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Abstract—Nowadays, Internet of Things applications face se-
rious data and privacy protection vulnerabilities. To address
some of the data protection and privacy issues, in this work we
propose a new design for the self-encryption method based on a
cryptographic-puzzle algorithm, that includes the generation of
multiple secret keys, derived from the plaintext. As the ciphertext
is constructed from several chunks of encrypted data, the absence
of one of the decryption keys or one of the encrypted chunks
renders recovery of the original plaintext nearly impossible. As
security improvement upon to other related work proposing self-
encryption, the plaintext is mixed with random values in order
to use a technique known as Privacy Amplification. Privacy
Amplification is achieved by applying cryptographic functions
from which SHA-2 family is based on. Implementations of our
design are also provided, and they are enabled for standalone
and back-end execution systems. Furthermore, performance and
security results and comparisons with previous related work are
also provided. The security analysis confirms the use of the SHA-
2 cryptographic hash family for Privacy Amplification.

Index Terms—Privacy, Security, Encryption, IoT, Privacy Am-
plification

I. INTRODUCTION

Nowadays, the Internet of Things (IoT) is considered a
complex network where all kinds of devices are connected,
communicating with each other. IoT is used in smart cities [1],
supply-chain management [2] [3], smart grid [4], smart vehicle
systems [5], and smart healthcare application fields [6]. With
the number of connected devices increasing exponentially,
and the vast amount of data produced by IoT devices, IoT
data plays a major role as a drive for the big data paradigm
future [7]. Many believe, that several IoT use cases can have
a positive effect on human life, such as in healthcare related
applications. To mention one of the many, patients can use a
wireless body area network (WBAN) [8] to record and transmit
their health data to a medical doctor, facilitating the prevention
and cure of illnesses and diseases. On the other hand, IoT
faces serious security and privacy issues [1] [9]. Person-related
data is privacy-sensitive, thus protecting this information is
essential and requires an encryption method that provides a
high security level, correct usability and reasonable efficiency.

Moreover, the method should also provide mechanisms to
enforce a correct ownership of the data, implying how the
shared data can be accessed [10] [11].

The application of a puzzle-based cryptographic algorithm
is a promising approach for data encryption, as a missing
encrypted chunk or decryption key makes it nearly impossible
to recover the plaintext. Such algorithm results in a set of
encrypted chunks and the corresponding decryption keys,
and provides efficient operation at high security levels. As
this method allows the storage of the encrypted chunks in
different locations, it makes difficult the access to the fully
encrypted data by unauthorized parties. MaidSafe.net proposed
the self-encryption algorithm [12] as a data protection solution
that applies puzzle-based encryption. As the original idea
of this solution is promising, we elaborate its features, and
propose a new design to improve its security, usability and
performance. Furthermore, we apply Privacy Amplification
for the key generation, which can be achieved by employing
special types of hash functions [13]–[15]. It is important to
note that Privacy Amplification carries an important result
called the Leftover Hash Lemma. Currently, there are many
versions of the Leftover Hash Lemma [15] and present results
on Privacy Amplification [16]. Our proposed self-encryption
method does not enforce access policies, but it can be used as
an initial encryption mechanism by applications that enforce
their own data sharing and access policies on the encrypted
data. Our contributions are the following:

• Contrarily to the existing self-encryption implementa-
tions, ours supports two encryption modes: the OTP-like
mode allows the encryption of data with OTP-like (One-
Time-Pad) security level. The default mode provides a
security of 2r, where r is equal to 512 bits;

• We explore some of the existing security results regard-
ing encryption algorithm architectures, namely the base
architecture of SHA-2 and AES, in order to understand
what assumptions we must fulfil in order to guarantee
security in the theoretical sense. Based on the analysis,
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we propose a new self-encryption method. The approach
also implies the justification for using the SHA-2 crypto-
graphic hash family for Privacy Amplification, based on
related work [13];

• We provide a Golang implementation of our proposed
self-encryption method, which can be run efficiently in
a PC, back-end and edge environments. Our work is a
completely open-source and reproducible project and all
source codes are available on our GitHub repository1.

