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Abstract— Contraflow lane reversal—the reversal of lanes in
order to temporarily increase the capacity of congested roads—
can effectively mitigate traffic congestion during rush hour
and emergency evacuation. However, contraflow lane reversal
deployed in several cities are designed for specific traffic
patterns at specific hours, and do not adapt to fluctuations
in actual traffic. Motivated by recent advances in autonomous
vehicle technology, we propose a framework for dynamic lane
reversal in which the lane directionality is updated quickly and
automatically in response to instantaneous traffic conditions
recorded by traffic sensors. We analyze the conditions under
which dynamic lane reversal is effective and propose an integer
linear programming formulation and a bi-level programming
formulation to compute the optimal lane reversal configuration
that maximizes the traffic flow. In our experiments, active
contraflow increases network efficiency by 72%.

I. INTRODUCTION

Traffic congestion is a major issue in today’s transportation
systems. Contraflow lane reversal, the reversal of traffic flow
along a lane to temporarily increase the capacity of congested
roads at the expense of under-utilized ones, is a method to
increase traffic flow without adding additional roads or lanes.
On the left of Fig. 1, the top lanes are being more heavily
utilized than the bottom ones. On the right, by temporarily
converting a lane to flow in the opposite direction, the
instantaneous capacity in the left-to-right direction of the
road is increased by 50%. Contraflow lane reversal has been
used routinely in several cities in order to alleviate traffic
during rush hours as well as to reroute traffic around certain
areas such as construction sites or stadiums.

Today, contraflow lane reversal is used at a macro time
scale at rush hour or for quick evacuations from an area. In
both cases however, the change in flow must be carefully
planned before the event, with little or no room for dynamic
changes. Today’s hardware for traffic monitoring is good
enough to gather real-time traffic data. With the help of
modern computerized traffic control systems, it is possible
to quickly and dynamically open and close lanes or entire
roads, or even change the directionality of lanes based on
real-time usage statistics, such that effective capacity of a
road can be dynamically changed based on the demand.

Rapid changes of lane directions, however, may confuse
human drivers. To fully utilize the potential of dynamic lane
reversal, we will need to rely on the upcoming availability
of computer-aided driving systems and fully autonomous
vehicles that will help vehicles to adjust to the rapid changes
of lane directions. With the help of computerized driving

Fig. 1. An illustration of contraflow lane reversal (cars are driving on
the right side of the road). The total capacity of the road is increased by
approximately 50% by reversing the directionality of a middle lane.

systems, more aggressive contraflow lane reversal strategies
can be implemented to improve traffic flow of a city without
increasing the amount of land dedicated to transportation.

An important component of implementing dynamic lane
reversal is fully understanding the systemwide impact of
increasing capacity on an individual link. We define the
objective of contraflow as follows: given a road network,
a specification of vehicles’ locations and destinations, and
a method for determining network efficiency (such as an
objective function), assign a direction of flow to each lane
such that network efficiency is maximized. To study the
network effects of dynamically repurposing lanes, we cast the
problem as a maximum multi-commodity flow problem—
a version of the maximum flow problem in graph theory
with multiple commodities (or goods) flowing through the
network. Then we propose an integer programming formula-
tion and a bi-level programming formulation to compute the
maximum flow in the network. We evaluate our approaches
in grid-like transportation networks representative of many
downtown metropolitan areas where it will have the most
potential impact.

The rest of the paper is organized as follows. In Section II,
we discuss the hardware needed for implementing a dynamic
lane reversal scheme. In Section III and IV, we analyze under
what conditions dynamic lane reversal will be useful for an
individual road and intersection. In Section V and VI, we
introduce both the macroscopic ILP traffic model as well
as the bi-level formulation, and investigate the performance
gains imparted by dynamically reconfiguring lanes.

II. HARDWARE FOR DYNAMIC LANE REVERSAL
A reversible lane (or contraflow lane) is a lane in which

traffic may travel in either direction. The common hard-
ware for creating reversible lanes is overhead traffic lights
(Fig. 2(a)). In many cities, barrier transfer machines, also
known as zipper machine, are used to relocate the moveable
barriers such that the road in one direction can be dynami-
cally widened at the expense of the other (Fig. 2(b)).
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(a) Signals of lane direction (b) Barrier transfer machines

Fig. 2. Hardware for controlling contraflow lane.

