
Constructions for Constant-Weight ICI-Free Codes
Scott Kayser and Paul H. Siegel

University of California, San Diego, La Jolla, CA 92093, USA
Email: {skayser, psiegel}@ucsd.edu

Abstract—In this paper, we consider the joint coding constraint
of forbidding the 101 subsequence and requiring all codewords
to have the same Hamming weight. These two constraints are
particularly applicable to SLC flash memory - the first constraint
mitigates the problem of inter-cell interference, while the second
constraint helps to alleviate the problems that arise from voltage
drift of programmed cells. We give a construction for codes that
satisfy both constraints, then analyze properties of best-case codes
that can come from this construction.

I. INTRODUCTION

Flash memory has become increasingly popular in recent
years due to its fast read and write speeds and its low power
consumption. The memory consists of a grid of floating-gate
transistors called cells. To program a cell, a voltage is applied
to the transistor in order to inject charge into the floating
gate. The amount of charge stored in the cell determines the
cell level. Thus, the level of any cell can be increased by
injecting charge into that cell. Flash memory with cells that
can distinguish between two levels can store one bit per cell;
this type of memory is called single-level cell (SLC) flash (this
is a misnomer, as the cell consists of one bit rather than one
level). Cells that can store four levels, or two bits, are referred
to as multi-level cells (MLC), and cells with eight levels are
called triple-level cells (TLC). A larger number of bits per
cell require a very precise level of charge injection, but can
drastically increase the storage capacity of the memory.

For years, the feature size of these memories has been
rapidly shrinking, resulting in an increase in storage capacity.
In recent years, the very small feature size has presented a
number of obstacles. One of the largest of these obstacles is
inter-cell interference (ICI). This phenomenon occurs when
a cell is programmed; when charge is injected into a cell,
that cell’s physical neighbors also receive a small increase
in charge due to the parasitic capacitance between cells. Put
another way, a victim cell’s charge will increase when its
physical neighbors are programmed [3], [7].

For SLC memory, the worst-case pattern for three consec-
utive cells is the 101 pattern. Here, the victim cell is 0 (low)
and its two neighbors are both 1 (high). The increase in charge
from these neighboring cells may be enough to increase the
victim cell from 0 to 1. For cells with q levels, the worst-case
scenario is (q-1) 0 (q-1). Constrained codes that eliminate the
worst-case patterns can be considered to reduce the impact of
ICI [1]; these codes are called ICI-free codes.

A second obstacle to reliably storing data in flash memory
is voltage drift. Over time, the charge that is stored in the cells
leaks out of the floating gates. With enough time, this leakage

can cause a cell’s level to decrease, resulting in retention
errors. As the feature size of flash memory shrinks, this
problem becomes more pronounced - it takes less time for
a large number of retention errors to appear.

Dynamic read thresholds have been proposed in [10] to rem-
edy the errors caused by voltage drift. Under the assumption
that all cells leak charge at the same rate, the relative levels of
the cells remain unchanged. Both constant-weight codes [2]
and balanced codes can thus be utilized to determine whether
the read level should be adjusted; constant-weight codes must
contain some constant proportion p of ones in every codeword,
while balanced codes are a special case of constant-weight
codes where there are an equal number zeros and ones in
each codeword (p = 1/2). Thus, for a constant-weight code
of length n and ratio p, if we read fewer than np ones in a
codeword, we deduce that the cell levels have dropped, and
we should read at a lower threshold.

While other types of errors requiring error correction can
occur, we limit our error model to the two problems outlined
above and leave error correction capability to future work.

The rest of the paper will be organized as follows: In Section
II, we will present a construction for constant-weight ICI-
free codes that is similar to the balancing of q-ary codewords
(see [6] for more details on binary balancing and [9] for details
on q-ary balancing). We then calculate the coding rate of this
construction. In Section III, we examine the best-case codes
that come from our construction; these are codes that are
constructed to give high rates by using optimal parameters
as the input to the construction.

II. CONSTRAINED CODE CONSTRUCTION A

We wish to construct a codebook with a corresponding en-
coder and decoder that satisfies the following two constraints:
• For code length n and some fixed p, 0 ≤ p ≤ 1, every

codeword has constant Hamming weight pn.
• The subsequence 101 does not appear in any codeword.