This article is structured as follows: Sect. II describes the
related works regarding self-encryption and its application.
Sect. III showcases our proposed self-encryption method.
Sect. IV provides security related knowledge regarding hash
functions and AES-based architectures applied in our pro-
posed encryption method. The experiments and results of our
implementation are presented in Sect. V. In Sect. VI, an
evaluation of the proposed self-encryption method is given.
Finally, Sect. VII provides the conclusions of our work.

II. RELATED WORK

The basic goal of the original self-encryption was to create
a strong ciphertext without user intervention or passwords.
Its original authors [12] highlight that the self-encryption
algorithm is not a new cipher scheme but the combination
of the AES-CBC (128-bit) cipher and a cryptographic hash
algorithm with obfuscation operations. The author also claims
that their implementation should be considered as an OTP
encryption. This algorithm produces encrypted chunks based
on chunked plaintext, in a deterministic way, thus providing
deduplication of encrypted data. This may be, however, unde-
sirable in use cases where the plaintext follows patterns that
might be exposed by multiple colliding encrypted chunks. For
more details on the original self-encryption, we refer to the
work [12].

Grishkov et al. [17] applied the self-encryption in a
blockchain [18] context for secure data sharing. The au-
thors called their implementation ID-based self-encryption,
and pointed out that storing the encrypted data chunks in
a distributed way is beneficial as each chunk can be stored
in a different location belonging to different network partic-
ipants. In that same work, a Proof-of-Concept architecture
was provided and was based on an IPFS network [19], where
each encrypted chunk was stored in a different network node.
IPFS uses the hash values of the data as references to store
and locate data. Since the self-encryption provides the hash
values of the encrypted data chunks, in the work proposed
by Grishkov et al. [17] the hash values were used directly as
references to the encrypted data chunks in the IPFS network.

To improve the original self-encryption, Grishkov et al. [17]
proposed the addition of a self-signed X.509 certificate to the
data to be encrypted. This self-signed certificate allows the
authentication and identification of the encryptor or the data
owner. Our proposed self-encryption method inherits this self-
signed identity feature, as it can be useful when a proof is

1Our proposed self-encryption is avaulable at GitHub https://github.com/
KRolander/New-Design-for-Self-Encryption

required regarding the identity of the issuer of the encryption
or of the owner of the data. Furthermore, the self-signed
certificate can also help to hide the real identity of the data
owner, which is a benefit in the light of some possible privacy
requirements.

ID-based self-encryption facilitates distributed data storage
and the authentication of encrypted data. However, in both
the original and the ID-based self-encryption, the keys are
generated in a deterministic way, by using the hash of the
data chunks of the plaintext. As the plaintext may not provide
the necessary randomness, the first stage of the encryption
of the data provided by the AES blocks is not provably
secure. The authors of the original self-encryption [12] claimed
that their implementation should be considered as an OTP.
However, the keys used for the One-Time-Padding operation
were not random, which is an essential requirement of the
perfect secrecy provided by an OTP. In our implementation,
the aforementioned issues are addressed to obtain a provably
secure self-encryption method, and providing at least a security
of 2r, where r is 512 bits.

III. PROPOSED SELF-ENCRYPTION METHOD

This section describes our improved implementation of the
self-encryption algorithm, and highlights the differences in
relation to the original, as it was presented in [12]. Figure
1 shows the core components of our proposed self-encryption
method. The data flows of our implementation are as follows:

Optional step

Cn =
self-signed X.509

certificate

H1() : 32 bytes

H2() : 64 bytes

Fig. 1. Our improved self-encryption method

0 Random number generation: for each data chunk that is
generated in step 1 , a random number with a length of
128 bytes (i.e., 1024 bits) is generated (i.e., Ri ∈ Z)

1 Division of the initial data into chunks:
Default mode: the initial data (plaintext) is divided into
n chunks of quasi-equal length {C0, . . . , Cn−1}. At least
three data chunks must be generated.
OTP-like mode: the initial data is divided into n chunks



and the length of an individual chunk must be less than
or equal to 48 bytes. The limitation of the chunk length
guarantees that the AES encrypted chunks will not exceed
the 64 bytes length. That property is particularly useful in
step 3 , as it allows for the construction of an OTP-like
encryption. More insights about the importance of this
mode are provided after the description of the steps.

