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Abstract—In recent work, robust PCA has been posed as a
problem of recovering a low-rank matrix L and a sparse matrix
S from their sum, M := L + S and a provably exact convex
optimization solution called PCP has been proposed. Suppose
that we have a partial estimate of the column subspace of the
low rank matrix L. Can we use this information to improve
the PCP solution, i.e. allow recovery under weaker assumptions?
We propose here a simple modification of the PCP idea, called
modified-PCP, that allows us to use this knowledge. We derive
its correctness result which shows that modified-PCP indeed
requires significantly weaker incoherence assumptions than PCP,
when the available subspace knowledge is accurate. Extensive
simulations are also used to illustrate this. Finally, we explain how
this problem naturally occurs in many applications involving time
series data, e.g. in separating a video sequence into foreground
and background layers, in which the subspace spanned by the
background images is not fixed but changes over time and the
changes are gradual. A corollary for this case is also given.

I. INTRODUCTION

Principal Components Analysis (PCA) is a widely used

dimension reduction technique that finds a small number of

orthogonal basis vectors, called principal components (PCs),

along which most of the variability of the dataset lies. Accu-

rately computing the PCs in the presence of outliers is called

robust PCA. Outlier is a loosely defined term that refers to

any corruption that is not small compared to the true data

vector and that occurs occasionally. As suggested in [1], an

outlier can be nicely modeled as a sparse vector. The robust

PCA problem occurs in various applications ranging from

video analysis to recommender system design in the presence

of outliers, e.g. for Netflix movies, to anomaly detection in

dynamic networks [2]. In video analysis, background image

sequences are well modeled as forming a low-rank but dense

matrix because they change slowly over time and the changes

are typically global. Foreground is a sparse image consisting

of one or more moving objects. In recent work, Candes et

al and Chandrasekharan et al [2], [3] posed the robust PCA

problem as one of separating a low-rank matrix L (true

data matrix) and a sparse matrix S (outliers’ matrix) from

their sum, M := L + S. They showed that by solving the

following convex optimization called principal components’

pursuit (PCP)

minimizeL̃,S̃ ‖L̃‖∗ + λ‖S̃‖1
subject to L̃+ S̃ = M

(1)

it is possible to recover L and S exactly with high probability

under mild assumptions. This was among the first recovery

guarantees for a practical (polynomial complexity) robust PCA

algorithm. Since then, the batch robust PCA problem, or what

is now also often called the sparse+low-rank recovery problem,

has been studied extensively, e.g. see [4], [5], [6], [7], [8], [9],

[10], [11], [12], [13].

Contribution: In this work we study the following prob-

lem. Suppose that we have a partial estimate of the column

subspace of the low rank matrix L. How can we use this

information to improve the PCP solution, i.e. allow recovery

under weaker assumptions? We propose here a simple mod-

ification of the PCP idea, called modified-PCP, that allows

us to use this knowledge. We derive its correctness result

(Theorem 2.1) by adapting the proof given in [2]. The result

shows that modified-PCP indeed requires significantly weaker

incoherence assumptions than PCP, as long as the available

subspace knowledge is accurate.

In many applications involving time series data, e.g. in

video, the subspace spanned by a set of consecutive columns

of L does not remain fixed, but instead changes over time and

the changes are gradual. Also, often an initial short sequence of

low-rank only data (without outliers) is available, e.g. in video

analysis, it is easy to get an initial background-only sequence.

Thus, for this application modified-PCP can be used to design

a piecewise batch solution to the robust PCA problem that will

require weaker assumptions for exact recovery than PCP. This

is made precise in Corollary 2.2.

Modified-PCP is motivated by the modified-CS [14] idea.

Modified-CS solves the problem of sparse recovery with

partial support knowledge. Its idea is to try to find the vector

that is sparsest on the complement set of the known support

subject to the data constraint. Modified-PCP uses a similar

idea for the vector of singular values of the low rank matrix.