There is no restriction on p in this constraint; in our code, it
is automatically selected as a function of several parameters
chosen by the user. These constraints are jointly known as the
constant-weight ICI-free constraint.

The idea behind this encoder is to generate an alphabet of
symbols, each of which represents a binary string that does
not contain the substring 101. Words are then generated using
this alphabet, and the resulting overall binary sequence is
manipulated until the sequence has a fixed proportion p of ones
by replacing symbols from the 101-free alphabet with other

2014 IEEE International Symposium on Information Theory

U.S. Government work not protected by U.S. copyright 1431

symbols from the same alphabet. The encoder and decoder are
explained in more detail below.

Let C be a binary constrained code of length n, rate RC ,
and codebook size |C| = S, with codewords c0, c1, . . . , cS−1
indexed such that w(c0) ≤ w(c1) ≤ . . . ≤ w(cS−1), where
w(c) is the Hamming weight of c. The code satisfies the
following constraints, henceforth collectively known as the
contiguous-weight 101-free constraint:

1) No codeword contains the forbidden sequence 101.
2) No codeword ends with the subsequence 10.
3) No codeword begins with the subsequence 01.
4) For 0 ≤ i ≤ S − 2, either w(ci+1) = w(ci) + 1 or

w(ci+1) = w(ci). That is, there exists at least one code-
word of every Hamming weight between the minimum-
weight w(c0) and the maximum-weight w(cS−1).

The second and third constraints together forbid 101 from
appearing between any two concatenated codewords. The
fourth constraint requires the set of Hamming weights for all
codewords to be contiguous.

Define p∗C = 1
nS

∑
c∈C w(c); that is, p∗C is the average

proportion of ones over all codewords in C.
Addition between a vector ci ∈ C and an integer j is defined

by adding the integer to the index modulo S, i.e., ci + j =
ci+j mod S . Thus, incrementing a codeword means choosing
the next codeword in the ordered set of codewords.

We choose a second binary constrained code C′ with length
n′ and with at least mS messages, where m is a freely chosen
integer. The code should satisfy the following constraints:

1) Every codeword has a proportion of ones equal to q∗

for 0 ≤ q∗ ≤ 1; that is, every codeword has Hamming
weight n′q∗.

2) No codeword contains the forbidden sequence 101.
3) No codeword begins with the subsequence 01.

The code should be chosen to minimize n′ for fixed m and
code C.

Using codes C and C′, we now describe the encoder and
decoder for the overall constrained code.

Encoder A

1) Use the code C to encode m messages, each con-
taining nRC bits of information. Call the result x =
ci0ci1 . . . cim−1

, where each ci is a codeword in C.
2) Fix the Hamming weight of this sequence to bmnp∗Cc

using the following steps.
a) Initialize j = 0 and k = 0.
b) Add j+1 to the first k symbols in x and add j to

the remaining m − k symbols and call the result
y′, i.e.,

y′ = ci0+(j+1)ci1+(j+1) . . .

cik−1+(j+1)cik+jcik+1+j . . . cim−1+j .

c) If the sum of the Hamming weights of the symbols
in y′ is bmnp∗Cc, we are finished; go to step 3.

d) Update x by setting x = y′.
e) Set k = k + 1

f) If k = m− 1, set k = 0 and j = j + 1.
g) Go to (b).

3) Using C′, encode the message jm + k, with j and k
obtained in step 2, to obtain sequence r of length n′.

4) Let y = y′r. Then y has Hamming weight bmnp∗Cc+q∗

and does not contain the subsequence 101.
The decoder is a straight-forward reversal of the encoder:

Decoder A

1) Split the codeword y into m binary sequences
ci0 , ci1 , . . . , cim−1 each of length n, and a length-n′

binary sequence r, so that y = ci0ci1 . . . cim−1
r.

2) Decode r using the decoder of C′, and convert the
resulting binary vector to an integer t.

3) Find integers j and k, 0 ≤ j ≤ S−1 and 0 ≤ k ≤ m−1,
such that jm+ k = t.

4) Let

x = ci0−(j+1)ci1−(j+1) . . .

cik−1−(j+1)cik−jcik+1−j . . . cim−1−j .

5) Decode each symbol in x using the decoder of C to
obtain the original m messages.