1.1 Addition of a self-signed X.509 certificate: this func-
tionality allows the issuer of the encryption to add a
self-signed certificate as the last data chunk, hence the
n-th chunk will contain the self-signed certificate. The
certificate allows the authentication of the issuer of the
encryption, or of the data owner. This step is optional, but
proves useful when additional authentication is required.

2 Generation of secret keys and obfuscation values: Each
chunk (Ci) is concatenated with a random value of
128 bytes (Ri) generated in step 0 . The concatenated
value is then hashed with a cryptographic hash func-
tion (H2(Ci|Ri)), where H2 provides a hash digest
of 64 bytes. These hashes are used as secret keys
for the AES cipher. Moreover, the obfuscation values
({X0, . . . Xn−1, Xn}) are also composed by these hash
values. The i-th obfuscation value (Xi) is the hash value
of the concatenation of the i − 1-th chunk and random
number, e.i., Xi = H2(Ci−1 mod n|Ri−1 mod n).

3 AES-128 encryption of the chunks: The AES-CBC (128
bit – 16 bytes) is a block cipher that requires a key
(Key) and initial value (IV ) of 16-16 bytes. The cipher
of the i-th chunk (Enc(Ci)) is realized by using the
hash value of the i − 1-th chunk concatenated with the
i − 1-th random value (H2(Ci−1 mod n|Ri−1 mod n)),
as input of the AES cipher. The first 16 bytes of
this hash correspond to the Key, and the last 16
bytes are equal to the IV of the AES cipher e.i.,
Key = H2(Ci−1 mod n|Ri−1 mod n)[0−15], IV =
H2(Ci−1 mod n|Ri−1 mod n)[16−31].

4 Obfuscation of the encrypted chunks with the obfuscation
values: The obfuscation values determined in 2 are logic
XOR-ed with the AES encrypted chunks created in 3
(EXi = Xi ⊕ Enc(Ci)). Note that the XOR function
mentioned above is a circular implementation because the
length of the AES encrypted chunks may differ from the
obfuscation values (64 bytes).

5 Generation of references: The final encrypted chunks are
hashed (Refi= H1(EXi)).

Necessary randomness. It must be noted, that the phases: 0 ,
1 , 1.1 and 2 of our self-encryption method are significantly

different from the implementation proposed of the original
self-encryption [20] as we introduce a necessary randomness
while generating the keys for the AES cipher blocks. In [12],
the author claims that the AES encrypted chunks XOR-ed

with the obfuscation values (Xi) should be considered as
an OTP. However, in that same work, the encrypted chunks
and keys needed for the obfuscation values are generated
deterministically, and one of the main requirements of the
perfect secrecy provided by the OTP is that the keys must
be uniformly distributed random numbers. Also, the self-
encryption proposed in [17] fully inherits the key generation
of the original self-encryption; thus, our method significantly
differs from the implementation proposed by [17] as well.
OTP-likeness. In our implementation, the AES encrypted
chunks and the obfuscation values contain randomness thanks
to steps 0 and 2 . Furthermore, in step 4 we can achieve
a security level close to the perfect secrecy if the lengths of
the chunks are 48 byte-long, resulting in 64 byte-long AES
encrypted chunks used as input of the obfuscation. When
applying 64 byte-long AES encrypted chunks, the obfuscation
values (Xi) do not have to be circular, which implies that the
AES encrypted chunks are XOR-ed with a same length value.
Our implementation outputs AES encrypted chunks with a
length of 64 bytes, when the the OTP-like mode of step 2
is applied. Hence, with this OTP-like mode, we obtain an
OTP-like encryption.
Default encryption mode. In step 4 , we mentioned that if
the encrypted chunk do not have a length of 64 bytes, the
obfuscation value is circulated to achieve the length of the
encrypted chunk. The circulated obfuscation value implies that
this encryption mode offers a maximum security of 2r with
r = 512.
Decryption process. After obtaining all of the secret keys
and encrypted chunks, the next step is to generate the obfus-
cation values (Xi). The encrypted chunks can then be XOR-
ed with the obfuscation values to reach the AES encrypted
chunks (Enc(Ci)). Next, the AES encrypted chunks must
be decrypted to obtain the decrypted data chunks, which are
finally concatenated to obtain the original data.
Technical specification. Our default implementation is written
in Golang, which is widely compatible, as Golang functions
can easily be called from other programming languages (e.g.,
C, Python, Ruby, Node, and Java). The implementation in-
cludes the standard Golang crypto library2 to realize the AES-
CBC block cipher, the SHA-256 and SHA-512 hash functions,
random number generation, and the ECDSA digital signature
with P-256 NIST curve.