A. Notation

For a matrix X , we denote by X∗ the transpose of X;

denote by ‖X‖∞ the `∞ norm of X reshaped as a long

vector, i.e., maxi,j |Xij |; denote by ‖X‖ the operator norm

or 2-norm; denote by ‖X‖F the Frobenius norm; denote by

‖X‖∗ the nuclear norm; denote by ‖X‖1 the `1 norm of X
reshaped as a long vector. Let ‖A‖ denote the operator norm

of operator A, i.e., ‖A‖ = sup{‖X‖F=1} ‖AX‖F ; let 〈X,Y 〉
denote the Euclidean inner product between two matrices, i.e.,

trace(X∗Y ); let sgn(X) denote the entrywise sign of X .

We let PΘ denote the orthogonal projection onto linear

subspace Θ. We use Ω to denote the support set of S, i.e.,

2014 IEEE International Symposium on Information Theory

U.S. Government work not protected by U.S. copyright 2192



Ω = {(i, j) : S(i, j) 6= 0}. We also use Ω to denote the

subspace spanned by all matrices supported on Ω.

Given two matrices B and B2, [B B2] constructs a new

matrix by concatenating matrices B and B2 in the horizontal

direction. Let Brem be a matrix containing some columns of B.

Then B \Brem is the matrix B with columns in Brem removed.

We say that a matrix U is a basis matrix if U∗U = I where

I is the identity matrix.

B. Problem Definition

We are given a data matrix M ∈ R
n1×n2 that satisfies

M = L+ S (2)

where S is a sparse matrix with support set Ω and L is a low

rank matrix with rank r and with reduced SVD

L = UΣV ∗, (3)

We assume that we are given an n1 × rG basis matrix G so

that Lnew := (I − GG∗)L has rank smaller than r. The goal

is to recover L and S from M using G.

We explain the above a little more. With G as above, U can

be rewritten as

U = [(GR \ Uextra) Unew], (4)

where Unew ∈ R
n1×rnew with rnew < r and U∗

newG = 0; R
is a rotation matrix and Uextra contains rextra columns of GR.

Let Vnew be the right singular vectors of the reduced SVD of

Lnew := (I −GG∗)L = UnewU
∗
newL, i.e.

Lnew = UnewΣnewV
∗

new (5)

Another way to explain the above is that G = [(U \
Unew) Uextra]R

∗. Also, let U0 := [U \ Unew] and let r0 be

its rank.

C. Proposed Solution: Modified-PCP

Denote by Γ the linear space of matrices with column span

equal to that of the columns of G, i.e.

Γ := {GX∗, X ∈ R
n2×rG}, (6)

and by Γ⊥ its orthogonal complement. Clearly,

Lnew +GX∗ + S = M (7)

Inspired by PCP [2], we try to recover Lnew and S by solving

the following Modified PCP (mod-PCP) program

minimizeL̃,S̃ ‖L̃new‖∗ + λ‖S̃‖1
subject to L̃new +GX̃∗ + S̃ = M

(8)

Once S is recovered, we can also get L = M −S. Its column

subspace can be estimated as the left singular vectors with

nonzero singular values.

II. CORRECTNESS RESULT

We first state the assumptions required for the result and

then give the main result and discuss it.

A. Assumptions

As explained in [2], we need a denseness assumption on

the singular vectors of L in order to ensure that they can be

separated from the sparse matrix S. We also need that S is

not low rank. One way to ensure that S is full rank w.h.p.

is by selecting the support of S uniformly at random [2]. We

assume this here too. For denseness, as we will show next,

for modified-PCP, the following assumptions suffice. Assume

that, for a small enough parameter µ,

max
i
‖[G Unew]

∗ei‖
2 ≤

µr

n1
, (9)

max
i
‖V ∗

newei‖
2 ≤

µr

n2
, (10)

and

‖UnewV
∗

new‖∞ ≤

√

µr

n1n2
. (11)

Recall that the columns of the “subspace knowledge” matrix

G span a subspace of range(L) and Unew, Vnew are the left and

right singular vectors of Lnew := (I −GG′)L. As we explain

later, the last two assumptions, and particularly the last one,

are weaker than those required by PCP as long as rextra is not

too large compared to r. The requirements are much weaker

when rnew � r also.

