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Abstract—The fundamental diversity-multiplexing tradeoff
(DMT) of the quasi-static fading, MIMO Z interference channel
(ZIC), with M1 and M2 antennas at the transmitters and N1

and N2 antennas at the corresponding receivers, respectively, is
derived. Channel state information at the transmitters (CSIT)
and a short-term average power constraint is assumed. The
achievability of the DMT is proved by showing that a simple
Gaussian superposition coding scheme can achieve a rate region
which is within a constant (independent of signal-to-noise ratio
(SNR)) number of bits from an upper bound to the capacity
region of the ZIC. We also characterize an achievable DMT
of the ZIC with No-CSIT and show that in a small region of
multiplexing gains (MG), the full CSIT DMT of the ZIC can be
achieved with no CSIT at all. The size of this MG region depends
on the system parameters such as the number of antennas at the
four nodes (referred to hereafter as “antenna configuration”),
SNRs and interference-to-noise ratio (INR) of the direct and
cross links. Interestingly, for some antenna configurations this
MG region covers the entire MG region of the ZIC. Thus, under
these circumstances, the optimal DMT of the MIMO ZIC with F-
CSIT is same as that of a corresponding ZIC with No-CSIT and
availability of CSIT can not further improve the DMT. Finally, we
identify a class of ZICs with M1 = M2 = M ≤

N1

2
, N1 ≤ N2 and

SNR ≤ INR where the achievable DMT with No-CSIT coincides
with the optimal DMT with F-CSIT.

I. INTRODUCTION

ZICs emerge as the natural information theoretic model
for several practical wireless communication scenario such as
femto-cells [1]. Also, the ZIC is a special case of the 2-user IC.
Thus optimal (in some metric) coding and decoding schemes
on a ZIC might reveal useful insights for the 2-user IC also.
For instance, the optimal DMT of the ZIC is an upper bound
for the 2-user MIMO IC (with and without CSIT). These facts
make the analysis of the ZIC an important step towards a
better understanding of the general multiuser wireless system.
Motivated by the aforementioned facts in this paper we analyze
the DMT of the MIMO ZIC. However, unlike the DMT
framework in a point-to-point (PTP) channel, [2] where there
is a single communication link which can be characterized by
a single SNR, in a multiuser setting such as the one at hand, it
is only natural to allow the SNRs and INRs of different links
to vary with different exponentials with respect to (w.r.t.) a
nominal SNR, denoted as ρ. This technique was first used
in [3] to analyze the DoF region which the authors referred
to as the Generalized DoF (GDoF) region, of the 2-user SISO
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IC. Later, this technique was extended to the DMT scenario
of the SISO IC in [4] and [5]. Following similar approach, we
allow the differerent INR and SNRs at the receivers to vary
exponentially with respect to (w.r.t.) ρ with different scaling
factors. We refer to the corresponding DMT as the generalized
DTM (GDMT) to distinguish it from the case when SNR=INR
in all the links.

In this paper, we first derive the DMT of the MIMO ZIC
with CSIT and arbitrary number of antennas at each node.
The computation of the DMT of the MIMO ZIC involves
the asymptotic joint eigenvalue distribution of two specially
correlated random Wishart matrices which was recently de-
rived by the authors in [6] in a different context. Using this
distribution result, the fundamental DMT of the MIMO ZIC
channel with CSIT is established as the solution of a convex
optimization problem. While it is argued that in general the
optimization problem can be solved using numerical methods,
closed-form solutions are computed for several special cases.
We also characterize an achievable DMT of the MIMO ZIC
with No-CSIT. Comparing this result with the DMT with
CSIT, we found that for some specific system parameters,
these two DMTs are identical. Encouraged by this result, we
find a class of MIMO ZICs, with M1 = M2 = M ≤ N1

2 ,
N1 ≤ N2 and SNR ≤ INR, where the achievable GDMT with
No-CSIT coincides with the GDMT with CSIT.

An early work in this direction is [7], where the authors
derive an achievable DMT on a SISO ZIC with No-CSIT. The
optimal DMT of the SISO ZIC with F-CSIT can be obtained
from [8], where the optimal DMT (F-CSIT) of the 2-user
SISO IC was derived. In this work, we focus on the MIMO
case. In [9], an upper bound to the DMT of a 2-user MIMO
IC was derived for the case in which all nodes have same
number of antennas and the direct and cross links have the
same SNRs and INRs, respectively. This result, if specialized
for the MIMO ZIC, provides only an upper bound. Our result
will prove that for the special case considered in [9], this upper
bound is actually tight on a ZIC with F-CSIT. Further, the
result of this paper on MIMO ZIC is much more general, in
the sense that we consider arbitrary number of antennas at
each node and arbitrary scaling parameters for the different
SNRs and the INR of the system.

Notations: We denote the conjugate transpose of the matrix
A as A† and its determinant as |A|. C and R represent the
field of complex and real numbers, respectively. The set of
real numbers {x ∈ R : a ≤ x ≤ b} will be denoted by
[a, b]. Furthermore, (x ∧ y), (x ∨ y) and (x)+ represent the
minimum of x and y, the maximum of x and y, and the
maximum of x and 0, respectively. All the logarithms in this
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paper are with base 2. We denote the distribution of a complex
circularly symmetric Gaussian random vector with zero mean
and covariance matrix Q as CN (0, Q). If R represents a set
of points in R2 then R ± (c1, c2) = {(R1 ± c1, R2 ± c2) :
(R1, R2) ∈ R}, and finally, any two functions f(ρ) and g(ρ)
of ρ, where ρ is the signal to noise ratio (SNR) defined later,
are said to be exponentially equal and denoted as f(ρ)=̇g(ρ)

if, limρ→∞
log(f(ρ))

log(ρ) = limρ→∞
log(g(ρ))
log(ρ) . The same is

true for ≥̇ and ≤̇.