IV. AES AND SHA-2 DESIGN SECURITY

This section describes some known results and usages of
hash functions and the symmetric key encryption with AES-
based architecture.

A. Privacy Amplification

Consider the following scenario: Alice and Bob have full
access to a random variable Z, and Eve knows some infor-
mation regarding the variable Z. The challenge is for Alice
and Bob to “extract” randomness from the information of Z

2Golang Standard Crypto Library is available at https://pkg.go.dev/crypto@
go1.20.4



that is unknown to Eve in order to yield a symmetric key for
secure communication [14], [15].

Bennet, Brassat and Roberts proved that, if Alice and Bob
agree on a hash function g selected randomly from a family
of Universal Hash Functions, Alice and Bob can apply g on
Z and yield a completely random sequence of bits from Eve’s
perspective [14], [15].

A variant of Universal Hash families, the one we will be
using in this work, is called δ-Almost Universal, and it was
first proposed by Stinson [13], [21].

Definition 1 (Almost Universal Hash Functions): Let G be
a class of functions g : A → B, G be a random variable
over G, and Z1 and Z2 be uniform random variables over
set A. Then G is δ-AU if for all z1 ∈ Z1 and z2 ∈ Z2,
Prob[G(z1) = G(z2)|z1 ̸= z2] ≤ δ.

Central to the Privacy Amplification security analysis of
hash functions is the collision probability, Shannon entropy
and mutual information, which we define below.

Definition 2 (Collision Probability): Let Z be a discrete
random variable on the alphabet Z . The collision probability
is defined to be

PC(Z) =
∑
z∈Z

P (z)2 = E[P (Z)]. (1)

Definition 3 (Shannon Entropy): Let Z be a discrete random
variable on the alphabet Z . The Shannon entropy of Z is given
by

H(Z) =
∑
z∈Z

−P (z) log(P (z)). (2)

Definition 4 (Mutual Information): Let Y and Z be two dis-
crete random variables on the alphabets Y and Z respectively.
The mutual information between random variables Y and Z
is given by

I(Y ;Z) = H(Y ) +H(Z)−H(Y, Z). (3)

Following closely the proofs given in [14], but using the
definition of δ-Almost Universal Hash family, we can state
the following result:

Theorem 1 (Privacy Amplification): Let Z be a random n-bit
string with uniform distribution over {0, 1}n, let V = e(Z),
for an arbitrary eavesdropping function e : {0, 1}n → {0, 1}t
for some t < n. If Alice and Bob choose K = G(Z) as their
secret key, where G is chosen at random from a δ-Almost
Universal class of hash functions from {0, 1}n to {0, 1}r, then
Eve’s expected information about the secret key K, given G
and V , satisfies

I(K;G,V ) ≤ H(K) + log2δ +
2−log2δ+t−n

ln(2)
.

This result dictates how much information is available to
Eve when she knows some information e(Z) of Z and the
selected hash function g.

If we set δ = 2−r + ϵ we get

I(K;G,V ) ≤ H(K)−r+log2(1+2rϵ)+
2r−log2(1+2rϵ))+t−n

ln(2)
.

Setting ϵ = 0, and assuming that the generated key is
completely random, we have H(K) = r, and we recover the
same result as in [14]. This corresponds to the special case of
Universal Hash Function family.