B. The Result

We can claim the following.

Theorem 2.1: Let n(1) = max(n1, n2) and n(2) =
min(n1, n2). Fix any n1 × n2 matrix Υ of signs. Assume the

model given in Sec I-B and assume that L satisfy (9), (10) and

(11); the support set of S is uniformly distributed with size at

most m; and

r ≤ ρrn(2)µ
−1(log n(1))

−2, m ≤ ρsn(1)n(2) (12)

for some constants ρr, ρs; the signs of S are fixed, i.e.,

sgn([S]ij) = Υij , for all (i, j) ∈ Ω. Then Modified-PCP (8)

with λ = 1/
√

max{n1, n2} recovers S exactly (and hence

also L = M−S) with probability at least 1−cn−10
(1) for some

numerical constant c.
Proof: The proof is obtained by adapting the proof tech-

niques of [2] to our problem. We provide a brief outline in

Sec III and a complete proof in [15].

C. Discussion

For simplifying our discussion, first just assume that

range(G) = range(U0) so that rG = r0 and rextra = 0. Also

suppose that n(1) = n1 and n(2) = n2, i.e. the matrix has

fewer columns than rows. The PCP program of [2] is (8)

with no subspace knowledge available, i.e. GPCP = [] (empty

matrix). With this, Theorem 2.1 simplifies to the corresponding

result for PCP. Thus, Unew,PCP = U and Vnew,PCP = V and

so (9) is the same but (10) and (11) get replaced by stronger

requirements: maxi ‖V
∗ei‖

2 ≤ µr
n2

and ‖UV ∗‖∞ ≤
√

µr
n1n2

.

The last condition (11) for PCP is the most difficult to satisfy.

We demonstrate this in Fig 3 by plotting the µ required for all

the three conditions for the matrices used in our simulations.

As can be seen, for mod-PCP we are able to relax the

requirement significantly: we need a much smaller value of

µ. From Theorem 2.1, a smaller µ means that, for a given
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rank r, a smaller value of n2 will suffice. We demonstrate this

in Fig 1 for rnew = 9 and r = 29.

A similar argument can be made even when range(G)
contains only a few extra directions, i.e. rextra is not too large.

In that case (9) will be slightly stronger but (10) and (11)

will be weaker. Thus, the overall requirement will still be

weaker since (11) is the dominant condition. If rnew � r the

requirements will be significantly weaker.

Consider an online / recursive robust PCA problem where

data vectors yt := st + `t come in sequentially and where the

subspace changes over time. Starting with an initial knowledge

of the subspace, the goal is to estimate the subspace spanned

by `1, `2, . . . `t and to recover the st’s. Assume the following

subspace change model introduced in [16]: `t = P(t)at where

P(t) = Pj for all tj ≤ t < tj+1, j = 0, 1, . . . J . At the change

times, Pj changes as Pj = [(Pj−1Rj \ Pj,old) Pj,new] where

Pj,new is a n×cj,new basis matrix that satisfies P ∗
j,newPj−1 = 0;

Rj is a rotation matrix; and Pj,old is a n× cj,old basis matrix.

Let rj := rank(Pj). Clearly, rj = rj−1 + cj,new − cj,old. If
∑

j(cj,new − cj,old) ≤ c0, then rj ≤ rmax = r0 + c0.

Suppose that the initial subspace, range(P0), is perfectly

known. Then modified-PCP provides a piecewise batch exact

recovery solution to the above problem that would need a

weaker set of denseness assumptions than those required by

PCP. The following corollary is immediate.

Corollary 2.2: Assume the model described above. For a

given α < n1, suppose that

1) we solve modified-PCP at every t = t0 + kα − 1, k =
1, 2, . . . , using the last α measurements, i.e. using M =
[yt0+(k−1)α, yt0+(k−1)α+1, . . . yt0+kα−1]

2) tj − tj−1 is an integer multiple of α
3) the initial subspace range(P0) is exactly known.

