
1

Proactive Content Distribution for Dynamic Content
John Tadrous, Atilla Eryilmaz and Hesham El Gamal

Abstract—We study the bounds and means of optimal caching
in overlay Content Distribution Networks (CDN) that serve data
with dynamic content to end-users who send random requests
for the most up-to-date version of such content. Applications
with such dynamic content are numerous, including daily news,
weather conditions, stock market prices, social networking mes-
sages, etc. The service for such a dynamically changing content
necessitates a fundamentally different approach than traditional
pull-based (also called non-proactive) schemes. In particular,
proactive caching is required to optimize the type and amount
of content to be updated in the local servers of a CDN hence
minimize the transmission and caching costs, subject to storage
constraints.

We study the metric of cost reduction achieved by proactive
caching over non-proactive caching strategies. We introduce the
notion of popularity to establish fundamental upper and lower
bounds on cost reduction under different degrees of storage space
constraints. We prove the lower bounds to achieve the optimal
rate of increase achieved by the upper bounds as the database of
items increases. In particular, for a general form of convex, super-
linear and monotonically increasing cost functions, our results
reveal that the optimal cost reduction scales as the cost function
itself, or at least as its first derivative, depending on the number
of popular data items, as well as the cache storage capacity.

I. INTRODUCTION

Content delivery networks offer fast and reliable means of
communicating data content from service providers (SPs) to
end-users that are sparsely located around the world [1], [2].
Most of CDN providers such as Akamai, and Limelight use an
overlay structure for CDN organization [3], where the CDN
consists of two types of servers: origin servers which contain
root content and are updated by the service provider, and
replica (or surrogate [2]) servers which contain replica of the
root content and are responsible for communicating it to its
associated end-users upon request.

Although CDNs improve the quality and speed of delivery
as well as reduce the bottleneck demand at the origin servers,
there are significant cost issues arising due to transmission of
content from both origin and replica servers [1]. Moreover, in
dynamic content environment, placement of the new data in
the replica servers poses a concern about efficient approaches
that would minimize the cost incurred due to unnecessary
transmissions [3],[4].

In this paper, we investigate a scenario where data content is
highly dynamic while end-users are interested in the most up-
to-date version of it. Such content includes daily news, weather
conditions, stock market prices, social networking messages,
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etc. The CDN has a hard delay constraint of supplying the
requested content to the end-user at the same slot of demand.
This requirement causes most of the user requests to be sent
directly from the origin servers at a higher cost. However,
based on the recent findings on human behavioral patterns
reporting the human behavior to be up to 93% predictable [5],
and the emerging work on proactive resource allocation for
wireless networks [6]-[8], we propose and study a proactive
content outsourcing scheme for urgent demand and dynamic
content.

Over the past years there has been a growing research in
the deployment of CDNs. It has addressed several aspects of
CDN operation and performance ranging from choosing the
best place to deploy origin and replica servers [9], [10] to
caching and routing strategies of the new content [4], [11].
In [12], [13], different schemes for replica server content
eviction have been investigated but neither of them considers
a scenario where dynamic content is updated at a high rate.
In fact, pull-based schemes [2], which respond reactively to
end-user demand are no longer efficient and potentially cause
extra undesired cost. Consequently, a better way to respond to
such a high content update rate is to proactively (i.e., ahead of
time) cache new data in replica servers to utilize the available
storage capacity efficiently.

Existing work on proactive content distribution is found
in [4], where the considered cost function is the number of
hops that requested data has to traverse in order to reach a
corresponding end-user in a model representing the CDN as
a graph with its nodes being origin servers. A probabilistic
model has been used to describe the demand on a certain
content and heuristic greedy schemes have been proposed to
minimize the expected time average delivery cost. However,
the authors do not establish solid performance analysis for the
proposed techniques.

