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Abstract—We investigate the problem of secure source coding
with a two-sided helper in a game-theoretic framework. Alice (A)
and Helen (H) view iid correlated information sequences Xn and
Y n respectively. Alice communicates to Bob (B) at rate R, while
H broadcasts a message to both A and B at rate RH . Additionally,
A and B share secret key K at rate R0 that is independent of
(Xn, Y n). An active adversary, Eve (E) sees all communication
links while having access to a (possibly degraded) version of the
past information. We characterize the rate-payoff region for this
problem. We also solve the problem when the link from A to
B is private. Our work recovers previous results of Schieler-Cuff
and Kittichokechai et al.

I. INTRODUCTION

There has been significant recent interest in secure source
coding [1], [2], [3], [4], [5], [6], [7]. Settings involving
secret key and helpers have been studied. Most of these
approaches to secrecy consider distortion at the legitimate
receiver, and equivocation (equivalently, information leakage)
at the eavesdropper. As such, they forsake an intrinsic allure
of information theory results. Shannon’s information measures
are used in the problem formulation, rather than appearing as
the answer to a purely operational question.

Of course, it would be wrong to say that an equivocation-
based approach has no operational implication. As Wyner
[8] notes, high equivocation would imply a high probability
of error if the eavesdropper tried to reconstruct the entire
message block. The extremes of equivocation correspond to
perfect secrecy and error-free decoding. Both these cases can
be defined by simple operational statements.

Recently, Cuff [6], [9], [7] proposed a distortion-based
approach to secrecy in which the past information is causally
revealed to the eavesdropper. This formulation of partial se-
crecy is natural when understood in a game-theoretic context.
A repeated zero-sum game is being played by the adversary
versus the communication system. Distortion is now replaced
by payoff, while the information sequences equate to actions of
the players. Settings of distributed control [10] can be viewed
as a repeated zero-sum game.

Remarkably, when the payoff is chosen to be the log-loss
function [11], the above framework recovers results for (nor-
malized) equivocation-based secrecy [12]. Under this choice of
payoff, the adversary expresses her belief about the distribution
of the information sequence. Additionally, applications of log-
loss to the study of information bottleneck [13] and image
processing [14] have been explored.
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Fig. 1. Causal-disclosure secrecy with a two-sided helper.

In our max-min formulation, we would like to design
encoders {A, H} and decoder B to maximize the worst-case
payoff with respect to an adversarial eavesdropper E. This
problem subsumes the setting of [7], where there was no
helper. However, we provide a full solution only for certain
choices of causal disclosure. Traditional approaches to secrecy
with a helper can be found in [2], [3], [4]. In section VII, we
present additional results such as the case when the link from
A to B is private. This recovers the two-sided helper result of
[4].

Perhaps the most prominent example of communication
aided by a public helper appears in the internet, where the
helper might be a service provider or a mail client. A more
abstract example is provided by team sports, where the helper
publicly coaches players A and B to outperform E. While
insight into the structure of optimal strategic communication
in the presence of a public helper might be beneficial, we
believe that our study has further merits.

Our achievability proof illustrates the versatility of the
likelihood encoder [15]. This stochastic approach to encoding
seeks to approximate the operational system distribution by an
idealized distribution that is extremely simple to analyze. Due
to the presence of a helper, we have to use likelihood encoders
A and H that are derived from different idealized distributions.
However, we demonstrate that these encoders can mesh to-
gether to obtain the desired overall system performance. Also,
it is uncertain whether our most general result can be proven
using deterministic encoding. This kind of coding is inspired
by distributed channel synthesis [16], and can be traced back
to Wyner’s original ideas [17].

This approach avoids lengthy entropic manipulations, which
usually accompany a purely equivocation-based approach. We
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leverage the strength of the total variation distance [18], [16]
to obtain a general result while avoiding consideration of
multiple error cases, which are typical of rate-distortion proofs
[19]. The central ingredient of our achievability proof is a
generalized soft-covering lemma [16], [7].

By choosing the payoff function to be log-loss, we can
recover equivocation-based results with respect to the informa-
tion Xn. Unfortunately, we are unable to recover equivocation-
based results with respect to H’s information Y n or (Xn, Y n)
because our converse proof constrains us to exclude Y n from
the payoff function. However, our achievability proof readily
generalizes to these settings.

In this work, we assume that A, H and B have sufficient local
randomness. We provide a precise description of the problem
in Section II and present a characterization of the optimal
rate-payoff region in Section III. Extensions are discussed in
section VII.