4) for all j = 1, 2, . . . J , (9), (10), and (11) hold with n2 =
α, r = rj , G = Pj−1, Unew = Pj,new, and Vnew being

the right singular vectors of U∗
new[`tj , `tj+1, . . . `tj+α−1]

and with µ = µj

5) for all j = 1, 2, . . . J , the bound of Theorem 2.1 holds

with n(1) = n1, n(2) = α, r = rj and µ = µj

then, we can recover L and S exactly and in a piecewise batch

fashion with probability at least (1− cn−10)J .

Proof: Denote by Θj the event that Lj , Sj are ex-

actly recovered from matrix M = [ytj , ytj+1, . . . ytj+α−1].
This also implies that Pj is exactly recovered. Using con-

ditions 4 and 5 and Theorem 2.1, we get that probabili-

ty P(Θj |Θj−1) ≥ 1 − cn−10. By condition 3, P(Θ0) =
1. Also, clearly, conditioned on Θj−1, Θj is independen-

t of Θj−2,Θj−3, · · · ,Θ0. Thus P(Θ1,Θ2, · · · ,ΘJ |Θ0) =
P(Θ1|Θ0)P(Θ2|Θ1) · · ·P(ΘJ |ΘJ−1) ≥ (1− cn−10)J .

In [17], [18], [16], Qiu et al studied the online / recursive

robust PCA problem and proposed a novel recursive algorithm

called ReProCS. With the subspace change model described

above, they also needed the following “slow subspace change”

assumption: ‖P ∗
j,new`t‖2 is small for sometime after tj and

increases gradually (a model was assumed for this). However,

modified-PCP does not need this. Moreover, the performance

guarantee they provide is not a correctness result. Lastly,

even with perfect initial subspace knowledge, ReProCS can-

not achieve exact subspace recovery while, as shown above,

modified-PCP can. On the other hand, ReProCS is a fully

recursive and fast algorithm while modified-PCP is neither.

In simulation experiments that we will show in Sec IV, for

uniformly randomly selected support sets, and when the “slow

subspace change” assumption does not hold, modified-PCP

significantly outperforms both ReProCS and PCP. However,

in situations that involve correlated support change, e.g., a

moving object in a video sequence, the difference is not clear

and depends on whether the slow subspace change assumption

holds or not. This case requires further study (not shown here).

Correlated support change usually results in S also being rank

deficient. Hence, in this case, mod-PCP will require a different

approach to selecting λ and will require more assumptions.

Other recent work on algorithms for recursive / online robust

PCA includes [19], [20], [21], [22], [23]. In [22], [23], two

online algorithms for robust PCA (that do not model the outlier

as a sparse vector but as a vector that is “far” from the

data subspace) have been partly analyzed. Other somewhat

related work includes online algorithms for low-rank matrix

completion and dictionary learning [24], [25].

III. PROOF OUTLINE

The overall proof approach is similar to that in [2]. The first

step involves starting with the KKT conditions and relaxing

them to find a set of conditions under which Lnew, S is the

unique minimizer of (8) (Lemma 3.1). These conditions are

further relaxed to get a set of conditions on the dual certificate

that are easy to satisfy, as is also done in [2] (Lemma 3.2).

Finally the golfing scheme [26], [2] is used to construct this

dual certificate and to show that it indeed satisfies the required

conditions.

The proof needs the following linear space of matrices.

Π := {[G Unew]X
∗+Y V ∗

new, X ∈ R
n2×(rG+rnew), Y ∈ R

n1×rnew},

Lemma 3.1: (similar to [2, Lemma 2.4], [3, Proposition 2])

If ‖PΩPΠ‖ < 1, i.e., Ω ∩ Π = {0}, (Lnew, S) is the unique

solution to Modified-PCP (8) if there is a pair (W,F ) obeying

UnewV
∗

new +W = λ(sgn(S) + F ),

with PΠW = 0, ‖W‖ < 1, PΩF = 0 and ‖F‖∞ < 1.

