ ·nΓ → 0. Since (6.8) corresponds
to the MKT (6.4) for quasi-stationary states, it may improve the standard GNBC model for
higher values of the capillary number. This shall be studied in detail in the future.
Author contributions.. TF, YK and MF contributed equally to this work that includes free angle method,
performing simulations and writing paper with feedback from all authors. Study was performed at all three
institutes hosted by SA, DB and SZ. Detailed discussions were done among all authors on all the ideas
presented in the paper.

Funding.. This project has received funding from the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (grant agreement n° 883849). MF and DB
acknowledge the financial support by the German Research Foundation (DFG) within the Collaborative
Research Centre 1194 (Project-ID 265191195).

Appendix A. Convergence study
We conduct a convergence study to demonstrate the grid independence of the CR-GNBC.
In Figure 13a, we present interface shapes for a fixed Ca = 0.12 and 𝜀 = 0.2 with varying
resolutions, showing apparent convergence. In Figure 13, we display the percentage error
in the contact line position for this case, revealing second-order convergence. This confirms
that unlike Afkhami et al. (2018) our CR-GNBC method achieves grid independence for
steady-state height with a fixed Ca and 𝜀, including the Catr.
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CR-GNBC

Figure 13: Steady-state height and interface shapes near the contact line with varying grid
resolution for the CR-GNBC. In (a), Ca = 0.12 and 𝜀 = 0.2 are fixed, showing convergent

interface shapes. In (b), a fixed Ca = 0.04 reveals that due to implicit slip, steady-state
solutions are achievable even with a no-slip boundary condition. Interface shapes do not
converge with grid refinement, and no steady-state height is found at resolutions higher

than lc/Δ > 100. (b) Percentage error in the contact line position for steady-state interface
shapes obtained in (a). The reference solution is taken at 164 grid points per slip length

𝜀/Δ, and the dashed lines represent second-order and first-order convergence. It is
observed that above 20 grid points per 𝜀, a second-order convergence is achieved.

λ = 0.05

ϵ ≠ λ
ϵ > λ

ϵ < λ

(a) (b)
ϵ = λ

Figure 14: Transition capillary number plotted against variation of (a) 𝜀 and 𝜆 with 𝜀 = 𝜆,
and (c) 𝜀 such that the slip length 𝜆 is fixed. All simulations are carried out with the

CR-GNBC and 𝜃e = 90°. The resolution for all simulations is maintained at
min(𝜀, 𝜆)/Δ = 5.12.

Appendix B. Transition capillary number and the contact region width 𝜀

Figure 14 illustrates Catr as a function of 𝜀, 𝜆 and 𝜃e. When we have 𝜀 = 𝜆, we see that
Catr decreases with the decrease of 𝜀. When we break the restriction of 𝜀 = 𝜆, we see an
interesting behaviour in Figure 14(c). Since we know that 𝜀 and 𝜆, both promote smoothing
behaviour, the Catr is decided by the larger of the two. Hence, when we decrease 𝜀 below the
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slip length 𝜆, we see that Catr goes to a constant value. The dependence on the equilibrium
contact angle shown in Figure 14(b) is notably linear. While this linearity may break at
smaller angles, it’s important to note that our solver, which employs only horizontal heights,
faces limitations in handling angles smaller than 30°.

Appendix C. The Cox law and the gauge factor
Figures 15 and 16 show the existence of the Cox region. These figures show, in particular,
that the gauge function in equation (4.4) for the CR-GNBC is always less than the gauge
function of the Navier slip. This implies that the inner region influence of the CR-GNBC
is higher than that of the Navier slip at same 𝜀. This is perfectly in line with the fact that
CR-GNBC solution is smoother than the Navier slip solution.
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Figure 15: Comparison of the Cox law observed at an intermediate scale in our
simulations for the CR-GNBC (blue) and Navier slip (red). The vertical dashed line

represents the slip length 𝜆, which is equivalent to the CR-GNBC width 𝜀. The solid black
lines follow the Cox law (4.4), approximated as 𝜃Δ3 −𝜃3 (𝑟) = 9 Ca log(𝑟/𝜆) + 𝑐. Here, 𝜃Δ
is the contact angle observed in the simulations at the contact line cell. The value of 𝑐 is
provided in the plot for each case, with a smaller 𝑐 observed for the CR-GNBC. 𝜃e = 90°

for all simulations, resulting in a constant 𝜃Δ = 90° for Navier slip and 𝜃Δ = 𝜃d for the
CR-GNBC. 𝜆 = 0.05, and the resolution is 𝜆/Δ = 10 in all cases.
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Figure 16: An extension of Figure 15 for higher values of Ca. All the other parameters are
identical to those in Figure 15. The matching with the Cox law starts to deteriorate as Ca

is increased, aligning with theoretical expectations.
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