II. PRELIMINARIES AND PROBLEM DEFINITION

A. Notation

We represent both random variables (only finite alphabets)
and probability distribution functions with capital letters, but
only letters P and Q are used for the latter. We denote the
conditional distribution of the random variable Y given the
random variable X by PY |X(y|x), sometimes abbreviated
as PY |X . Also, we use the script letter X 3 x to denote
the alphabet of random variable X . The set of probabilities
(simplex) on X is denoted by ∆X . Sequences of random
variables X1, . . . , Xn are denoted by Xn. The set {1, . . . ,m}
is denoted by [m], while [m]+ , max {0,m}.

Markov chains are denoted by X − Y − Z implying the
factorization PXY Z = PXY PZ|Y while X ⊥ Y indicates that
the random variables X and Y are independent. We define the
total variation distance as

‖PX −QX‖TV
,

1

2

∑
x

|P (x)−Q(x)|. (1)

B. Problem-Specific Definitions

The communication system model used throughout is shown
in Figure 1. The transmitting node A observes an iid source
sequence Xn ∼

∏
PX , while the helper node H observes

correlated side information Y n ∼
∏
PY |X . The sequence

Dn ∼
∏
PD|XY is causally disclosed to node E. Due

to a limitation of our converse argument, we only permit
D = (X,Dx) with PDx|X arbitrary. Nodes A and B share
a secret key K ∈ [2nR0 ], which is uniformly distributed and
independent of (Xn, Y n, Dn).

The helper produces a message MH ∈ [2nRH ] based on her
information Y n, which she broadcasts to both A and B. Based
on the source Xn, secret key K and the helper’s message MH ,
A transmits a message M ∈ [2nR] that is received by B and
E. On receiving (M,MH), B and E make their moves: in the
ith step, they play X̂i and Zi respectively. While B produces
X̂i based on (MH ,M,K), E produces Zi based on (MH ,M)
and the past Di−1. Note that the actions of A are determined
by her information Xn.

At each step, the joint actions of the players incur a value
π(x, x̂, z), which represents symbol-wise payoff; the block-
average payoff is given by

1

n

n∑
i=1

π(Xi, X̂i, Zi). (2)

Due to a pruning argument (see Section V.B) in our converse
proof, we are constrained to define payoff to be independent
of H’s information Y n. Nevertheless, H plays a role in aiding
communication. Players A, H and B want to cooperatively
maximize payoff, while E tries to minimize payoff through
her actions Zn.

Definition 1. An (n,RH , R,R0) code consists of encoders
fH : Yn → [2nRH ], f : [2nRH ] × Xn × [2nR0 ] → [2nR] and
a decoder g : [2nRH ] × [2nR] × [2nR0 ] → X̂n. We permit
stochastic encoders PMH |Y n , PM |Xn,MH ,K and a stochastic
decoder PX̂n|MH ,M,K .

Nodes A, H and B use an (n,RH , R,R0) code to coor-
dinate against E. We consider payoff against the worst-case
adversary. We assume that E knows PXYD and the code in
use.

Definition 2. Fix a distribution PXYD and payoff function
π : X × X̂ ×Z → R. We say (RH , R,R0,Π) is achievable if
there exists a sequence of (n,RH , R,R0) codes such that

lim inf
n→∞

min
{PZi|M,Di−1}ni=1

E
1

n

n∑
i=1

π(Xi, X̂i, Zi) ≥ Π. (3)

With a refined analysis, our main result can be readily
extended to more stringent measures such as probability of
assured payoff and symbol-wise minimum payoff [7].

Our result allows incorporation of multiple payoff/distortion
functions depending on the players’ moves to recover results
of interest. By convention, payoffs are to be maximized, while
distortion is to be minimized (replace (−Π) by Π in (3)).

Definition 3. The rate-payoff region R is the closure of
achievable tuples (RH , R,R0,Π).

III. MAIN RESULT

The characterization of the rate-payoff region is given
in terms of the following set. Let S be the set of tuples
(RH , R,R0,Π) ∈ R4 such that

RH ≥ I(Y ;W ), (4)
R ≥ I(X;UV |W ), (5)
R0 ≥ I(D;V |U,W ), (6)

Π ≤ min
z(·,·)

E
[
π(X, X̂, z(U,W ))

]
, (7)

evaluated with respect to any QDXY UVWX̂ such that

(X,Y,D) ∼ PXYD, (8)
W − Y −XD, (9)

DY −XW − UVW − X̂, (10)
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with cardinality bounds |W| ≤ |X ||Y|+6, |U| ≤ |X ||Y||W|+
4, |V| ≤ |X ||Y||W||U||X̂ | + 2. Also, D = (X,Dx) with
PDx|X arbitrary.
Theorem 1.