Theorem 1. Using the preceding encoder and decoder pair,
we can encode nRCm bits into a constant-weight codeword of
length nm+n′ and Hamming weight bmnp∗Cc+ q∗ such that
the subsequence 101 does not appear. Here, n and RC are the
length and rate, respectively, of the code C defined above, n′ is
the length of the code C′, p∗C is the average proportion of ones
over all codewords in the code C, and q∗ is the proportion of
ones in every codeword in the code C′.

Proof. Consider the sequences generated by step 2 when k =
0. Let vj′ be the sequence when j = j′ and k = 0. Then
vj′ is the sequence created by incrementing every symbol in
v0 by j′. For a given symbol position, every symbol in C is
used exactly once across all sequences vj′ . Thus, the average
Hamming weight among these sequences is∑S−1

j′=0 w(vj′)

S
=

m
∑S−1

j′=0 w(cj′)

S
= mnp∗C , (1)

where the second equality comes from the fact that the average
Hamming weight of all the codewords in C is np∗C .

Note that step 2 is cyclic; when j = S and k = 0, we
construct the same sequence as when j = 0 and k = 0.
Then there must exist iterations a and b, a < b, such that
iteration a results in a sequence with weight less than bmnp∗Cc
and iteration b results in a sequence with weight greater than
bmnp∗Cc. Because the only allowable increase in Hamming
weight during each iteration of step 2 is an increase of 1, we
must reach a sequence with weight equal to bmnp∗Cc on some
iteration between a and b.

The sequence y′ constructed in step 2 clearly does not
contain the subsequence 101; no codeword in C contains the
subsequence 101, and the second and third constraints of

2014 IEEE International Symposium on Information Theory

1432

TABLE I
NUMBER OF WORDS OF EACH HAMMING WEIGHT IN C FOR n = 12.

Hamming Weight 0 1 2 3 4 5 6 7 8 9 10 11 12
Number of Elements 1 10 39 84 120 126 105 64 45 10 11 0 1

the contiguous-weight 101-free constraint prevent 101 from
appearing between codewords.

In step 3, j is at most S−1 and k is at most m−1, so jm+k
is an integer between 0 and mS − 1. Thus, each message can
be uniquely encoded into code C′, which contains at least mS
codewords.

Finally, in step 4, it can be easily verified that 101 does not
appear when the two sequences y′ and r are concatenated.
The sequence y′ has weight bmnp∗Cc, and r has weight q∗,
and so y′r has weight bmnp∗Cc+ q∗.

The overall rate of this code is R = nRCm
mn+n′ =

m log2(S)
mn+n′ .

Remark 1. In the worst case, the encoder requires mS
iterations. We can significantly improve on this worst-case;
instead of incrementing only one of the m symbols on each
iteration, we can increment all m symbols in a single iteration.
Note that the resulting sequences are exactly those that are
summed in Equation 1. When we reach an iteration where
the average Hamming weight increases from less than mnp∗C
to greater than or equal to mnp∗C , we can start incrementing
the symbols one at a time until we find this crossover point.
The worst-case number of iterations is then S +m. However,
because S is the number of messages in the code C, we note
that the encoding complexity is still quite high.

Example 1. There are 616 sequences of length 12 that do not
contain the subsequence 101, do not start with the subsequence
01, and do not end with the subsequence 10. These sequences
are broken down by Hamming weight in Table I. We eliminate
the all-1 codeword from this list in order to satisfy the
contiguous-weight requirement and choose the remaining 615
codewords as the code C, with length n = 12 and rate
RC = log2(615)/12 ≈ 0.7720. The average proportion of
ones in C is p∗C ≈ 0.4184.

We start by selecting m = 64. Then the code C′ must
contain at least mS = 39360 codewords. The smallest code
length that satisfies the constraints of C′ and that contains at
least 39360 codewords is n′ = 23. This code C′ does not
have any codewords that contain 101 or begin with 01, and it
contains 61078 codewords, all of weight q∗ = 9. At this point,
we can optionally increase m without increasing n′ so long as
mS ≤ 61078. Thus, we choose m = 99 so that mS = 60885.
Then our final parameters are n = 12, m = 99, S = 615, and
n′ = 23. Then the overall rate is R = m log2(S)

mn+n′ ≈ 0.7574.

Lemma 2. As the number of concatenated sequences m
approaches infinity, the overall rate a code from Construction
A can achieve approaches RC . That is, limm→∞R = RC .