The basic requirements to support dynamic lane reversal
are that the reversal has to be done quickly and safely, and
that the drivers must be notified about the change immedi-
ately. While it’s conceivable to devise a system that satisfies
these requirements using the hardware in Fig. 2, there is
likely to be significant cost and risk of driver confusion.
However once most cars are controlled by computer, these
costs and risks may be significantly reduced by real time up-
dates of lane direction over wireless network communication,
as computerized driving systems (i.e., autonomous vehicles)
can react to the changes of lane directions much quicker than
human drivers. For example, Dresner and Stone proposed an
intersection control mechanism called Autonomous Intersec-
tion Management (AIM) that uses a wireless communication
protocol to enable fine-grained interleaving of vehicle routes
through an intersection [1]. With some modifications to the
AIM protocol, autonomous vehicles can be informed about
the current lane directions as well.

III. LANE REVERSAL ON ONE ROAD

We begin by considering, from a theoretical perspective,
the effects of lane reversal on a single road. Consider a road
between intersections I1 and I2. Let R be the road between
I1 and I2, L1,2 be the set of lanes from I1 to I2, and L2,1
be the set of lanes from I2 to I1. As an example, in Fig. 3,
L1,2 = {l1, l2} and L2,1 = {l3, l4}. The capacity of a lane l,
denoted by c(l), is the maximum rate at which vehicles enter
the lane and is measured by the number of vehicles per hour.
We assume the capacity of a set L of lanes, denoted by c(L),
is the sum of the capacities of all lanes (c(L) = ∑l∈L c(l)).
For simplicity, we ignore the effect of lane changing which
potentially reduces the capacity of L.

Assume both I1 and I2 are sources at which vehicles are
“generated” to travel along R at the target traffic rates β (I1)
and β (I2) respectively. But the effective traffic rates λ (L1,2)
and λ (L2,1) at which vehicles actually enter the road are lim-
ited by the capacity of the lanes. More precisely, λ (L1,2) =
min{β (I1),c(L1,2)} and λ (L2,1) = min{β (I2),c(L2,1)}. If
λ (L1,2) = c(λ (L1,2)), we say L1,2 is saturated. If β (I1) >
c(L1,2), L1,2 is oversaturated by an amount of β (I1)−c(L1,2).
Clearly, if L1,2 is oversaturated, L1,2 is saturated. L1,2 is
undersaturated by an amount of c(L1,2)−β (I1) if β (I1) <
c(L1,2). Clearly, if L1,2 is undersaturated, L1,2 is not saturated.
The saturation of L2,1 is defined in the same manner.

The throughput of the road R is the sum of the effective
traffic rates of the lanes (i.e., λ (L1,2)+ λ (L2,1)). Now con-
sider what happens if the direction of l ∈ L1,2 is reversed.

Fig. 3. Lane reversal in a road.

By definition, the throughput of the road increases after the
reversal of l if and only if

λ (L1,2)+λ (L2,1) < λ
′(L1,2)+λ

′(L2,1) (1)

where λ ′(L1,2) = min{β (I1),c(L1,2)− c(l)}, and λ ′(L2,1) =
min{β (I2),c(L2,1)+ c(l)}.

In general, lane reversal is beneficial only when one of the
directions is oversaturated while the other is undersaturated,
as shown in Fig. 1. Formally, we have the following theorem:

Theorem 1: The throughput of the road R increases after
the reversal of a lane l ∈ La,b if and only if La,b is un-
dersaturated by δa while Lb,a is oversaturated by δb, where
max{c(l)−δa,0.0}< δb.
Proof Sketch. Due to space limitations, we only consider
the case in which c(l) > δa and δb < c(l). The reversal of l
reduces the effective traffic rate of Lb,a by x = c(l)−δa > 0
while the effective traffic rate of La,b increases by δb. Thus
the throughput of the road increases if and only if δb > x =
max{c(l)−δa,0.0}. 2

IV. LANE REVERSAL FOR AN INTERSECTION

Analyzing the change of the intersection throughput is
necessary because intersections may potentially be the bot-
tlenecks of the traffic flow, preventing the adjacent roads
from achieving their maximum throughput as predicted by
Theorem 1. Estimating the effects on intersection throughput
theoretically, however, can be a challenging task, especially
when vehicles from different roads can enter the intersection
at the same time. Therefore, we use empirical methods to see
whether intersections can handle the increase of the incoming
traffic when the directions of adjacent lanes reverse.