Lemma 3.2: (similar to [2, Lemma 2.5]) If ‖PΩPΠ‖ ≤ 1/2
and λ < 1, (Lnew, S) is the unique solution to Modified-PCP

(8) if there is a pair (W,F ) obeying

UnewV
∗

new +W = λ(sgn(S) + F + PΩD)

with PΠW = 0 and ‖W‖ ≤ 1
2 , PΩF = 0 and ‖F‖∞ ≤ 1

2 ,

and ‖PΩD‖F ≤
1
4 .

The conditions needed by the corresponding lemma in

[2] are stronger because (a) ‖UnewV
∗

new‖∞ is smaller than

‖UV ∗‖∞; and (b) Π is a smaller subspace of matrices than

T := {UX∗ + Y V ∗, X ∈ R
n2×r, Y ∈ R

n1×r} used in [2].

Construction of a dual certificate W that satisfies the

conditions of Lemma 3.2 requires using Π instead of T , Unew

instead of U and Vnew instead of V and following the solution

approach of [2].
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IV. SIMULATION EXPERIMENTS

We first give below the algorithm used to solve modified-

PCP. Next, we give recovery error comparisons for simulated

data. Finally, we show a comparison of the assumptions needed

by PCP and mod-PCP for the simulated data.

A. Algorithm for solving Modified-PCP

We give below an algorithm based on the Inexact Aug-

mented Lagrange Multiplier (ALM) method [27] to solve the

modified-PCP program, i.e. solve (8). This algorithm is a

direct modification of the algorithm designed to solve PCP

in [27]. Using the same ideas, along with a accurate recovery

result for the basis pursuit denoising (BPDN) [28] problem, it

should be possible to prove that the output of the algorithm

converges to the solution of modified-PCP.

For the modified-PCP program (8), the Augmented La-

grangian function is:

L(L̃new, S̃, Y, τ) = ‖L̃new‖∗ + λ‖S̃‖1 + 〈Y,M − L̃new − S̃

−GX̃∗〉+
τ

2
‖M − L̃new − S̃ −GX̃∗‖2F ,

Thus, with similar steps in [27], we have following al-

gorithm. In Algorithm 1, Lines 3 solves S̃new,k+1 =

Algorithm 1 (Modified RPCA via the Inexact ALM

Method)[27, Algorithm 5]

Input: Measurement matrix M ∈ R
n1×n2 , λ, G.

1: Y0 = M/max{‖M‖, ‖M‖∞/λ}; S̃0 = 0; τ0 > 0; v > 1;

k = 0.

2: while not converged do

3: S̃k+1 = Sλτ
−1

k
[M −GX̃k − L̃new,k + τ−1

k Yk].

4: (Ũ , Σ̃, Ṽ ) = svd((I −GG∗)(M − S̃k+1 + τ−1
k Yk));

5: L̃new,k+1 = ŨSτ
−1

k
[Σ̃]Ṽ T .

6: X̃k+1 = G∗(M − S̃k+1 + τ−1
k Yk)

7: Yk+1 = Yk + τk(M − S̃k+1 − L̃new,k+1 −GX̃k+1).
8: τk+1 = min(vτk, τ̄).
9: k ← k + 1.

10: end while

Output: L̂new = L̃new,k, Ŝ = S̃k, L̂ = M − S̃k.

argmin
S̃

‖L̃new,k‖∗ + λ‖S̃‖1 + 〈Y,M − L̃new,k − S̃ −GX̃∗
k〉+

τ

2
‖M − L̃new,k − S̃ − GX̃∗

k‖
2
F ; Line 4-6 solve L̃new,k+1 =

argmin
L̃new

‖L̃new‖∗ + λ‖S̃k+1‖1 + 〈Y,M − L̃new − S̃k+1 −

GX̃∗
k〉+

τ

2
‖M−L̃new,k−S̃k+1−GX̃∗

k‖
2
F . The soft-thresholding

operator is defined as

Sε[x] =







x− ε, if x > ε;
x+ ε, if x < −ε;
0, otherwise,

(13)

We use yall1 [29] to solve Line 5. Parameters are set as

suggested in [27], i.e., τ0 = 1.25/‖M‖, v = 1.5, τ̄ = 107τ0
and iteration is stopped when ‖M − S̃k+1 − L̃new,k+1 −
GX̃k+1‖F /‖M‖F < 10−7.
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Fig. 1: Recovery result comparison with different columns

The above algorithm is slow primarily because of the pro-

jected sparse recovery step. In ongoing work, we are working

on using ideas from existing work so that this is not needed.