Proof. Suppose we naively construct the code C′ =
{xi1xi2 . . .xit | ij ∈ {0, 1}, 1 ≤ j ≤ t}. Here, {x0,x1} =

TABLE II
CODEBOOK SIZE S AND OVERALL RATE R FOR A RANGE OF n AND m

VALUES

n m S n′ R
6 338 20 19 0.7136
7 289 36 20 0.7313
8 253 64 21 0.7423
9 225 113 22 0.7497

10 202 199 23 0.7551
11 184 350 24 0.7593
12 168 615 24 0.7630
13 155 1080 25 0.7656
14 144 1896 26 0.7679
15 134 3328 27 0.7697
16 126 5841 28 0.7713
17 118 10251 29 0.7726
18 112 17990 30 0.7738
19 106 31571 31 0.7747
20 100 55404 32 0.7755

{12a02b−2a, 02b−2a12a}, t = dlog2 (mS)e, and a and b are
integers chosen so that q∗ = a

b . It is easy to verify that
C′ satisfies all the required constraints. The length of C′ is
n′ = 2bdlog2 (mS)e. Using this C′, our overall code rate is

R =
m log2 S

mn+ 2bdlog2 (mS)e
. (2)

Then as m→∞, limm→∞R = log2 S
n = RC .

III. ANALYSIS OF OPTIMAL CONSTRUCTIONS

We can choose for our code C any code that satisfies
the contiguous-weight 101-free constraint. However, we now
consider codes of length n with maximum rate (i.e., codes
of length n with the maximum number of codewords). We
derive the codebook size of such a code as a function of n,
then show that when this maximum rate code C is used as
the input to our construction, the rates of the codes produced
approach the Shannon capacity [8] of the no-101 constraint
as the block length approaches infinity. We also derive the
average proportion of ones p∗C of the maximum-rate code C as
a function of n.

Theorem 3. For code length n ≥ 2, the highest-rate code
C that satisfies the contiguous-weight 101-free constraint has
codebook size

S =
2zn1 + zn−21

(z1 − z2)(z1 − z3)
+

2zn2 + zn−22

(z2 − z1)(z2 − z3)

+
2zn3 + zn−23

(z3 − z1)(z3 − z2)
− 1, (3)

where z1, z2, and z3 are the roots of the cubic polynomial
z3−2z2+ z−1. Furthermore, the code of this size is unique.

2014 IEEE International Symposium on Information Theory

1433

TABLE III
THE FIRST SEVERAL VALUES OF an,00 .

n 2 3 4 5 6 7 8 9 10
an,00 1 2 3 5 9 16 28 49 86

Proof. Let Sn,v be the set of all binary vectors of length n
that begin with the sequence v, do not contain the subsequence
101, and do not end with 10. Note that the sequence 1k0n−k

satisfies conditions 1–3 of the contiguous-weight 101-free
constraint for 0 ≤ k ≤ n − 2. Also note that every sequence
of Hamming weight n − 1 violates one of the conditions
of the contiguous-weight 101-free constraint. Finally, the all-
1’s sequence of Hamming weight n satisfies conditions 1–3.
Thus, Sn = Sn,00 ∪ Sn,1 \ {1n} is the largest codebook that
satisfies the contiguous-weight 101-free constraint. If we let
an,v = |Sn,v|, then the size of this set can be expressed as

|Sn| = an,00 + an,1 − 1. (4)

It remains to derive expressions for an,00 and an,1.
It is easy to show that the sets Sn,00, Sn,01, and Sn,1 can

be recursively constructed for n ≥ 3. Using the corresponding
equations for the sizes of these sets, we can find a recurrence
relation for an,00 with the solution

an,00 = c1z
n
1 + c2z

n
2 + c3z

n
3 , (5)

where ci are constants and zi are the roots of the characteristic
equation z3−2z2+z−1 = 0. The expressions for these roots
can be written explicitly using the standard formula for cubic
roots (see e.g. [4]). We can also find an expression for an,1 in
terms of an,00 for n ≥ 5.

an,1 = an,00 + an−2,00 (6)

Table III gives the values of an,00 for 2 ≤ n ≤ 10.
Using the values given in Table III, we can work backwards

with the recurrence relation and find initial conditions a2,00 =
1, a1,00 = 0, and a0,00 = 0. These initial conditions together
with (5) gives the matrix equation Zc = a: 1 1 1

z1 z2 z3
z21 z22 z23

c1c2
c3

 =

00
1

 . (7)

Because Z is a Vandermonde matrix, the inverse is easily
found, and we can quickly solve for c1, c2, and c3:

c1 =
1

(z1 − z3)(z1 − z2)
c2 =

1

(z2 − z1)(z2 − z3)

c3 =
1

(z3 − z1)(z3 − z2)
.

