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Abstract—We focus on the privacy-utility trade-off encoun-
tered by users who wish to disclose some information to an
analyst, that is correlated with their private data, in the hope
of receiving some utility. We rely on a general privacy statistical
inference framework, under which data is transformed before it is
disclosed, according to a probabilistic privacy mapping. We show
that when the log-loss is introduced in this framework in both the
privacy metric and the distortion metric, the privacy leakage and
the utility constraint can be reduced to the mutual information
between private data and disclosed data, and between non-private
data and disclosed data respectively. We justify the relevance and
generality of the privacy metric under the log-loss by proving
that the inference threat under any bounded cost function can be
upperbounded by an explicit function of the mutual information
between private data and disclosed data. We then show that
the privacy-utility tradeoff under the log-loss can be cast as
the non-convex Privacy Funnel optimization, and we leverage
its connection to the Information Bottleneck, to provide a greedy
algorithm that is locally optimal. We evaluate its performance
on the US census dataset. Finally, we characterize the optimal
privacy mapping for the Gaussian Privacy Funnel.

I. INTRODUCTION

We consider a setting in which users have two kinds of
data that are correlated: some data that each user would like
to remain private and some non-private data that he is willing
to disclose to an analyst and from which he will derive some
utility. The analyst is a legitimate receiver of the disclosed
data, which he will use to provide utility to the user, but he can
also adversarially exploit it to infer the user’s private data. This
creates a tension between privacy and utility requirements. To
reduce the inference threat on private data while maintaining
utility, each user’s non-private data is transformed before it is
disclosed, according to a probabilistic privacy mapping. The
design of the privacy mapping should balance the tradeoff
between the utility of the disclosed data, and the privacy of the
private data: it should keep the disclosed transformed data as
much informative as possible about the non-private data, while
leaking as little information as possible about the private data.

The framework for privacy against inference attacks in [1]
proposes to design the privacy mapping as the solution to
an optimization minimizing the inference threat subject to a
utility constraint. Our approach relies on this framework, and
makes the following three contributions. First, we show that
when the log-loss is introduced in this framework in both the
privacy metric and the distortion metric, the privacy leakage
reduces to the mutual information between private data and
disclosed data, while the utility requirement is modeled by
the mutual information between non-private data and disclosed
data. We justify the relevance and generality of the privacy

metric under the log-loss by proving that the inference threat,
defined in [1] as the inference cost gain, under any bounded
cost function can be upperbounded by an explicit function
of the mutual information between private data and disclosed
data. We then show that the privacy-utility tradeoff under the
log-loss can be cast as the Privacy Funnel optimization, and
study its connection to the Information Bottleneck [2]. Second,
for general distributions, the privacy funnel optimization being
a non-convex problem, we provide a greedy algorithm for
the Privacy Funnel that is locally optimal by leveraging
connections to the Information Bottleneck method [3], [2],
and evaluate its performance on real-world data. Third, we
study the Gaussian Privacy Funnel, where the user data has
a Gaussian distribution and the mapping is also a Gaussian
mapping, and we characterize the optimal privacy mapping.
Related Work: Several works, such as [4], [5], [6], [7], [8],
have studied the issue of keeping some information private
while disclosing some correlated information, by distorting
the information disclosed. Differential privacy [6], [7] was
introduced to answer queries on statistical databases in a
privacy-preserving manner, by minimizing the chances of
identification of the database records. One line of work in
information theoretic privacy [4], [8] studies the trade-off
between privacy and utility, where they consider expected
distortion as a measure of utility and equivocation as a measure
of privacy. Reference [8] focus mainly on collective privacy
for all or subsets of the entries of a database, and provide
fundamental and asymptotic results on the rate-distortion-
equivocation region as the number of data samples grows
arbitrarily large. These approaches are different from our
approach in three main ways. First, we do not consider a
communication problem where the rate needs to be bounded.
Second, we use the average amount of bits as a measure of
both utility and privacy (log-loss distortion or mutual informa-
tion). Third, we design the mapping from non-private data to
disclosed data in non-asymptotic regime, whereas [8] designs
an encoder-decoder to achieve certain asymptotic rate. The
wire-tap channel, introduced in [9], focuses on designing the
encoder and decoder to release information and protect private
information from an eavesdropper, where utility is measured in
terms of error probability of the decoded message, and secrecy
is measured in terms of normalized mutual information. Our
setting differs from the wire-tap channel, as it does not involve
a third-party eavesdropper, but the analyst is both a legitimate
receiver of the disclosed data, and a potential adversary as it
can use it to try to infer private data. Moreover, we focus on
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the privacy mapping design (channel design), with different
measures of privacy and utility.