R = S. (11)

The rate-payoff region is unchanged if the following addi-
tional constraints are imposed:
• {V ⊥ (X,Y,D,W )} or {H(U |V ) = 0}, and
• B sees past actions (Xi−1, Y i−1, Zi−1) at time i.

Also, the region is achievable for a general disclosure channel
PD|XY .

IV. OBSERVATIONS

Our assumption on the disclosure channel PD|XY is made
due to a a limitation of our converse argument. This ensures
that the desired Markov chains hold in the converse proof.
Nevertheless, our result addresses the natural choice D = X .
Also, the important cases of D = ∅ and when B’s reconstruc-
tion is causally disclosed remain unsolved, although they are
solved in the absence of a helper [7, Theorem 1].

Note that setting W = ∅ ⇒ RH = 0 recovers [7, Theorem
1]. The Markov chains in S imply R+RH ≥ I(XY ;UVW ).
This is similar to the communication rate constraint of [7],
where the optimal strategy involved giving away part of the
communication to E. In our case, the helper merely aids in
this aspect.

Since H’s link is public and she does not see the secret key
K, E obtains her codeword Wn. Nodes A and H then perform
the scheme of [7] conditioned on this side information. That
is, A proceeds to reveal another codeword Un, while using
the secret key to keep V n secret. However, our construction
of the distant encoders A and H needs to address a technical
subtlety discussed in section VI.C.

We now present some special cases of our problem, obtained
through appropriate choice of payoff/distortion functions and
disclosure D.

A. Multiterminal Source Coding

By considering distortion π = −d(x, x̂) that is independent
of E’s actions, we obtain a source coding result that recovers
[20, Theorem 2]. The projection of R onto (RH , R,Π1) is

RH ≥ I(Y ;W ), (12)

R ≥ I(X; X̂|W ), (13)

Π1 ≥ E
[
d1(X, X̂)

]
, (14)

with W − Y −X , Y −XW − X̂ and other constraints fixed.
Incidentally, a solution to the problem of general distortion

d(x, y, x̂) was claimed by Kaspi-Berger [21, Theorem 2.1,C],
and refuted by Permuter et al [20], [22] due to an incomplete
converse argument. This gap is echoed by our converse proof,
which prevents us from considering payoff with respect to Y n.

Whereas our (R,RH) region is defined by a union of
rectangles, [21, Theorem 2.1,C] proves that a union of larger
pentagonal regions is achievable. This is achieved by binning

at the helper. In section VII.B, we provide another example
where general distortion renders the problem intractable.

B. Equivocation
By picking π1 = −d1(x, x̂) and π2 arbitrary, R transforms

to the set

RH ≥ I(Y ;W ), (15)
R ≥ I(X;UV |W ), (16)
R0 ≥ I(D;V |U,W ), (17)

Π1 ≥ E
[
d1(X, X̂)

]
, (18)

Π2 ≤ min
z(·,·)

E
[
π2(X, X̂, z(U,W ))

]
, (19)

with the same distributional constraints. When we pick the log-
loss π2 = − log z(x) with causal disclosure D = X , where
z(x) ∈ ∆X , the second payoff reduces to E’s normalized
equivocation of Xn i.e. n−1H(Xn|MH ,M) [12] [7, Lemma
2]. The region R simplifies to

RH ≥ I(Y ;W ), (20)

R ≥ I(X; X̂|W ), (21)

Π1 ≥ E
[
d1(X, X̂)

]
, (22)

Π2 ≤ H(X|W )− [I(X; X̂W )−R0]+, (23)

with Markov chains W −Y −X and Y −WX− X̂ and other
constraints fixed. The proof is similar to [7, Corollary 5].

Note that the choice of π2 as log-loss effectively makes E a
passive adversary, in the sense that we know her best strategy
[7, Lemma 2].

C. Lossless
With the stronger results mentioned in section II, we

can recover results for secure lossless coding by setting
π1(x, x̂, z) = π(x, z) if x̂ = x and −∞ otherwise [7, Cor.
1]. We omit them here due to a lack of space.