B. Leftover Hash Lemma

Privacy Amplification attains to extract an almost uniformly
distributed secret key from a secret key partially known to Eve.
In this sense, we can talk about the closeness of the random
key generated recurring to the Universal Hash Function family
to a uniformly distributed random variable. The closeness of
two random variables can be formally defined as follows:

Definition 5 (Statistical Distance): Let Z1, Z2 be two
random variables over the set Z . The statistical distance
between the distributions Z1 and Z2 is defined as

SD(Z1, Z2) =
1

2

∑
z∈Z

|P (Z1 = z)− P (Z2 = z)| . (4)

When Z2 has uniform distribution U , the statistical distance
can be upper bounded by [13]:

SD(Z1, U) ≤ 1

2

√
|Z| · PC(Z1)− 1.

The Leftover Hash Lemma, which we state below, was
proved for the class of Almost Universal Hash Functions
in [13].

Lemma 1 (Leftover hash Lemma): Let Z be a random
variable over the set {0, 1}l and let H be a class of

(
1
2r + ϵ

)
-

Almost Universal Hash Functions with respect to Z, where
hk : {0, 1}l → {0, 1}r. Let U be a uniform distribution over
the set {0, 1}r. Then

SD(k, hk(Z), (k, U)) ≤ 1

2
·
√

2r · (PC(Z) + ϵ). (5)

Given that we have the Leftover Hash Lemma and the Pri-
vacy Amplification Theorem adapted to the Almost Universal
Hash family, what remains to be shown is that the idealized
design of the cryptographic hash family SHA-2 can, indeed be
used as an Almost Universal Hash family, and under which
conditions.

C. Merkle-Damgard Hash functions as Almost Universal
Hash Family

The SHA-1 and SHA-2 family of cryptographic hash
functions were designed based on the Merkle-Damgard con-
struction, also known as the “cascade construction”. This
construction is described in [13] as follows. Let {fk|fk :
{0, 1}b → {0, 1}r, k ∈ {0, 1}r} be a family of functions,
called the “compression functions”; Let the input z be divided
into L chunks, z = (z1, . . . , zL), where each chunk has b bits.
Define the following L+ 1 variables:

• z̄0 = k;
• z̄i+1 = fz̄i+1

(zi+1) for 0 < i ≤ L;
• Fk(z) = z̄L.

The family of functions F = {Fk : k ∈ {0, 1}r} is referred
to as the “cascade construction”.



In [13], by modelling the underlying family of “compression
functions” as a family of random functions, the authors were
able to prove in Lemma 2 that the family of functions F is
Almost Universal, under certain conditions. Before presenting
the lemma, we define the min-entropy to be the following.

Definition 6 (min-entropy): Let Z be a discrete random
variable on the alphabet Z . The min-entropy of Z is given
by

H∞(Z) = −log2 max(P (Z = z)). (6)

Lemma 2: Let F = {Fk} be the “cascade construction”
defined over a family of random functions {fk}. Let Z be
an input distribution to F defined over L-block strings, and
ZL denote the probability distribution induced by Z on the
last block ZL. Let H∞(Z) > log2(L). Then, the family F is(

1
2r + L

2r2H∞(ZL) +O(ϵ(L, 2r))
)
−AU with respect to Z.

The term ϵ(L,K) = (d(L))2LK−2 + L6K−3, and d(L) de-
notes the maximal numbers of divisors of any number smaller
or equal to L. Moreover, if L < K1/4, ϵ(L,K) = O(L2/K2).

Additionally, recurring to the Leftover Hash Lemma, the
authors in [13] were able to prove the following result:

Theorem 2: Let F = {Fk} be the “cascade construction”
described above. Let Z be a random variable of rL bits,
divided in L blocks of r bits and ZL be the random variable
induced by Z on the final block. Let U be the uniform
distribution over {0, 1}r. Then

SD(F (Z), U) ≤√
2r · 2−H∞(Z) + L · 2−H∞(ZL) +O(2r · ϵ(L, 2r)).

In particular, if H∞(Z) ≥ 2r, H∞(ZL) ≥ r, and L ≤ 2r/4,
then SD(F (Z), U) ≤ O

(
L

2r/2

)
.

D. Key-Alternating Ciphers

In [22], the authors explore theoretically the soundness
of the design of existing block ciphers based on the Key-
Alternating Ciphers design. They were the first ones to show
the design soundness of Key-Alternating Ciphers from the
perspective of indifferentiability. A block cipher is a function
that has a key k-bit key and an n bit plaintext as inputs, and
it outputs a ciphertext of length n.