The log-loss distortion has been studied in [10] as a measure
of distortion in the context of multi-terminal source coding.
Log-loss as measure of distortion is also studied in [11]
where they show that log-loss satisfies certain properties that
leads to the Information Bottleneck method [2]. Finally, for
an overview of the central role of the log-loss distortion in
prediction, we refer the reader to [12].
Outline: In Section II, we introduce the privacy-utility trade-
off against Inference attacks. In Section III, we describe the
privacy funnel method and show properties of log-loss metric,
and then characterize the privacy-disclosure trade-off as the
privacy funnel optimization. In Section IV, we provide a
greedy algorithm to design the privacy mapping and evaluate it
on real-world data. In Section V, we characterize the optimal
Gaussian privacy mapping for the Gaussian privacy funnel.
Proofs omitted due to lack of space can be found in [13].
Notations: Throughout the paper, X denotes a random vari-
able over alphabet X with distribution PX . All random vari-
ables are assumed to be discrete, unless mentioned otherwise.

II. PRIVACY-UTILITY AGAINST INFERENCE ATTACKS

In this background section, we first describe the setting, and
the privacy and utility metrics introduced in the framework for
privacy against inference attacks in [1]. Then, we recall how
the privacy-utility trade-off can be cast into an optimization.
A. Setting: We consider a setting where a user has some
private data, represented by the random variable S ∈ S, which
is correlated with some non-private data X ∈ X , that the user
wishes to share with an analyst1. The correlation between S
and X is captured by the joint distribution PS,X . Due to this
correlation, releasing X to the analyst would enable him to
draw some inference on the private data S. To reduce the
inference threat on S that would arise from the observation
of X , rather than releasing X , the user releases a distorted
version of X denoted by Y ∈ Y . The distorted data Y is
generated by passing X through a conditional distribution
PY |X , called the privacy mapping. Throughout the paper, we
assume S → X → Y form a Markov chain. Therefore, once
PY |X is found, the joint distribution PS,X,Y is defined.

The analyst is a legitimate recipient of data Y , which it
can use to provide utility to the user, e.g. some personalized
service. However, the analyst can also act as an adversary
by using Y to illegitimately infer private data S. The privacy
mapping aims at balancing the tradeoff between utility and
privacy: the privacy mapping should be designed to decrease
the inference threat on private S by reducing the dependency
between Y and S, while at the same time preserving the utility
of Y , by maintaining the dependency between Y and X .
B. Privacy Metric: We consider the inference threat model
introduced in [1], in which the analyst performs an adversarial
inference attack on the private data S. More precisely, the an-
alyst selects a distribution q, from the set PS of all probability
distributions over S , that minimizes an expected inference

1Both S and X can be either a single variable or a vector of variables.

cost function C(S, q). In other words, the analyst chooses
in an adversarial way a belief distribution q over the private
variables S prior to observing Y , q∗0 = arg min

q∈PS

EPS
[C(S, q)],

and a revised belief distribution after observing Y = y.
q∗y = arg min

q∈PS

EPS|Y [C(S, q)|Y = y]. This models a very

broad class of adversaries that perform statistical inference.
Using the chosen belief distribution q, the analyst can pro-
duce an estimate of the input S, e.g. using a Maximum a
Posteriori (MAP) estimator. Let c∗0 and c∗y respectively denote
the minimum average cost of inferring S without observing
Y , and after observing Y = y:

c∗0 = min
q∈PS

EPS
[C(S, q)], c∗y = min

q∈PS

EPS|Y [C(S, q)|Y = y].

Thanks to the observation of Y , the analyst obtains an
average gain in inference cost of ∆C = c∗0 − EPY

[c∗Y ]. The
average inference cost gain ∆C was proposed as a general
privacy metric in [1], as it measures the improvement in
the quality of the inference of private data S due to the
observation of Y . The privacy mapping PY |X should aim at
reducing ∆C, or in other words it should aim at bringing the
inference cost given Y closer to the initial inference cost.