V. CONVERSE

We may assume that Bob can use decoders{
PX̂i|MH ,M,K,Xi−1,Y i−1,Zi−1

}n

i=1
. We consider disclosure

D = X for simplicity here.

A. Bounds
Let (RH , R,R0,Π) be achievable. We shall use the random

variable T uniformly distributed on [n], as a time index. We
use standard information-theoretic inequalities and the fact that
Xn −MH −K:

nRH ≥ H(MH) ≥ I(MH ;Xn, Y n) (24)

≥
n∑

i=1

H(Xi, Yi)−H(Xi, Yi|MH , X
i−1) (25)

≥
n∑

i=1

I(Yi;MH , X
i−1) (26)

= nI(YT ;MH , X
T−1, T ), (27)
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nR ≥ H(M) ≥ H(M |K,MH) (28)
≥ I(Xn;M |K,MH) (29)

=

n∑
i=1

I(Xi;M,K|MH , X
i−1) (30)

= nI(XT ;M,K|MH , X
T−1, T ), (31)

nR0 ≥ H(K) ≥ H(K|M,MH) (32)
≥ I(Xn;K|M,MH) (33)

=

n∑
i=1

I(Xi;K|M,MH , X
i−1) (34)

= nI(XT ;K|M,MH , X
T−1, T ), (35)

Π ≤ min
z(·)

E
1

n

n∑
i=1

π(Xi, X̂i, z(M,MH , X
i−1, i)) (36)

= min
z(·)

EE[π(XT , X̂T , z(M,MH , X
T−1, T ))|T ] (37)

= min
z(·)

Eπ(XT , X̂T , z(M,MH , X
T−1, T )), (38)

where the arguments are z(m,mH , x
i−1, i). The desired ex-

pressions are obtained by setting X = XT , Y = YT , U = M ,
V = K and W = (MH , X

T−1, T ).

B. Pruning

Note that the above associations inherit Markov chains W−
Y −X and Y X − UVW − X̂ ⇐⇒ Y XW − UVW − X̂ .
The second Markov chain differs from (10). Let the induced
joint distribution be

Q = QX̂QWUV |X̂QY XW |WUV (39)

= QX̂WUVQXW |WUVQY |XWUV . (40)

Now, let us construct a distribution that satisfies (10),

P = QX̂WUVQXW |WUVQY |XW , (41)

where QY |XW is induced by Q. Firstly, note that∑
y

Q =
∑
y

P = QX̂WUVX , (42)

so the constraints on (R,R0,Π) don’t change.
We have QXW = PXW from above and PY |XW = QY |XW

by construction. Also, PY XW = QY XW ⇒ PYW = QYW so
the constraint on RH does not change. Since P inherits the
Markov chain W−Y −X of Q and satisfies (10), we conclude
that we can replace Q with P , while keeping the rate-payoff
region unchanged.

C. Comment on Converse

The above modification of Q is required in order to recover
the desired Markov relation (10). However, note that the trick
alters the marginal distribution QXYWUX̂ in general. Un-
fortunately, this prevents us from considering general payoff
d(x, y, x̂, z). This also explains why the corresponding source
coding problem with general distortion remains unsolved [21],
[20], [22].

As an aside, the association of W has operational meaning
for our problem. Another possibility is to pair XT−1 with M ,
which may be fruitful for general disclosure D. Also, note
that V ⊥ (X,Y,W ).

VI. SKETCH OF ACHIEVABILITY

A. Likelihood Encoder

Optimal play in zero-sum games is often stochastic. As a
result, a stochastic decoder is crucial in our work. On the other
hand, it is unknown if deterministic encoding suffices. Once
we fix our strategy of play, we look for encoders/decoders
that recover an iid distribution on all variables. This is the
motivation behind likelihood encoding [15]. With the desired
average performance guaranteed, we can add any number of
payoff functions and the same analysis will guarantee that
good encoders/decoders exist.

B. Codebook Construction

We consider D = X for simplicity. Pick a distribution Q
of the form that defines S. Generate the helper’s codebook:
2nI(Y ;W ) iid Wn codewords indexed by MH ∈ [2nRH ].
Conditioned on each Wn codeword, generate 2nI(X;U |W ) iid
Un codewords, indexed by (MH ,M) ∈ [2nRH ] × [2nR].
For each (Wn, Un,K) triple, generate 2nI(X;V |U,W ) iid V n

codewords, indexed by (MH ,M,K) ∈ [2nRH ]×[2nR]×[2nR].
Note that W − Y −X allows the helper to remotely pick

a Wn codeword, while Y − XW − UVW − X̂ reflects the
natural flow of information in our scheme: A sees (Xn,Wn),
while B sees (Un, V n,Wn).