Key-Alternating Ciphers are defined as a set of key addition
and permutation rounds [22]:

KAt(K,m) = kt ⊕ Pt(. . . k2 ⊕ P2(k1 ⊕ P1(k0 ⊕m)) . . . ),

where k0, . . . , kt are determined recurring to a key derivation
function applied to some master key K, and t is the number of
addition permutation iterations. The authors in [22] were able
to show, recurring to the indifferentiability framework, that a
KAt is indifferentiable from the ideal cipher, under certain
conditions.

We state the simplified version of the indifferentiability
theorem. For more detailed information, please refer to [22].

Theorem 3: The 5-round Key-Alternating Cipher KA5 is
indifferentiable from an ideal cipher, assuming P1, . . . , P5 are
five independent random permutations, and the key derivation

function f sets all round keys ki = f(K), where 0 ≤ i ≤ 5
and f is modeled as a k-to-n-bits random oracle.

The AES encryption algorithm can be viewed as a 10-round
Key-Alternating Cipher [22], [23].

Other security properties/proofs and frameworks were ap-
plied to study the Key-Alternating Ciphers. See, for instance,
[22], [23] and the references therein.

E. Implications to the Self-Encryption algorithm

The original self encryption algorithm generates
the obfuscation bits Xi recurring to the original
data chunks Ci−1 mod n, Ci−2 mod n, Xi =
H(Ci−1 mod n)|H(Ci−2 mod n).

From the results presented in the Privacy Amplification
subsection, the upper bound of Eve’s expected knowledge
increases with t. This means that, if the plaintext C is drawn
from a predetermined context, for example, Eve’s knowledge
could potentially exceed n − r, making it non-negligible.
Defining t − (n − r) = q ≥ 1, Eve’s knowledge about the
key is no longer negligible (lesser than 1):

I(K;G,V ) ≤ log2(1 + 2rϵ) +
2q+log2(1+2rϵ)

ln(2)
.

Moreover, for the same reasons mentioned in the previ-
ous paragraph, the min-entropies of the Ci’s (H∞(Ci) and
H∞(Ci)L ) could also be very low, making the inequality of
theorem 2 non-negligible.

Considering that the generated hashes H(Ci) are guessable,
we are not in the condition to infer that the keys generated re-
curring to those hashes can be considered randomly generated.
As such, in a practical sense, we cannot indicate that the key
derivation function (of theorem 3) is a random k− to−n-bits
random oracle.

If, for instance, we add 2r uniformly distributed bits,
denoted Ri, we will get

H∞(Ci|Ri) = −log2 max
Ci,Ri

(P (Ci)P (Ri))

= −log2 max
Ri

P (Ri)− log2 max
Ci

(P (Ci))
(7)

Since Ri is uniform, P (Ri) = 2−2r. Also, P (C1) ≤ 1, hence

H∞(Ci|Ri) = 2r − log2 max
Ci

(P (Ci))

≥ 2r.
(8)

Moreover, the L’th (last) block of the sequence SL =
(Ci|Ri), will be completely random as well, hence

H∞(SL) = r (9)

Because of these considerations, we chose to include in our
self-encryption algorithm proposal, 2r random bits into the
key generation process. We note, however, that by doing so,
we loose the deduplication property of the original algorithm.
Moreover, by controlling the size of the data chunks, we can
control the number L of blocks that will serve as input to the
hash function. If we choose L ≤ 2r/4 we are in the condition
to use the tighter bound presented in theorem 2.



V. EXPERIMENTS AND RESULTS

This section describes the results of the experiments con-
ducted to measure the performance of the our proposed self-
encryption method. The goal of the following experiments is
to measure the performance of our proposed self-encryption
method. One of the objectives is to highlight the performance
when the plaintext is split into different numbers of chunks.
Hence, the experiment highlights the impact of the number of
data chunks on the encryption execution time. On the other
hand, considering that the size of the plaintext also influences
the performance of the algorithm, it was also varied in the
experiments, and the impacts were analyzed.