C. Accuracy Metric: The privacy mapping should maintain
the utility of the distorted data Y . In the framework proposed
in [1], the utility requirement is modeled by a constraint on the
average distortion EPX,Y

[d(X,Y )] ≤ D, for some distortion
measure d : X × Y → R+, and some distortion level D ≥ 0.
Assuming that the distortion measure d is a function of X and
Y , but not of their statistical properties, the average distortion
EPX,Y

[d(X,Y )] is linear in PY |X . Consequently, the distortion
constraint is a linear constraint in PY |X .
D. Privacy-Accuracy Tradeoff : The optimal privacy mapping
for a given distortion level D is obtained as the solution of
the following optimization

min
PY |X : EPX,Y

[d(X,Y )]≤D
∆C (1)

If ∆C is convex in PY |X , then (1) is a convex optimization,
since the constraint EPX,Y

[d(X,Y )] is linear in PY |X .
III. THE PRIVACY FUNNEL METHOD

In this section, we focus on the privacy-utility framework
when the log-loss is used in both the privacy metric and in
the distortion metric. We justify the relevance of the log-loss
in such a framework, and characterize the resulting privacy-
disclosure tradeoff as the Privacy Funnel optimization. Finally,
we show how the Privacy Funnel is related to the Information
Bottleneck [2], and how algorithms developed for the latter
can inform the design of algorithms for the former.
A. Privacy metric under log-loss: In this section, we focus
on the threat model under the log-loss cost function. We first
recall that, under this cost-function, the privacy leakage can
be measured by the mutual information I(S;Y ) between the
private variable S and the variable Y . We then justify the
relevance and the generality of the use of the log-loss in the
threat model, by showing that the inference cost gain for any
bounded cost function can be upperbounded by a function of
the mutual information between S and Y .
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Under the log-loss cost function C(s, q) = − log q(s),
∀s ∈ S, the privacy leakage can be measured by the mutual
information I(S;Y ), as stated in the following lemma.

Lemma 1 ([1]). The average inference cost gain under the
log-loss cost function C(s, q) = − log q(s), is the mutual
information between S and Y : ∆C = I(S;Y ).

We now justify the relevance and the generality of the use of
the log-loss in the threat model. More precisely, in Theorem 1
below, we prove that for any bounded cost function C(S, q),
the associated inference cost gain ∆C can be upperbounded by
an explicit constant factor of

√
I(S;Y ). Thus, controlling the

cost gain under the log-loss, so that it does not exceed a target
privacy level, is sufficient to ensure that the privacy threat
under a different bounded cost function is also controlled.
Therefore, the design of the privacy mapping can be focused
on minimizing the privacy leakage as measured by I(S;Y ).

Theorem 1. Let L = sups∈S,q∈PS
|C(s, q)| < ∞. We have

∆C = c∗0 − EPY
[c∗Y ] ≤ 2

√
2L
√
I(S;Y ).

The proof of Theorem 1 requires the following lemma.

Lemma 2. Let C(s, q) be a bounded cost function such that
L = sups∈S,q∈PS

|C(s, q)| <∞. For any given y ∈ Y ,

EPS|Y [C(S, q∗0)− C(S, q∗y)|Y = y] ≤ 2
√

2L
√
D(PS|Y=y||PS).

The proof of Lemma 2 follows from Pinsker’s inequality and
is given in the full version [13]. We now prove Theorem 1.

proof of Theorem 1: We have

∆C = EPS
[C(S, q∗0)]− EPY

[
EPS|Y [C(S, q∗y)|Y = y]

]
= EPY

[
EPS|Y [C(S, q∗0)− C(S, q∗y)|Y = y]

]
≤ 2
√

2LEPY

[
D(PS|Y=y||PS)

]
≤ 2
√

2L
√
I(S;Y ),

where the last step follows from concavity of square root
function and the one before that follows from Lemma 2.