In this paper, we consider an overlay CDN setup where
the load at an origin server scales linearly with the amount
of requests that have to be served, whereas it scales at most
linearly with the number of requests at each replica server.
The cost incurred due to content delivery is modeled as an
increasing convex function in the total load served by each
server. Assuming that there are M data items receiving updates
at each new slot and that end-users are interested in the
updated version of it, we define our cost reduction metric and
prove the gains that can leveraged through proactive caching,
by characterizing the asymptotic performance of cost reduction
as M grows to infinity. We prove the cost reduction to scale
as the cost function itself, and in the worst case scenario, it
scales as the first derivative of the cost function.

The rest of this paper is organized as follows. In Section
II, we layout the system model. In Section III, we formulate
the proactive content caching problem. In Section IV, we
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provide the cost reduction scaling results. We validate the
analytical results through a numerical simulation in Section
V, and conclude the paper in Section VI.

II. SYSTEM MODEL

We consider an overlay Content Distribution Network
(CDN) structure (e.g., see [2], [3]) whereby a single origin
server is connected to D replica servers. Each replica server
d has a storage capacity of size Bd and is serving a set of
end-users.
Dynamic Data Content: We consider the service of M data
items by the CDN, where each such data item represents a
different type of dynamically changing information content,
as observed in applications of news media, podcasts, online
gaming, and social networks. We assume a slotted system
operation, with the slot size set to the period at which the
content is refreshed and the user requests are received, it
can range from seconds to hours depending on the particular
application domain. In slot t, each data item m receives a
constant update of size S > 0 at the origin server1, which
must be supplied to the end-users at the next slot t + 1, in
case it is requested. If the future requests of data items were
perfectly known, the optimal caching strategy would simply be
the storing of those items with the greatest demand. However,
the user demand for the data items in the subsequent slot are
only statistically known, which requires a careful proactive
caching strategy that we study in this paper.
Stochastic Requests: To characterize the stochastic user in-
terests, we use a random process of {N t

m,d}t to count the
number of end-users at replica server d requesting data item
m over time. In our study, the random variables N t

m,d are
assumed to have a positive mean E[N t

m,d] > 0, and to be
independent and identically distributed (i.i.d.) over time. For
any replica server d, N t

m,d and N t
j,d are independent if m �= j.

We further assume a bounded number of requests to each data
item. That is, N t

m,d ≤ N, for all m, d, t and for some finite
N .
Cost of Service: We focus on the total cost incurred by the
CDN to deliver new content to end-users. We take the cost of
serving a given amount of data from a certain server and in a
fixed duration to be a smooth, strictly convex, and increasing
function of the load C : R+ → R+.

Further, we assume that the origin server communicates data
to the end-users through a unicast channel where the load
scales linearly in the number of requests. While this assump-
tion can be relaxed, it captures the resource consumption in
current networks where service of requests are decoupled. On
the other hand, we assume that replica servers can employ
more sophisticated techniques, such as network coding (c.f.
[14], [15]), that can reduce the cost incurred from sending the
same content to the end-users. To capture this, we assume that
if an amount Ad of data is to be sent from server d to Nd end-
users, then the total load at the replica server d scales with
Nd as Ad ·g(Nd), where g : N→ R+ is a non-decreasing and
non-negative function with g(K) ≤ K on N. This condition

1We fix the size of the content update for simplicity of notation, the analysis
will still hold under a different update size for each data item.

formalizes the fact that the replica server is not more costly
than the origin server.

III. PROBLEM FORMULATION

In this section, we describe the model of operation for
both the non-proactive content caching scheme which is taken
to be a baseline for performance analysis, and the proposed
proactive content caching scheme.

A. Non-proactive Caching

Under non-proactive caching (known in [2], [16] as pull-
based content outsourcing), the CDN servers reactively re-
spond to the initial demand pattern for a newly refreshed
content. They wait for users to generate requests and then they
pull the new content from the origin server, supply it to the
end-users, and cache it for future demand service. In this work,
however, we focus on dynamic content updates that arrive at
each new slot. Since 1) end-users’ demand has to be supplied
at the same slot of request emanation, and 2) users are always
interested in the most recent version of the requested data
items, the CDN will be obliged to serve the requests directly
from the origin server, as transmission from origin server to
replica servers then from replica server to end-users results
in undesirable delay. The total load, therefore, at each replica
server d in that case is zero.