Another objective is to analyse the latency of our self-
encryption method when operating in OTP-like mode (see
Sect. III, step 1 , OTP-like mode). Finally, since our proposed
method has inherited the self-signed identifier feature from ID-
based self-encryption [17], a comparison between both is also
provided.

For the experiments, an 11th Gen Intel® Core™ i7-1185G7
@ 3.00GHz 8 CPU computer was used, and all benchmarked
workloads ran synchronously, with no multi-threading or
multi-tasking applied.

In the following, we investigate the execution time of our
proposed self-encryption method when the number of chunks
and the size of the plaintext vary. The measurements were
performed for 4 different sizes of plaintext: 100KB, 1MB,
10MB, 100MB, and for 3 different plaintext split methods: 3,
6 and 9 chunks. The results are the average values of 1000
independent executions, and are as shown in Figure 2.
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Fig. 2. Execution time of our self-encryption method, with variation on the
number of data chunks (3, 6, 9) and the size of the plaintext (100KB, 1MB,
10MB, 100MB). “SE” refers to self-encryption

The results show that the difference between the number of
chunks does not have a significant impact on the execution
times. In secret sharing use cases, this feature is beneficial as
a relatively high number of encrypted chunks and secret keys
(i.e., 6, 9) can be issued with an insignificant time penalty
compared to the default 3 chunks. However, in this experiment,
the number of chunks is within a reasonable range, as a higher
number may result in higher latency.

The second experiment highlights the latencies of our self-
encryption method when the OTP-like mode is applied. As
mentioned in Sect. III, step 1 , OTP-like mode, in this mode
the AES encrypted chunks have a length of 64 bytes and
are XOR-ed with a secret key of the same length, which
implies that the final encrypted chunks are one-time-padded
data blocks. For this experiment, the plaintext size varies from
100KB to 1MB. The plaintext size is limited to 1MB, because
having the same length key as the ciphertext is impractical.
The results are the average values of 100 independent execu-
tions, and are shown in Figure 3.
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Fig. 3. Execution time of our self-encryption method when the OTP-like
mode is applied: the plaintext is divided into 48 bytes chunks. Hence, each
AES encrypted data chunk of 64 bytes is XOR-ed with a secret key of 64
bytes. Plaintext varies from 100KB to 1MB, with steps of 250KB. “SE” refers
to self-encryption

The results show that the latency increases nearly linearly
with the size of the plaintext. Comparing the results presented
in Figure 2 and 3, it is clear that the OTP-like mode introduces
additional latency. However, using the self-encryption in OTP-
like mode can make sense when the plaintext size is small,
like a typical password. Moreover, when the self-encryption
is applied for the encryption of passwords, the application of
further secret sharing schemes can also be avoided as each
secret sharing participants can obtain one encrypted chunk of



the encrypted password and one secret key produced by the
self-encryption.

The objective of the third experiment is to compare our
proposed self-encryption method with the ID-based self-
encryption proposed in [17]. It must be noted that the latter is
written in the Rust language, while our implementation uses
Golang. The plaintext was split into 3 chunks, and the length
of the plaintext varied from 100KB to 100MB. The results
average the values of 100 independent executions, and are as
shown in Figure 4. The results show that our implementation
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Fig. 4. Comparison between the execution times of our self-encryption
method and the original method. Plaintext size varies from 100KB to 100MB.
“SE” refers to Self-Encryption

performs better for that specific configuration (three encrypted
chunks are generated and a self-signed identifier is added to
the encrypted chunks).

VI. SYSTEM EVALUATION

As previously mentioned the original self-encryption and
the encryption method proposed in [17] did not provide
randomness during the key generation for the AES encryption
phase. Therefore, our solution concatenates the data chunks
with random bytes, which are then hashed and used as keys
and initial values in the AES encryption blocks and values in
the XOR phase of the encryption.

Since the key generation is issued by performing the hash
value of the chunk concatenated with a random value, it is
crucial to verify if the hash value “looks random”. According
to [13], and the analysis performed in this paper, when a
512 bit hash function with “cascade construction” receives
inputs where the last 512 bits contains enough entropy, the
distribution of the generated hash values are close to uniform.
In our implementation of the key generation, plaintext chunks

are concatenated with 1024 bits of random values, which
implies that the hash values produced with SHA-512 are
also close to uniform, since the last blocks used by the
“compression function” contain a high amount of random
values. To experimentally prove this property, we tested our
key generation with A Statistical Test Suite for Random and
Pseudorandom Number Generators for Cryptographic Appli-
cations [24], issued by NIST.