Using Fano’s lemma, the average cost gain under log-loss
can also be interpreted as a bound on the probability of error
an adversary would make when inferring S from Y [15]. It is
to be noted that ∆C is an averaged quantity. A formulation
for the worst-case privacy leakage under log-loss is introduced
in [1], but we mention that at perfect privacy ,i.e. when ∆C =
0, both average and worst case privacy amount to statistical
independence between S and Y when using the log-loss. In
practice, it has been shown in [16] and [17] that utility can be
maintained while enforcing perfect privacy for demographic
attributes while releasing data for recommendation. Further
empirical evidence in [14] suggests that the average cost gain
is a good approximation to the worst case scenario.
B. Accuracy metric under log-loss: Consider the log-loss
distortion defined as d(x, y) = − logP (X = x|Y = y), which
is a function of x and y as well as PY |X . Using log-loss,
the average distortion is E[d(X,Y )] = EPX,Y

[− logPX|Y ] =
H(X|Y ) that can be minimized by designing the mapping
PY |X . Thus, the constraint E[d(X,Y )] ≤ D would be
H(X|Y ) ≤ D for a given distortion level, D. Given PX ,
and therefore H(X), and assuming that R = H(X)−D, the

distortion constraint can be rewritten as I(X;Y ) ≥ R, that is
the same as the constraint of (2). It should be noted that the
average distortion under the log-loss is not linear in PY |X .

For a given PSX and PY |X , where S → X → Y , we define
the disclosure to be the mutual information between X and Y .
C. Privacy-Disclosure Trade-off : There is a trade-off between
the information that the user shares about X and the informa-
tion that the user keeps private about S. We pass X through a
randomized mapping PY |X and reveal Y to the analyst. The
purpose of this mapping is to make Y informative about X and
to make Y uninformative about S. Given PSX , we design the
privacy mapping PY |X to maximize the amount of information
I(X;Y ) that user disclose about the public information, X ,
while minimizing the collateral information about the private
variable S measured by I(S;Y ).

The trade-off between disclosure and privacy in the design
of the privacy mapping is represented by the following opti-
mization, that we refer to as the Privacy Funnel:

min
PY |X : I(X;Y )≥R

I(S;Y ). (2)

For a given disclosure level R, among all feasible privacy
mappings PY |X satisfying I(X;Y ) ≥ R, the privacy funnel
selects the one that minimizes I(S;Y ). Note that I(X;Y ) is
convex in PY |X and since PY |S is linear in PY |X and I(S;Y )
is convex in PY |S , the objective function I(S;Y ) is convex in
PY |X . However, because of the constraint I(X;Y ) ≥ R, the
Privacy Funnel (2) is not a convex optimization [18, Chap. 4].
D. Connection to the Information Bottleneck Method: The
information bottleneck method, introduced in [2], considers
the setting where a variable X is to be compressed, while
maintaining the information it bears about another corre-
lated variable S. The information bottleneck method is a
technique generalizing rate-distortion, as it seeks to optimize
the tradeoff between the compression length of X and the
accuracy of the information preserved about S in the com-
pressed output Y . The information bottleneck optimization
[2] is: minPY |X : I(S;Y )≥C I(X;Y ), for some constant C. The
information bottleneck optimization bears some resemblance
to the privacy funnel (2), but is indeed a different optimization.
In the information bottleneck, the mapping PY |X is designed
to make I(X;Y ) small and I(S;Y ) large, whereas in the
privacy funnel we have the reverse situation, i.e., the privacy
mapping aims to make I(X;Y ) large and I(S;Y ) small.

Several techniques were developed to solve the information
bottleneck problem such as alternating iteration [2] and ag-
glomerative information bottleneck [3]. A question we exam-
ined is whether algorithms developed to solve the information
bottleneck optimization could be adapted to solve the privacy
funnel optimization. The alternating iteration algorithm [2]
finds a stationary point of the Lagrangian of information
bottleneck optimization defined as L = I(X;Y ) − βI(S;Y )
for some β. The stationary point can be a local minimum,
which addresses the information bottleneck, or a local maxi-
mum in which case it addresses the privacy funnel. However,
there is no guarantee on the convergence of this alternating
algorithm to either a local minimum or a local maximum.
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Algorithm 1 Greedy algorithm-privacy funnel
Input: R, PS,X

Initialization: Y = X , PY |X(y|x) = 1{y = x}.
while there exists i′, j′ such that I(X;Y i′−j′) ≥ R do

among those i′, j′, let
{yi, yj} = arg maxyi′ ,yj′∈Y I(S;Y )− I(S;Y i′−j′)

merge: {yi, yj} → yij
update: Y = {Y \ {yi, yj}} ∪ {yij} and PY |X

Output: PY |X

Thus, in Section IV we develop a new greedy algorithm that
is guaranteed to converge to a solution of the privacy funnel.