Thus, the expected total cost incurred by the CDN in time
slot t, is written as

C
N
t (M) = E

[
C

(
D∑

d=1

M∑
m=1

S ·N
t
m,d

)]
, ∀t ≥ 0, (1)

where the superscript N in CNt (M) denotes the non-proactive
operation of that system. We consider the pull-based scenario
as our baseline for comparison with the proactive caching
scheme proposed below.

B. Proactive Caching

The proactive caching scheme is motivated by the recent
findings on the predictable human behavior [5] as well as the
popularity modeling of web data content introduced in [17]
which enables the CDN to construct a demand profile to each
data item m, m = 1, · · · ,M .

In order to efficiently utilize the available storage space at
each replica server in a time slot t, the origin server exploits
the available statistics about the demand on each data item to
proactively send a portion xt+1

m,d of each data item m to replica
server d. Thus, at the next slot t+ 1, replica server d will be
able to directly supply xt+1

m,d to the N t+1
m,d users requesting item

m and the origin server will have to provide the rest of it which
is S − xt+1

m,d directly to the end-users.
Hence, the total expected cost as a function of the number

of data items M and the current slot t will be given by

C
P
t (M) =E

[
C

(
D∑

d=1

M∑
m=1

(S − x
t
m,d)N

t
m,d + x

t+1

m,d

)]

+

D∑
d=1

E

[
C

(
M∑

m=1

x
t
m,d · g(N

t
m,d)

)]
, t ≥ 0.

(2)

where the superscript P in CPt (M) denotes the proactive
caching approach employed by the CDN.
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C. Performance Metric

We consider the time average expected cost reduction as
our performance metric to analyze the system gains.

First, note that the time average expected cost for the non-
proactive scheme is given by

CN (M) = lim
T→∞

1

T

T−1∑
t=0

CNt (M) = CN1 (M), M ∈ N, (3)

since {N t
m,d}t≥0 is an i.i.d. sequence for every (m, d) pair.

In comparison, the time average expected cost for the
proactive scheme is given by

C
P(M) = minimize

{xk
m,d

}k≥0,∀m,d

lim sup
T→∞

1

T

T−1∑
t=0

C
P
t (M) (4)

subject to 0 ≤ x
k
m,d ≤ S, ∀m, d, k,

M∑
m=1

x
k
m,d ≤ Bd, ∀d, k

where Bd = KdS, ∀d, with Kd being a positive integer.
We consider a CDN scheduler that does not observe the
instantaneous realization of the demand N t

m,d, i.e., it operates
based on the knowledge about the system statistics.

We note that the minimum of the above optimization prob-
lem exists and is unique. Existence follows since the objective
function is convex; the composition in xt

m,d is linear ∀m, d,
and the sum of strictly convex functions is strictly convex
(c.f. Chapter 3 of [18]), and the constraint set is compact.
Uniqueness follows from the strict convexity. Hence, for each
(m, d) pair, there exists an optimal sequence {x∗tm,d}t≥0 that
results in the smallest possible time average cost.

The next lemma is required to prove that lim supT→∞ in
(4) can be replaced with limT→∞ and hence the time average
of proactive expected cost exists. Moreover, the same lemma
will be used to prove other crucial results in this paper.

Lemma 1: Let {yn}n≥0 be a bounded sequence in R+, then
the limit limn→∞

1
n

∑n−1
i=0 yi exists and is finite.

Proof. Proof idea is based on showing that
{∑n−1

i=1
yi

n

}
n

is a
Cauchy sequence. We refer the interested reader to Appendix
A in [19].