We experiment with the intersection in Fig. 4, which has
six lanes on each incident road. Initially, 3 lanes are incoming
lanes and 3 lanes are outgoing lanes. We set the target traffic
rate of the eastbound road be 5500 vehicles per hour, the
target traffic rate of westbound road be 1100 vehicles per
hour, and the traget traffic rates of both northbound and
southbound roads are 1650 vehicles per hour. Thus, the traffic
on the eastbound road is several times higher than other
roads, causing traffic congestion on the eastbound road. We
check whether reversing the direction of two lanes on the
westbound road can help to increase the throughput of the
eastbound road as well as the intersection throughput (the
number of vehicles entering the intersection per hour). The
new lane configuration is shown on the right side in Fig. 4.

We repeated the experiment 30 times and in each run
we measured 1) the total number of vehicles entering the
intersection during the 1-hour period, and 2) the number of
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Fig. 4. The reversal of two lanes on the westbound road of an intersection.

TABLE I
Before reversal After reversal Change

Eastbound road 4618.5±8.8 5228.0±12.2 13.2%
Westbound road 1184.5±14.1 1124.7±9.6 −5.0%
Northbound road 1711.6±11.3 1700.6±13.6 −0.6%
Southbound road 1712.8±13.8 1714.6±12.1 −0.1%
Intersection 9183.3±32.4 9775.8±26.6 6.5%

vehicles entering the intersection from each road during a 1-
hour period. The average of the number of vehicles and the
95% confidence intervals are shown in Table I. The results
show that the throughput of the intersection increased by 6%,
and this is mainly due to the increase of incoming traffic
from the eastbound road whose throughput is increased by
13%. Note that both increases are statistically significant.
After lane reversal, the eastbound road’s traffic rate is much
closer to the target traffic rate, and this means that the
intersection successfully handled the increase of the traffic
coming from the eastbound road. The lane reversal has only
minor detrimental effects on other roads, because they are
undersaturated and the lane reversal does not reduce the
capacity of these roads below their target traffic rate.

V. ADAPTIVE CAPACITY FOR A ROAD NETWORK

While the ability to improve throughput on individual
roads and at individual intersections are important proofs
of concept, the true question is whether (and how much)
dynamic lane reversal can help on a full road network. To
address this question we model a road network as a graph
consisting of vertices and edges. Each node of the graph
represents an intersection and each edge represents a road
between intersections. Additionally, each u,v edge has an
associated capacity c(u,v) which constrains the maximum
amount of traffic that road can handle (in this section we
model intersections as having infinite capacity).

Traffic in the network is modeled in terms of aggregate
demand. Specifically we consider a finite number of flows,
where each flow has an associated source vertex, destination
vertex, and integer-valued demand. For example, a parking
garage at a mall could be a source, and a bridge at the
edge of the network could be a destination. The demand
represents the instantaneous number of vehicles that want to
travel between these two points. Vehicles may take any path
between the source and destination so long as they do not
violate capacity constraints of roads. We seek to determine
1) whether or not the lanes of a given road network can be
dynamically reconfigured in order to accommodate a given
set of traffic flows and 2) what is the maximum demand a
network can handle.

A. Multicommodity Flow Problem

The multi-commodity flow problem is a generalization
of the well-known max flow problem in which multiple
commodities or goods flow through the network, each with
different source and sink nodes. Modeling a road network
at the macroscopic level allows us to map the well-studied
problem of multi-commodity flow directly onto our problem
of dynamically reconfiguring lanes. In order to solve this
problem we utilize the the mathematical machinery of linear
programming.

B. ILP Formulation

A Linear Program contains a linear function to be max-
imized over a set of variables, subject to constraints. In
normal linear programs these variables are allowed to as-
sume fractional values, but since all of our flow demands
are required to be integer-valued, we must approach this
problem as an Integer Linear Program. Unfortunately, the
multicommodity flow problem has long been known to be
NP-complete when dealing with integer flows, even for only
two commodities [2].

We define the following Integer Linear Program: Given a
graph G = {V,E}, each edge (u,v) has some integer capacity
c(u,v) representing the total number of lanes present on
that road. There are k distinct commodities (traffic flows)
K1, ...,Kk where each commodity Ki = (si, ti,di) has an as-
sociated source si, destination ti, and demand di. Flow of
commodity i over edge (u,v) is denoted fi(u,v).