IV. ALGORITHM FOR THE PRIVACY FUNNEL

We showed that the privacy funnel (2) optimization is not
a convex optimization. In this section, we provide a greedy
algorithm to solve (2) and we evaluate it on real-world data.
Greedy Algorithm: Suppose the constraint I(X;Y ) ≥ R is
given for some R ≤ H(X). We wish to find PY |X that mini-
mizes I(S;Y ). Note that for Y = X and PY |X(y|x) = 1{x =
y} (where 1{x = y} = 1 if and only if x = y), the condition
I(X;Y ) ≥ R is satisfied because I(X;Y ) = H(X) ≥ R.
However, I(S;Y ) might be too large. The idea is to merge
two elements of Y to make I(S;Y ) smaller, while satisfying
I(X;Y ) ≥ R. This method is motivated by agglomerative
information method introduced in [3]. We merge yi and yj and
denote the merged element by yij . We then update PY |X as
p(yij |x) = p(yi|x) + p(yj |x), for all x ∈ X . After merging,
we also have p(yij) = p(yi) + p(yj). Consider the row
stochastic matrix P as Px,y = PY |X(y|x) for all x ∈ X and
all y ∈ Y . In Algorithm (1) we start with P as an identity
matrix and then at each iteration we delete two columns of
P (corresponding to yi and yj) and add their summation as a
new column (corresponding to yij) to P . Thus, the resulting
matrix at the end contains only zeros and ones, determining
all x ∈ X and all y ∈ Y such that PY |X(y|x) = 1. Let
Y i−j be the resulting Y from merging yi and yj . Algorithm
(1) is a greedy algorithm that uses this idea in order to solve
optimization (2). One need to calculate I(S;Y )− I(S;Y i−j)
and I(X;Y )− I(X;Y i−j) at each iteration of Algorithm (1).
Proposition 1 shows an efficient way to calculate them.

Proposition 1. For a given joint distribution PS,X,Y =
PS,XPY |X , we have I(S;Y )− I(S;Y i−j) =

p(yij)H

(
p(yi)PS|Y=yj

+ p(yj)PS|Y=yj

p(yij)

)
−
(
p(yi)H(PS|Y=yi

) + p(yj)H(PS|Y=yj
)
)
.

We also have I(X;Y )− I(X;Y i−j) =

p(yij)H

(
p(yi)PX|Y=yj

+ p(yj)PX|Y=yj

p(yij)

)
−
(
p(yi)H(PX|Y=yi

) + p(yj)H(PX|Y=yj
)
)
.

The proof is given in the full version of paper [13]. Propo-
sition 1 shows that the difference in the mutual information
after merging changes only if the new variable, yij , is involved.

Algorithm 2 Greedy algorithm-information bottleneck
Input: ∆, PS,X

Initialization: Y = X , PY |X(y|x) = 1{y = x}
while there exists i′, j′ such that I(S;Y i′−j′) ≥ ∆ do

among those i′, j′, let
{yi, yj} = arg maxyi′ ,yj′∈Y I(X;Y )− I(X;Y i′−j′)

merge: {yi, yj} → yij
update: Y = {Y \ {yi, yj}} ∪ {yij} and PY |X

Output: PY |X

The greedy algorithm is locally optimal at every step since we
minimize I(S;Y ). However, there is no guarantee that such a
greedy algorithm induces a global optimal privacy mapping.
Note 1. The minimum of I(S;Y ) in (2) is a decreasing
function of I(X;Y ) and is achieved for a mapping PY |X that
satisfies I(X;Y ) = R (if possible due to discrete alphabets).
For a given mutual information, R, there are many conditional
probability distributions, PY |X , achieving I(X;Y ) = R.
Among which there is one that gives the minimum I(S;Y )
and one that gives the maximum I(S;Y ). We can modify
the greedy algorithm so that it converges to a local maximum
of I(S;Y ) for a given I(X;Y ) = R. The algorithm which
we call greedy algorithm-information bottleneck is given in
Algorithm (2). Algorithm (1) and Algorithm (2) allow us to
approximately characterize the range of values I(S;Y ) can
take for a given value of I(X;Y ) as being those between
the local minimum and the local maximum. Interestingly, by
observing the gap between the local maximum and the local
minimum, we have a relative idea on the effectiveness of the
greedy algorithm, i.e., if the difference is significant it means
a negligent mapping may lie anywhere between those values,
possibly leading to a much higher privacy threat.