Corollary 1: Fix M ∈ N, then CP(M) defined in (4) exists.
We are now ready to define the cost reduction metric as

the time average difference between the non-proactive and
proactive costs:

ΔC(M) := CN (M)− CP(M), M ∈ N. (5)

Note that, CN (M) ≥ CP(M), ∀M , as CN (M) is obtained
when xt

m,d = 0, ∀m, d, t, thus ΔC(M) ≥ 0.
In Section IV-C, we analyze the asymptotic behavior of the

cost reduction ΔC(M) as the number of data items M scales.

IV. COST REDUCTION ANALYSIS

In this section, we study the performance of optimal cost
reduction under proactive content caching. To that end, we
first establish the existence of a steady-state solution to (4).

A. Steady-State Solution

Let x∗t denote the vector of optimal proactive downloads
(x∗tm,d)m,d at time t. That is, for a given M , we assume that
{x∗t}t is the optimal solution to (4).

Theorem 1: Fix M ∈ N. Then, there exists a unique vector
x
∗ such that

lim
t→∞

x
∗t = x

∗.

Proof. We apply Jensen’s inequality to the objective func-
tion of (4), and then use Lemma 1 to establish the existence
of a steady-state solution. Then, uniqueness follows from the
strict convexity of the objective function. We refer interested
reader to Appendix B in [19].

From Theorem 1, it turns out that (4) is equivalent to

C
P(M) = min

xm,d,∀m,d
E

⎡
⎣C

⎛
⎝∑

d,m

(S − xm,d)Nm,d + xm,d

⎞
⎠
⎤
⎦

+

D∑
d=1

E

[
C

(
M∑

m=1

xm,d · g(Nm,d)

)]
(6)

subject to 0 ≤ xm,d ≤ S, ∀m, d,

M∑
m=1

xm,d ≤ Bd, ∀d,

where we have omitted the time dependence since the random
variables N1

m,d, N
2
m,d, · · · are i.i.d. for every (m, d) pair. Thus

the CDN needs only to solve the problem once, obtain an
optimal solution x

∗ = (x∗m,d)m,d, and apply it at every time
slot in order to achieve the minimum cost.

B. Fundamental Bounds

Now we consider upper and lower bounds on ΔC(M)
which will be used to derive the asymptotic results.

Definition 1 (Popular item): For each data item and replica
server pair (m, d), where m = 1, · · · ,M , and d = 1, · · · , D,
define a marginal cost

μm,d := E

[
C
′

(
D∑

u=1

M∑
j=1

SNj,u

)
(Nm,d − 1)− C

′(0) · g(Nm,d)

]
.

(7)
We say that data item m is popular with respect to server d if
μm,d > 0. Moreover, denote by Md(M) the set of data items
that are popular with respect to server d, d = 1, · · · , D, and
let M∗

d (M) := |Md(M)|, the cardinality of Md(M). �
In the above definition, C ′ is the first derivative of C. The
marginal cost μm,d captures the contribution of the data item
m, requested by users of replica server d, to the total non-
proactive cost. The data item is considered popular if μm,d is
positive, as popular items qualify for content caching.

Remark 1: In some existing work (see e.g. [17]), the
popularity of data items is captured through the probability
of requesting each of them, where data items with high
such probability are considered popular. In our definition,
however, we formulate the popularity from the perspective
of the CDN operator. Popular data items have high potential
towards increasing the cost, and hence can be proactively
cached in order to reduce it. Interestingly, both definitions are
not conflicting under a constant data item size S, as data items
with high probability of demand can be cached to enhance
the cost reduction. Nevertheless, in the more general case,
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when each data item has a different size, data items that
yield high cost are not necessarily the ones having higher
demand probabilities, as the size of the data item contributes
substantially to the expected cost.

Now we establish fundamental upper and lower bounds on
the cost reduction. Recall x∗m,d is the cached amount from
item d in replica server d selected by the optimal steady-state
proactive strategy.