Our objective is to find an assignment of flows which
satisfy the following three constraints: The capacity con-
straint, shown in Equation 2, specifies that the total amount
of flow (in both directions) over a given (u,v) edge must
not exceed the capacity of that edge (note c(u,v) = c(v,u) in
the undirected case). The conservation constraint, Equation
3, ensures that for all non sink/source vertices the amount of
inflow of a given commodity equals the amount of outflow.
Finally Equation 4 specifies that the flow of each commodity
must meet or exceed the demand for that commodity.

∀(u,v)∈E

k

∑
i=1

( fi(u,v)+ fi(v,u))≤ c(u,v) (2)

∀i∈1...k,v∈V−{s,t}[∑
u∈V

fi(u,v) = ∑
w∈V

fi(v,w)] (3)

∀i∈1...k ∑
w∈V

fi(si,w) = ∑
w∈V

fi(w, ti)≥ di (4)

The goal of the ILP solver is to find an assignment of
directionality to each lane which maximizes the objective
function (Equation 5) subject to the constraints specified
above. This is done by assigning integer values to individual
flows. We choose to use the maximum multi-commodity
objective function in which the objective is to reconfigure
the network to maximize the sum of all commodity flows:

maximize
k

∑
i=1

∑
w∈V

fi(si,w) (5)

While multiple possible objective functions could meet our
criterion of finding a lane configuration capable of handling a
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given set of flows, we choose the maximum multicommodity
objective because it forces the ILP solver not only to satisfy
the flow demands, but also to find the absolute maximum
amount of traffic a network can handle. In contrast, the
following section explores an alternative, least-cost objective
function.

C. Bi-Level Programming Formulation

The multicommodity flow formulation of our problem
is convenient in that its solution—the maximum flow—is
unique and independent of vehicles’ behavior. However it
ignores the fact that drivers are self-interested—they are
concerned about their own travel times and have no incentive
to cooperate to achieve the maximum flow of the network.
Therefore, we consider an alternative formulation for the
adaptive capacity problem using a bi-level approach, where
the objective is to set link capacities such that, as flows are
determined by User Equilibrium behavior, the total system
travel time, i.e. the sum of the travel times of all users,
is minimized. By modeling the route choice user behavior
as a travel cost minimization, we can more accurately
characterize the behavior of users in a traffic context. The
mathematical formulation is shown in Equations 6–8. The
upper level problem includes the allocation of capacity x to
each of the links, while the lower level problem is the classic
User Equilibrium model presented by Wardrop [3]:

min
x

f (x) s.t. − ci j < xi j < c ji ∀i < j where (6)

f (x) = min
v ∑

(i, j)

∫
∑od vod

i j

0
t f

(
1+αi j

(
w

ci j + xi j

)βi j
)

dw (7)

s.t. ∑
j

vod
i j −∑

j
vod

ji = bod(i) ∀i,od.vi j ≥ 0 ∀i, j (8)

where c is the capacity vector, vod is the flow vector for
each OD, x is the dynamic lane capacity allocation vector, t f
is the free flow speed vector, and α and β are parameters, and
bod(i) is equal to the node supply/demand for each OD pair
od. As bi-level problems such as this are difficult to solve
exactly, we present a Genetic Algorithms based solution
approach in the following section.

D. Genetic Algorithm Solution Method

Genetic algorithms (GAs) is a global search heuristic that
uses techniques inspired by evolutionary biology ([4], [5]).
GAs are based on the assumption that the best solution is
found in regions of solution space having a high proportion
of good solutions. GAs explore the solution domain to
identify the promising region and then search the promising
regions more intensely. GAs start with a population of ran-
domly regenerated individuals that evolves with generations
based on the principle of survival of the fittest. Unlike
classical methods, GAs work with a population of points.
Therefore, the chances of getting trapped at local optima
are reduced. Moreover, many variations of GAs are suitable
for handling complex problems involving discontinuities,
disjoint feasible spaces, and noisy function evaluation [6],
[7], [8]. In our formulation, a gene represents the capacity

S

T

T

S

Fig. 5. A example generated graph with two incident S,T flows. Thick
lines represents highways, medium lines represent arterial roads, and thin
lines represent streets.

TABLE II
ROAD TYPES COMPOSING THE RANDOMLY GENERATED NETWORKS.

Road Type Capacity Range Probability
Street 1-4 1.0
Arterial Road 6-15 .1
Highway 24-32 .01

allocated to a link (i, j) that is taken from the reverse link
( j, i). The fitness function used is the total system travel
time in the underlying UE problem given a decision vector
representing capacity allocation.