Data Set: The US 1994 Census dataset [19] is a well-known
dataset in the machine learning community, which is a sample
of the US population from 1994. For each of the entries, it
contains features such as age, work-class, education, gender,
and native country, as well as an income category. The income
level is a binary variable which determines whether the income
is above or below USD 50000, gender is a binary variable, ed-
ucation level is a variable with four categories, age is a variable
divided into seven categories. For our purposes, we consider
the private attributes S = (age, income level) and the at-
tributes to be released as X = (age, gender, education level).
The goal of the privacy mapping is to release a modified
version of attributes Y which is informative about X but that
renders the inference of S based on Y hard.
Numerical Results: In Fig. 1, we plot the minimum and
maximum of I(S;Y ) for a given I(X;Y ). This figure is based
on US 1994 census data set described before. The top curve
shows the maximum of I(S;Y ) versus I(X;Y ), using Algo-
rithm (2). The bottom curve shows the minimum of I(S;Y )
versus I(X;Y ), using Algorithm (1). The area between the
two curves shows the possible pairs of (I(X;Y ), I(S;Y )) as
PY |X varies (a subset of possible pairs, since the algorithms
are sub-optimal). Indeed, we will design the mapping to lie
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Fig. 1. Maximum and minimum of I(S;Y ) for a given I(X;Y ).

on the bottom curve. For a given R, if we design the mapping
negligently, we may have I(S;Y ) on the top curve instead of
the bottom curve.

V. THE GAUSSIAN CASE

In this section, assuming Gaussian PSX , we find the optimal
Gaussian privacy mapping, PY |X . Let Σx and Σx,s denote
the covariance matrices of PX and PX,S . Let PX be an n-
dimensional Gaussian distribution and PY |X be a Gaussian
conditional distribution such that (X,Y ) is jointly Gaussian.
We can write Y in the innovation form, i.e., Y = AX + Z,
where A is a full-rank t×n matrix, Z is a zero-mean Gaussian
random variable independent from X (Theorem 2.3 of [20]),
and t is the dimension of Y . Therefore, in the design of PY |X ,
we only require to find the matrix A, and the co-variance
of Z. We use the approach of [21] to solve the information
bottleneck problem for Gaussian case.
Remark 1. Let (S,X) have a jointly Gaussian distribution.
For any S = s, the conditional distribution PX|S=s is a
Gaussian distribution with co-variance Σx − ΣxsΣ

−1
s Σt

xs,
which we denote by Σx|s (see [20], chapter 2).

Consider the Lagrangian of the optimization given in (2) as
L = I(S;Y ) − βI(X;Y ), for some β ∈ [0, 1]. Consider the
optimization minPY |X I(S;Y ) − βI(X;Y ). We will find the
optimal A and Z that achieves the optimal value for any β. By
varying β, this provides the curve of I(S;Y ) versus I(X;Y ).

Theorem 2. Consider the optimization minPY |X I(S;Y ) −
βI(X;Y ). The optimal solution is characterized as Y =
AX + Z, where A = diag(M1, . . . ,Mt)V = MV , Z ∼
N (0, I), and V is a matrix containing the t left eigen-
vectors of Σx|sΣ

−1
x corresponding to the t largest eigen-values

for some t. M is the solution of the following optimization
problem

min
M

1

2
(1− β) log |MΓM t + I| − 1

2
log |MΛΓM t + I|,

where Γ = diag(Γ1, . . . ,Γt) = V ΣxV
t (we will show

that V ΣxV
t is diagonal) and Λ = diag(λ1, . . . , λt) are the

corresponding eigen-values of Σx|sΣ
−1
x .

The proof and the details of this section is given in the full
version of paper [13].

VI. CONCLUSIONS

We study the privacy-utility trade-off against inference
attacks when the log-loss is used both in the privacy and

utility metrics. We justify the generality of the privacy threat
under the log-loss by proving that the threat under any
bounded cost inference function can be upperbounded by an
explicit function of the mutual information between private
and disclosed data. We cast the tradeoff under the log-loss
as the Privacy Funnel optimization, which is non-convex. We
leverage its connection to the Information Bottleneck to design
a locally-optimal greedy algorithm, that we evaluate on the US
census dataset. Finally, we characterize the optimal privacy
mapping for the Gaussian Privacy Funnel.
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