B. Recovery Error Comparisons

In the simulations shown here we used G = U0. The

data was generated as follows. We generated [U0 Unew] by

orthonormalizing an n1× (r0+ rnew) matrix with entries i.i.d.

N (0, 1/n1). Then we generated a matrix X1 of size r0 × d
and a matrix X2 of size (r0 + rnew) × n2 with entries i.i.d.

N (0, 1/n1). We generate the support set of size m uniformly

at random for sparse matrix S and assign value ±1 with

equal probability to entries in the support set.We set Mnew =
[U0 Unew]X2 + S and M0 = U0X1. We computed G = U0

as the left singular vectors with nonzero singular values of

M0 and this was used as the partial subspace knowledge

for modified-PCP. Modified-PCP solved (8) with M ≡ Mnew

using Algorithm 1. PCP solved (8) with M ≡ [M0 Mnew] and

GPCP = [] using the algorithm from [27]. Sparse recovery

error is calculated as ‖S− Ŝ‖2F /‖S‖
2
F and averaged over 100

Monte Carlo simulations. We plot it against r := r0 + rnew in

Fig 1. For this figure, we used n1 = 200, r0 = 20, d = 30,

rnew = 9,m = 15n2, and n2 ranging from 40 to 200. Notice

that this is the situation where n2 ≤ n1 so that n(2) = n2

and n(1) = n1. This situation typically occurs for time series

applications, where one would like to use fewer columns to

still get exact/accurate recovery. We compare mod-PCP and

PCP. As we can see, PCP needs many more columns than

mod-PCP for exact recovery. Here we say exact recovery when

‖S − Ŝ‖2F /‖S‖
2
F is less than 10−7.

In Figure 2, we show comparisons with increasing rank. We

used n1 = 200, r0 = 20, d = 40, n2 = 80, m = 1200 and rnew

ranging from 1 to 20. We compare results for modified-PCP,

PCP and ReProCS [16]. Clearly modified-PCP significantly

outperforms both the others because the rank r is quite large

for PCP and the “slow subspace change” assumption required

by ReProCS does not hold.

C. Assumptions’ Comparisons

We compute and plot the µ required for (9), (10), and (11)

for PCP and mod-PCP. As shown in Figure 3, we can see
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Fig. 2: Recovery result comparison with different rank
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Fig. 3: Comparing the µ required by PCP and modified-PCP.

We do this for the data used to generate Fig 2.

that constraint (11) is the most difficult one to satisfy. For

mod-PCP, clearly this needs a much smaller value of µ.

We also computed smallest µ required for (9), (10) and

(11) for one real video sequence, the lake sequence taken

from http://www.ece.iastate.edu/∼chenlu/ReProCS/ReProCS.

htm. The initial low-rankification and computation of P0 was

done as explained in [16]. For this case, we got r0 = 26,

rnew = 4, and µ = 466 for PCP, µ = 20 for mod-PCP.

V. CONCLUSIONS

In this work we studied the following problem. Suppose that

we have a partial estimate of the column subspace of the low

rank matrix L. How can we use this information to improve

the PCP solution? We proposed a simple modification of PCP,

called modified-PCP, that allows us to use this knowledge.

We derive its correctness result (Theorem 2.1) by adapting the

proof given in [2]. We can argue that it indeed requires weaker

incoherence assumptions on the low-rank matrix than PCP, as

long as the number of extra directions in the available subspace

knowledge is not too large. The requirements are significantly

weaker when the number of unknown (new) directions is also

small. Simulation experiments further illustrate these claims.

Ongoing work includes designing a fast and/or recursive

algorithm for modified-PCP.
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