Lemma 2 (Upper bound on cost reduction): Let M ∈ N,
and for2 d = 1, · · · , D,

ΔC(M) ≤ E

⎡
⎣C′

(
D∑

u=1

M∑
j=1

SNj,u

)
·

D∑
d=1

∑
m∈Md

x
∗
m,d(Nm,d − 1)

⎤
⎦

−

D∑
d=1

E

⎡
⎣C′(0) · ∑

m∈Md

x
∗
m,dg(Nm,d)

⎤
⎦ . (8)

Proof. Idea is based on the use of the definition of popularity,
the non-negativity of x∗m,d and the mean value theorem (MVT)
for random variables. We refer the interested reader to the
complete proof in Appendix C of [19].

Now, in order to establish a lower bound on ΔC, we develop
a proactive caching policy. As a first step to accomplish this,
we define a set Kd(M) as

Kd :=

{
m ∈Md : μm,d ≥ μj,d, ∀j ∈Md\Kd,

|Kd(m)| = min{Kd,M
∗
d }

}
, ∀d = 1, · · · , D. (9)

That is, Kd contains the min{Kd,M
∗
d } data items with highest

marginal cost if not cached in server d. Further, we introduce
a parameter x̂ as the solution to

E

[
C
′

(
D∑

u=1

M∑
j=1

SNj,u+
∑
j∈Ku

x̂(1−Nj,u)

)
·

D∑
d=1

∑
m∈Kd

(Nm,d−1)

]

=

D∑
d=1

E

[
C
′

( ∑
m∈Kd

x̂ · g(Nm,d)

)
×
∑

m∈Kd

g(Nm,d)

]
(10)

or otherwise, if (10) does not hold for any positive x̂ < S,
we set x̂ = S. Note that x̂ can only be positive which follows
from (7), noting that Kd contains popular items for all d, and
C ′ is monotonically increasing.

Now we propose the following proactive content caching
policy.

Definition 2 (Policy A): A proactive caching policy, Policy
A, caches a portion x̃m,d of data item m in server d, where

x̃m,d :=

{
x̃, if m ∈ Kd,

0, if m /∈ Kd,
∀m, d, (11)

and x̃ = x̂− r for some r > 0 chosen such that x̃ > 0 and

E

[
C
′

(∑
u,j

SNj,u +
∑
j∈Ku

x̃(1−Nj,u)

)
·

D∑
d=1

∑
m∈Kd

(Nm,d − 1)

]
>

D∑
d=1

E

[
C
′

( ∑
m∈Kd

x̃ · g(Nm,d)

)
·
∑

m∈Kd

g(Nm,d)

]
.� (12)

2Note that we have omitted the dependence of Md on M just for
simplifying the notation.

Note that, x̃ exists by the monotonicity of C ′, and x̃m,d

satisfies the constraints of the optimization (6) for all m, d.
Hence, we can establish the following lower bound on ΔC.
Lemma 3 (Lower bound on cost reduction): Let M ∈ N,

then under Policy A, the cost reduction satisfies

ΔC(M) ≥

x̃ · E

[
C
′

(∑
u,j

SNj,u + x̃ ·
∑
j∈Ku

(1−Nj,u)

)
·
∑

d,m∈Kd

(Nm,d − 1)

]

− x̃ ·

D∑
d=1

E

[
C
′

( ∑
m∈Kd

x̃ · g(Nm,d)

) ∑
m∈Kd

g(Nm,d)

]
. (13)

Proof. The proof follows by applying the MVT for random
variables to ΔC(M) and noting that Policy A is not neces-
sarily optimal. We refer the interested reader to Appendix D
in [19].

C. Asymptotic Performance

In this subsection, we investigate the scaling order of the
cost reduction when the number of data items grows to infinity.