VI. ILP EXPERIMENTS

In this section we use the ILP solver to empirically
compare different traffic management systems – those which
can reverse lane directions quickly and those which can
reverse slowly or not at all. We hypothesize that traffic
managers which have the ability to quickly reverse the flow
of traffic along lanes will achieve higher throughputs than
slower traffic managers.

A. Generated Graphs

We automatically generate graphs qualitatively similar to
downtown regions of many cities. Each graph takes the form
of a connected planar grid. To determine the capacities for
each road, we randomly select from one of the three road
types shown in Table II with the associated probabilities.
Flows are generated by selecting a random source, sink
vertex pair from the graph. An example road network is
shown in Figure 5.

B. Experimental Evaluation

To measure the performance difference between traffic
control systems with the ability to quickly reverse lanes (such
as the AIM protocol) and those that can only slowly reverse
lanes (such as zipper machines), we evaluate each traffic
management system for 10 hours. Each hour a new set of
random flows is spawned, and it is the job of the traffic
manager to accommodate this traffic as well as possible by
reversing lane directionality. However not all traffic managers
will be able to reverse lanes every hour. Traffic management
systems differ in their reconfiguration period – the amount
of time that must elapse between lane reconfigurations. For
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example, a system with reconfiguration period of 2 will
reconfigure lane directions every other hour while a system
with reconfiguration period of 5 will only reconfigure every
fifth hour. If a traffic manager is unable to reconfigure lanes
for a given hour, the network throughput is computed by
finding the maximum multicommodity flow over the cur-
rent lane configuration (e.g. directed multicommodity flow)
without allowing the directions of any lanes to change. On
the other hand, if a traffic manager is able to reconfigure
lanes for a given hour, we compute throughput by finding the
maximum multicommodity flow over the network consisting
entirely of undirected edges. This gives managers with low
reconfiguration period the ability to more fully adapt to
changing traffic conditions.

An example run proceeds as follows: we first randomly
generate a road network using the procedure described above.
Initially this network is configured in a balanced manner
in which the capacity of each road is divided as evenly as
possible between lanes flowing in one direction and those
in the opposite. Next, random flows are generated and the
ILP solver is used to compute the network throughput for
that hour either on the current directed configuration (if the
manager cannot reconfigure this hour) or on the undirected
configuration (if the manager can reconfigure this hour). Any
changes made to the directionality of lanes carry over into
the next hour when new flows are generated.

In our experiments we evaluated networks of size 100
(10x10) for 10 hours. Each hour contained a set of 4
randomly generated flows. Demands for these flows were
set to 0 to ensure that the ILP solver would both reach a
valid solution and maximize the achievable throughput.1 The
throughput of each traffic manager was evaluated at each
timestep and the total throughput for a traffic manager with a
given reconfiguration period was the sum of the throughputs
it achieved over all 10 hours. We evaluated the performance
of each traffic manager over 34 different networks (34 trials)
for a total of 340 total timesteps.

Figure 6 shows the total network throughput achieved by
traffic managers with different reconfiguration periods. The
results show a significant increase in performance of traffic
managers who have some form of lane reconfiguration in
comparison to no lane reconfiguration. This is not surpris-
ing since the benefits of contraflow are well established.
However, we seek to address the question of how much
performance increase is bestowed by frequent rather than
infrequent lane reconfiguration. Infrequent reconfiguration
(reconfiguration period = 3,4,5) shows only modest im-
provements over the static configuration, approximately 11%
throughput gain. However, decreasing our reconfiguration pe-
riod to 2, we see a 32% performance gain over the static case.
Finally, the fully dynamic reconfiguration period 1 traffic
manager provides a 72% increase in throughput compared
to the static network. This trend suggests that the large
gains in traffic efficiency are achievable with reconfiguration

1Incorporating non-zero demands is straightforward to implement but
could have resulted in the ILP solver being unable to find valid solutions
in some cases.
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Fig. 6. Total network throughput (vehicles) as a function of DLR period.
A reconfiguration period of 1 means that the network was reconfigured
each timestep; 2 means every other timestep; ∞ means the network was
never reconfigured (always in balanced, directed configuration). Error bars
denote 95% confidence intervals. Period 1,2,3 are statistically significant
with respect to period 0 as well as each other.

technology which can adapt quickly to changing traffic flows
and quickly reconfigure lanes.