In keeping with the converse, we may assume that V ⊥
(X,Y,D,W ). This gives secret key K the natural interpreta-
tion of facilitating randomized time-sharing between several
V n codebooks.

C. Idealized Distributions

Consider the distribution P̄ obtained by drawing
(MH ,M,K) uniformly and passing the resulting
(Un,Wn, V n) codewords through the memoryless channel
QXY X̂|UVW . Note that Y n − (Xn,Wn) − (Un, V n,Wn) −
X̂n. We define A and B to be P̄UnV nWn|XnWn and
P̄X̂n|UnV nWn respectively.

Note that defining H with P̄ is problematic because she
does not see Xn. Consider the distribution P̄ (1) obtained
by drawing MH uniformly and passing the resulting Wn

codewords through the memoryless channel QXY |W . Note that
Wn − Y n −Xn. We set H to P̄ (1)

Wn|Y n .
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The technical difficulty rests in reconciling H and {A,B}
to obtain the performance under P̄ . The soft-covering lemma
[16] ensures that under the (RH , R) constraints, the joint
distribution induced by our choice of {A,B,H} approximates
P̄ in ‖·‖

TV
.

D. Attaining Secrecy

To combat E, we would like enough K to keep V n secret
i.e. V n ⊥ (Un,Wn). The soft-covering lemma [7, Lemma 4]
ensures this under the R0 constraint. Moreover, a memoryless
channel is simulated [16] from (Un,Wn) to Xn, so causal
disclosure does not help E.

VII. EXTENSIONS

A. Private Link from A to B

One might obtain this by defining a new problem where
E does not see (M,K). Alternatively, note that setting R0 ≥ R
in S ensures that (Un, V n) are secret in our scheme. The con-
verse arguments are identical. For disclosure D = X and log-
loss π2 = − log z(x), where z(x) ∈ ∆X , the second payoff
reduces to E’s normalized equivocation n−1H(Xn|MH ,M)
[12] [7, Lemma 2]. The region R simplifies to

RH ≥ I(Y ;W ), (43)

R ≥ I(X; X̂|W ), (44)

Π1 ≥ E
[
d1(X, X̂)

]
, (45)

Π2 ≤ H(X|W ), (46)

with W −Y −X , Y −XW −X̂ and other constraints fixed.
This recovers [4, Theorem 4] of Kittichokechai et al.

B. Private Side Information

Consider a problem without H. When the link from A to B is
public and they share uncoded side information Y n unseen by
E, causal disclosure D leads to a peculiar phenomenon.

For concreteness, assume X = Y ⊕ D (addition in a
finite field), with Y ⊥ D and H(Y ) ≤ H(D). Let payoff
be π = 1{x 6=z}, the Hamming distance between X and E’s
reconstruction. Under this model, A knows (Xn, Y n, Dn),
while B sees Y n.

For lossless communication of Xn, the scheme with best-
known performance is for A to send a random enumeration of
Dn conditioned on Y n, at rate H(D) = H(X|Y ). Given the
message M , E narrows down Dn to a set of size 2nH(Y ). Since
a 2−kH(D) fraction of the typical set [23] of Dn sequences
agrees with causal disclosure dk, E learns Dn exactly for times
k > H(Y )

H(D)n, as n→∞.

Also, when k < H(Y )
H(D)n ⇐⇒ nH(Y ) > kH(D), the

block Dk is concealed from E because the random enumer-
ation acts as an unstructured one-time pad [6], as k → ∞.
Hence, causal disclosure does not help. When Y ∼ Bern(p)
(0 ≤ p ≤ 1/2) and D ∼ Bern(1/2), E incurs an average
payoff of H(Y )

H(D) (1/2) + (1− H(Y )
H(D) )(p) = p+ h(p)(1/2− p),

where h(·) is the binary entropy function. It is unknown
whether this scheme is optimal.

Remarkably, the same problem for payoff π = 1{d6=z}
is solved by our result and [7, Theorem 1]. However, the
problem changes dramatically when the side information Y
is introduced into the payoff function. This example also
illustrates that an equivocation-based approach is indifferent
to securing just a fraction X(H(Y )

H(D) )n of the source sequence
versus partially securing the whole sequence.
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