Combining this result with (4) yields (3).

We can use this result to show that when maximum-rate
codes are used as the input to our construction, the resulting
codes will approach the capacity of the 101-free constraint
as the block length grows. We first derive an expression for

Fig. 1. Rates the construction achieves using optimal sub-codes. As n and
m both approach infinity, the construction produces codes with rates that
approach capacity.

the capacity of the 101-free constraint. We then show that the
supremum of the rates of all constant-weight ICI-free codes
is equal to the capacity of the 101-free constraint.

Lemma 4. The capacity of the 101-free constraint is
Cap(‘no-101’) = log2 (z1), where z1 is the unique real
solution to the polynomial equation z3 − 2z2 + z − 1 = 0.

Proof. The proof is omitted due to space constraints, but
the result can be verified by finding the log of the Perron-
Frobenius eigenvalue of the adjacency matrix for this con-
straint. See [5] for the details on finding the capacity of a
constrained system.

Theorem 5. The supremum of the rates of all possible
constant-weight ICI-free codes is Rsup = log2 (z1), where
z1 is the unique real solution to the polynomial equation
z3 − 2z2 + z − 1 = 0. Furthermore, the rate of codes from
Construction A approaches this rate.

Proof. We know from Lemma 2 that the rates of codes from
our construction approach log2 S

n as m → ∞. Then we just
need to show limn→∞

log2 S
n = log2 (z1). We can see from

the formula for cubic roots [4] that z3 − 2z2 + z − 1 = 0 has
one real solution z1 and two complex solutions z2 and z3. We
note that |z2| = |z3| < 1. Combining this fact with (3) gives

lim
n→∞

log2 S

n
= log2 (z1). (8)

Figure 1 shows the coding rate the construction achieves
for several values of sub-code length n and number of sub-
codewords m using optimal sub-codes. As n and m approach
infinity, code rates of this construction approach capacity.

Theorem 6. The average proportion of ones over all code-
words in the maximum-rate code that satisfies the contiguous-

2014 IEEE International Symposium on Information Theory

1434

weight 101-free constraint is

p∗C =

∑n−2
k=0 kdn,k

n
∑n−2

k=0 dn,k
(9)

where

dn,k =

min (2k+2,n−k)∑
i=0

(−1)i
(
n− i

k

) bi/2c∑
j=0

(
k + 1

i− j

)(
i− j

j

)
Proof. Let Qn,v(x) =

∑∞
k=0 dn,k,vx

k be the generating
function where dn,k,v is the number of binary sequences of
length n and Hamming weight k that begin with v and satisfy
the following two properties:

1) 101 does not appear in the sequence.
2) The sequence does not end with 10.

Let Sn,k,v be the set of all binary vectors of length n and
Hamming weight k that begin with the sequence v and satisfy
the two constraints above, and note that |Sn,k,v| = dn,k,v.
Let dn,k be the number of sequences that satisfy the two
constraints above and do not begin with 01, i.e., dn,k =
dn,k,00 + dn,k,1. Following similar steps to those found in
the proof of Theorem 3, we derive the recurrence relation for
n ≥ 5

dn,k = dn−1,k + dn−1,k−1 − dn−2,k−1 + dn−3,k−1. (10)

Let

Qn(x) =

∞∑
k=0

dn,kx
k (11)

be the generating function of dn,k for all k. Plugging (10)
into this equation yields a new recurrence relation (after some
minor manipulation)

Qn(x) = (x+ 1)Qn−1(x)− xQn−2(x) + xQn−3(x). (12)

Let A(x, y) be the generating function of Qn(x), i.e.,

A(x, y) =

∞∑
n=0

Qn(x)y
n. (13)

If we first find explicit expressions for Q0(x), Q1(x), and
Q2(x) and plug our new recurrence relation (12) into (13),
we can solve for A(x, y) as

A(x, y) =

∞∑
k=0

yk(1− y + y2)k+1

(1− y)k+1
xk. (14)

Let Rk(y) be the coefficient of xk. Our goal is to express
Rk(y) as a power series in y and plug the result into (14). This
will yield a two-dimensional generating function in x and y,
where the coefficient of xkyn is dn,k, the number of sequences
of length n and Hamming weight k that satisfy the first three
conditions of the contiguous-weight 101-free constraint.