Theorem 2: For any strictly convex, and monotonically
increasing cost function C : R+ → R+ satisfying

lim
L→∞

Lδ

C ′(L)
= 0, for some δ > 0, (14)

suppose that there exists a non-negative and non-decreasing
function h such that h(M) ≤M , ∀M ∈ N,

lim sup
M→∞

min{M∗
d (M),Kd(M)}

h(M)
<∞, ∀d, (15)

and

lim inf
M→∞

min{M∗
d (M),Kd(M)}

h(M)
> 0 for some d, (16)

where M∗
d (M) and Kd(M) are the number of popular data

items, and the number of data items that can be stored in server
d, respectively. Then:

ΔC(M) = Θ(h(M)C ′(αM)), for some α > 0. (17)

Proof. The idea of the proof is based on showing that
lim supM→∞

ΔC(M)
h(M)C′(α2M) < ∞ for some α2 > 0. Then,

we prove that lim infM→∞
ΔC(M)

h(M)C′(α1M) > 0 for some 0 <

α1 ≤ α2. Hence we conclude that there exists α ∈ [α1, α2] for
which ΔC(M) = Θ(h(M)C ′(αM)). We refer the interested
reader to the complete proof in Appendix E of [19].

Theorem 2 highlights the asymptotic scaling order of the
cost reduction with the number of data items. At this point,
the following remarks can be made.

Remark 2: The cost reduction leveraged through proactive
content caching grows unboundedly as the number of data
items increases. Even if the available storage at the replica
servers is finite, i.e., h(M) is finite, still C ′(M) grows to
infinity with M (from Conditions (14)).

Remark 3: If the number of popular data items and the
available buffer storage scale linearly with M , that is h(M) =
M , then the leveraged cost reduction scales as the cost function
itself.
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(a) ΔC(M) scales with M2, each replica server can
store all the popular data items.
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(b) ΔC(M) scales with M , Kd = 10, ∀M .

Fig. 1: Scaling of ΔC(M) in different regimes.

Remark 4: Typical cost functions, such as those capturing
delays and energy consumption, increase super-linearly in the
total load. Therefore, they satisfy Condition (14).

Remark 5: To see the necessity of (14), consider the cost
function C(L) = L− log(L+1), which is strictly convex and
increasing, but does not satisfy (14). Assuming D = 1, and a
deterministic number of requests N > 1 targeting each of M
data items, then ΔC(M) does not scale as Θ( αM2

1+αM
) for any

α > 0.

V. NUMERICAL RESULTS

In this section, the performance of cost reduction under
proactive content caching is evaluated numerically. We con-
sider a single origin server and D = 4 replica servers. We
assume that there are N = 100 users covered by each replica
server. The random variable Nm,d has a binomial distribution
with parameter φm,d, which is a heavy tail distribution to
ensure all data items being popular. We assume a quadratic
cost function C(L) = L2 and take all the data items to be
popular, while varying the available buffer size. Throughout
the simulation we take g(Nm,d) = Nm,d which represents a
worst-case load at the replica servers. The content update size
is set to S = 5.

In Fig. 1, we compare the cost reduction scaling under
abundant and finite buffer storage conditions. Fig. 1a depicts
the cost reduction normalized by M2 under the optimal policy
and Policy A as well as the upper bound derived in (8).

Fig. 1b, on the other hand, shows the cost reduction as
it scales with M under a finite buffer constraint. In both
scenarios, one can observe the scaling order of the cost
reduction, and notice that the optimal policy and Policy A
coincide as the number of data items grows.

VI. CONCLUSION

In this work, we have studied a fundamental question of
how to optimally utilize the predictability of a dynamic data

content through a proactive content caching scheme. We have
formulated and analyzed the problem of minimizing the time
average expected cost at a content distribution network (CDN),
while data items experience a high content update rate. We
have introduced a metric for measuring the popularity of data
items, from the CDN’s perspective, and proved its efficiency
in proactive caching strategies. In particular, under proactive
content caching, we have shown that for any convex and super-
linearly increasing cost function, unbounded cost reduction
gain can be leveraged as the number of data items grows, even
if the available storage capacity at replica servers is finite.
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