VII. BI-LEVEL FORMULATION EXPERIMENTS

This section shows preliminary results of the implemen-
tation of the bi-level formulation presented in Section V-C.
The objective of these numerical results is to show that the
algorithm is implementable for modest sized problems.

We solve a problem on a 10x10 grid network, where the
number of lanes varies for each link, the capacity is 1800
vehicles/hour/lane, α = 0.1, β = 4, and t f is 25 mph, 35 mph
and 55 mph depending on the number of available lanes.
For the GA, the size of the population and the number of
generations were both set to 30, the mutation probability was
set to 0.002, and the cross-over probability was set to 0.75.

Based on these parameters, the model was solved for each
of 10 time periods. In order to compare the behavior of the
GA based solution method with the ILP solver, we examine
the resulting lane configurations after each time period and
calculate the correlation coefficient of the solution vectors
for the ILP and GA. The correlations in lane configuration
for each of the 10 hours are shown in Table III. As shown by
the resulting correlation coefficients, the two solution vectors
are quite different, which conforms to the idea that increased
accountability in the driver route choice response process
will lead to significantly different solution strategies.

While the bi-level and ILP solutions show significant
differences, we expect that both solutions are valid under
the different assumptions each model makes. Because of the
highly redundant grid based network topology, we expect that
(source, destination) demands may be satisfied by multiple
possible paths. We hypothesize that the discrepancy in the
solutions results from different paths being utilized for the
same set of demands. However, while both models are find-
ing valid solutions given their constraints, we should expect
the bi-level formulation’s solution to be more realistic in an
actual traffic network because the bi-level model incorporates
many aspects of real traffic such as congestion, equilibrium
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TABLE III
CORRELATION COEFFICIENTS OF ILP AND GA SOLUTION VECTORS

Hour 1 2 3 4 5 6 7 8 9 10
Corr. 0.1 0.2 0.1 0.3 -0.1 0.3 0.3 0.3 0.6 0.1

and speed limits. On the other hand, the bi-level model can
guarantee only approximate solutions while the ILP solver
computes the optimal solution.

VIII. RELATED WORK

Contraflow has been studied extensively in scenarios in-
volving emergency evacuations from specific locations [11],
[12], [12], [13], [14]. For example, early work by Zhou
et al. [9] and Xue [10] developed contraflow lane control
systems for managing the George Massey tunnel. These
systems predicted traffic demand and reversed lanes in order
to reduce congestion and delays. In contrast, our approach is
applicable to any road network which can be represented as
graph. Heuristic solutions to contraflow for emergency evac-
uations were considered by several authors [15], [16], [17].
Particularly, Kim et al. [18] examine evacuation scenarios
with multiple sources. However, their model does not allow
individual lanes to be reversed and instead requires that each
road be converted into a single direction of flow. Cova and
Johnson [19] present a model for identifying optimal lane-
based evacuation routing plans for road networks using a
mixed integer programming solver. Unlike most models, they
consider the effects of intersection merging on overall traffic
and seek to find routing solutions which avoid crossing flows
of traffic. However, this work considers only evacuations
on static road networks and does not attempt to reverse or
reconfigure lanes. In contrast to these authors, we do not
take the perspective of an evacuation and instead focus on
contraflow to optimize every-day traffic efficiency.

IX. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a framework of dynamic lane
reversal—directionality of lanes are updated quickly and
automatically in response to instantaneous traffic conditions
recorded by traffic sensors. Recent advances in robotic
research leads us to believe that cars will be the key to
unlocking the full potential of dynamic lane reversal schemes
since they eliminate human errors. Here we established
theoretical conditions under which contraflow lane reversal
can increase the efficiency of a road, and showed empirically
that contraflow has beneficial effects on intersection through-
put. We then formulated the problem of contraflow lane
reversal as a multicommodity flow problem, and described
how to compute the optimal direction for each lane by an
integer linear programming solver. Our experimental results
indicate that a) contraflow in any form provides increased
network efficiency and b) dynamic (fast-paced) lane reversals
provide large performance gains (72% in our case) over
slower pace lane reversal schemes. We also introduced a bi-
level programming formulation which accounts for link level
congestion and user equilibrium conditions, and compared
the results generated by Genetic Algorithms to solutions in
the multicommodity flow formulation. Our ongoing research

agenda includes designing car control and intersection con-
trol policies for dynamic lane reversal.
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