By applying the identity 1
(1−y)k+1 =

∑∞
m=0

(
k+m
m

)
ym and

with repeated use of the binomial formula and a series of

change of variable, we express Rk(y) as a power series in y:

Rk(y) =

∞∑
n=k

min (n−k,2k+2)∑
i′=0

(
n− i′

n− i′ − k

)
(−1)i

′

·
bi′/2c∑
j=0

(
k + 1

i′ − j

)(
i′ − j

j

) yn (15)

This is a generating function where the coefficient in front of
each yn is dn,k. Thus, by recognizing that

(
n−i′

n−i′−k
)
=
(
n−i′
k

)
,

we obtain (6).
Recall from the proof of Theorem 3 that the largest code C

of code length n that satisfies the contiguous-weight 101-free
constraint contains all length-n sequences that satisfy the first
three conditions of the constraint except for the all-1 sequence.
Also recall that there are no sequences of Hamming weight
n − 1 that satisfy the first three conditions. Hence, the total
number of 1’s over all sequences in C can be computed by
counting the number of sequences of Hamming weight k for
0 ≤ k ≤ n − 2, and so the average proportion p∗C of ones of
all codewords in C is as in the statement of the theorem.

IV. CONCLUSION

We considered two constraints designed to improve the error
performance of flash memory: forbidding the 101 subsequence
to eliminate inter-cell interference, and requiring all codewords
to have the same Hamming weight so that voltage drift can be
detected. We introduced a code construction that implements
both constraints simultaneously and derived an expression for
the coding rate our construction achieves. We then showed
that the rates of codes from our construction will approach
the capacity of the ‘no-101’ constraint when the optimal input
parameters are chosen and the block length grows.

REFERENCES

[1] A. Berman and Y. Birk, “Constrained flash memory programming,” in
Proc. IEEE Int. Symp. Inform. Theory, St. Petersburg, Russia, July -
August 2011, pp. 2128 – 2132.

[2] A. Brouwer, J. Shearer, N. Sloane, and W. Smith, “A new table of
constant weight codes,” IEEE Trans. Inform. Theory, vol. 36, no. 6, pp.
1334–1380, November 1990.

[3] G. Dong, S. Li, and T. Zhang, “Using data postcompensation and
predistortion to tolerate cell-to-cell interference in MLC NAND flash
memory,” IEEE Trans. Circuits Syst., vol. 57, no. 10, pp. 2718 – 2728,
October 2010.

[4] D. S. Dummit and R. M. Foote, Abstract Algebra. John Wiley & Sons,
2004.

[5] K. A. S. Immink, Codes for Mass Data Storage Systems. Shannon
Foundation Publishers, The Netherlands, 2004.

[6] D. E. Knuth, “Efficient balanced codes,” IEEE Trans. Inform. Theory,
vol. 32, no. 1, pp. 51 – 53, January 1986.

[7] J.-D. Lee, S.-H. Hur, and J.-D. Choi, “Effects of floating-gate interfer-
ence on NAND flash memory cell operation,” IEEE Electron Device
Lett., vol. 23, no. 5, pp. 264 – 266, May 2002.

[8] C. E. Shannon, “A mathematical theory of communication,” Bell Syst.
Tech. J., vol. 27, pp. 379 – 423, 1948.

[9] T. G. Swart and J. H. Weber, “Efficient balancing of q-ary sequences
with parallel decoding,” in Proc. IEEE Int. Symp. Inform. Theory, Seoul,
Korea, June–July 2009, pp. 1564–1568.

[10] H. Zhou, A. Jiang, and J. Bruck, “Error-correcting schemes with
dynamic thresholds in nonvolatile memories,” in Proc. IEEE Int. Symp.
Inform. Theory, St. Petersburg, Russia, July-August 2011, pp. 2143 –
2147.

2014 IEEE International Symposium on Information Theory

1435