For each experiment, the plaintext in the key generation
contained only zeros. In each experiment, 1000 sequences of
1 million bits per sequence were used. The significance level
of the test is set to 0.01 (α), which implies that a sequence is
considered to be random with a confidence of 99%. In the first
experiments, we applied the OTP-like mode of our encryption
method, resulting in 4.259.840 different data chunks; and the
key generation was repeated until 1Gbits of keys was achieved.
In certain cases, 1 million bits per sequence for Non-periodic
Template Matchings and Random Excursions tests were not
enough, as some of the sub-tests showed non uniformity.
Therefore we applied 500 sequences of 2 million bits per
sequence. The longer sequences provided a more accurate
testing, and the tests passed with a proportion of 488/500
binary sequences. In the second experiment the input data was
chunked into 4 pieces, and the key generation was repeated
until 1Gbits of keys was achieved. Table I shows the proportion
of the sequence passing for both experiments.

TABLE I
PROPORTION OF SEQUENCES PASSING WHEN THE SIGNIFICANCE LEVEL α
IS 0.01 (P-VALUES ≥ 0.01) AND THE NUMBER OF KEYS PER ENCRYPTION
VARIES. RESULTS ARE OBTAINED AFTER RUNNING A Statistical Test Suite

for Random and Pseudorandom Number Generators for Cryptographic
Applications BY NIST

Number of keys
per encryption

Proportion of Sequences Passing
for P-values >0.01

1st Experiment 4 259 840 0.9899
2nd Experiment 4 0.9902

According to the results, we can assume that key generation
of our proposed method is random, with a confidence level of
99%. This empirical result is close to the theoretical result
described in Sect. IV.

Furthermore, in Table II we present a comparison be-
tween the original, ID-based and our proposed self-encryption
method. The results in table II highlights performance of the
different implementations in term of execution time, partic-
ularly when the plaintext size is significant. In addition, the
table demonstrates the presence of Privacy Amplification and
security proof. Lastly, it demonstrates whether the method
includes the feature of protection against data deduplication.

VII. CONCLUSION

Many use cases require a high level of data security and
data privacy, especially in IoT-based scenarios, where the
protection of personal data is crucial. Deploying a strong and
efficient encryption method based on “traditional” encryption
components, such as AES and OTP, remains a challenge.



TABLE II
COMPARISON BETWEEN THE RELATED WORK AND OUR PROPOSED

METHOD FOR SELF-ENCRYPTION

Original [12] ID-based [17] Our
Contains self-signed ID No Yes Yes
Security Proof No No Yes
Protection against deduplication Yes Yes No
Privacy Amplification No No Yes
Execution time (for 100MB) Unknown 2.4 s 1.2 s

Our self-encryption method is improved in terms of security
upon those proposed in [12] and [17], as it is enriched with
two possible encryption methods: the default mode allows
the specification of the number of chunks the data must
be divided into, providing a security level of 2r with r
equal to 512 bits. The OTP-like mode creates 48 byte-long
chunks that are AES encrypted and XOR-ed with 64 byte-
long keys, providing a security level close to the perfect
secrecy. As another significant improvement, the weak secret
key generation is amplified by using Privacy Amplification
by applying additive randomness to the plaintext and SHA-2
cryptographic hash function. We can also conclude that the
performance of our implementation is improved compared to
the related work, since our implementation is able to encrypt
1MB of plaintext in less than 21 milliseconds, and 100MB of
plaintext in less than 1,2 seconds. The OTP-like mode provides
a remarkably fast encryption, with high security level, when
the plaintext is small in size (e.g., 100KB was encrypted in
120 milliseconds). The usability of our implementation is also
improved, since it can be used not only as a back-end service
but also as an application in gateways and edge devices, which
are considered as main components of today’s IoT networks
connecting constrained devices to the Internet.
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