II. CHANNEL MODEL AND PRELIMINARIES

We consider a MIMO ZIC as shown in Figure 1, where
user 1 (Tx1) and user 2 (Tx2) have M1 and M2 antennas
and receiver 1 (Rx1) and 2 (Rx2) have N1 and N2 antennas,
respectively. This channel will be referred hereafter as a
(M1, N1, M2, N2) ZIC. Hij ∈ CNj×Mi is the channel matrix
between Txi and Rxj . H11, H21 and H22 are mutually
independent and contain mutually independent and identically
distributed (i.i.d.) CN (0, 1) entries. Following [5], we also
incorporate a real-valued attenuation factor for the signal
transmitted from Txi to the receiver Rxj (denoted as ηij). At
time t, Txi chooses a vector Xit ∈ C

Mi×1 and sends
√

PiXit

over the channel, where for the input signals we assume the
following short term average power constraint:

tr(Qit) ≤ Mi, ∀ i = 1, 2, where Qit = E

(
XitX

†
it

)
. (1)
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Fig. 1: Channel model for the Z IC.

With these aforementioned assumptions, the received sig-
nals at time t can be written as

Y1t = η11

√
P1H11X1t + η21

√
P2H21X2t + Z1t,

Y2t = η22

√
P2H22X2t + Z2t,

where Zit ∈ CNi×1 are i.i.d as CN (0, INi
) across i and t. The

above equations can be equivalently written in the following
form.

Y1t =
√

SNR11H11X̂1t +
√

INR21H21X̂2t + Z1t; (2)

Y2t =
√

SNR22H22X̂2t + Z2t, (3)

where the normalized inputs X̂is satisfy equation (1) with
equality and SNRii and INRji is the signal-to-noise ratio and
interference-to-noise ratio at receiver i. In the analysis that
follows, we will assume the following scaling parameters (with

respect to a nominal SNR, ρ) for the different SNRs and INR.

α11 =
log(SNR11)

log(ρ)
, α22 =

log(SNR22)

log(ρ)
, (4)

α21 =
log(INR21)

log(ρ)
. (5)

For ease of notations, in the sequel, we use the following
notations: SNRii = ρii, INR21 = ρ21, H = {H11, H21, H22},
ρ̄ = [ρ11, ρ21, ρ22] and ᾱ = [α11, α21, α22].

To define the DMT notations we follow [2]. We assume that
user i uses a coding scheme Ci and is operating at a rate Ri =
r1 log(ρ) bits per channel use. Let us denote C = {C1, C2}.
The diversity order of the ZIC with coding scheme C and
rates (R1, R2) is defined as follows

dZC(r1, r2, C ) = lim
ρ→∞

log (Pe(ρ̄))

log(ρ)
, (6)

where Pei
(ρ̄) represents the probability of error (averaged over

channel statistics) at receiver i and Pe(ρ̄) = (Pe1
(ρ̄)∨Pe2

(ρ̄)).
Finally, the optimal DMT of the ZIC, denoted as d∗ZC(r1, r2),
is defined as follows

d∗ZC(r1, r2) = max
C∈ eC

dZC(r1, r2, C ), (7)

where C̃ represents the collection of all coding schemes that
uses CSIT and short term power constraint (equation (1)).
Note the diversity order d∗ZC(r1, r2) is a function of the
relative scaling parameters of the different links ᾱ. However,
for brevity of notation, we will not mention them explicitly.

A. Approximate capacity region

In this subsection, we will first find a set of upper bounds
to the rate region of the MIMO ZIC. Next, we will propose
a simple superposition coding scheme, which can achieve a
rate region within constant (independent of SNR and channel
coefficients) number of bits to the set of upper bounds. This
approximate capacity result will then be used to derive the
fundamental DMT in the next section. Note that most proofs
are omitted in this paper due to space constraints but will be
reported in a full-length journal version of this paper [10].

Lemma 1: The capacity region of the 2-user MIMO ZIC
(of Figure 1) with F-CSIT, for a given realization of channel
matrices H , denoted by C(H, ρ̄), is outer bounded by the rate
region

Rc(H, ρ̄) + (N1 log(M1 ∨ M2), N2 log(M1 ∨ M2)),

where Rc(H, ρ̄) represents the set of rate pairs (R1, R2) such
that R1, R2 ≥ 0 and satisfies the following constraints:

Ri ≤ log
∣∣∣(INi

+ ρiiHiiH
†
ii

)∣∣∣ � Ibi, i ∈ {1, 2};
R1 + R2 ≤ log

∣∣∣(IN1
+ ρ21H21H

†
21 + ρ11H11H

†
11

)∣∣∣
log

∣∣∣∣(IM2
+ ρ22H22

(
IM2

+ ρ21H
†
21H21

)−1

H
†
22

)∣∣∣∣ � Ib3.

In what follows, we find an achievable rate region. Consider
a coding scheme where the first transmitter uses a random
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Gaussian code book and the second user uses a superposition
code as follows

X2 = U2 + W2, (8)

where U2 (hereafter mentioned as the private part of the
message) and W2 (common part of the message) are mutually
independent complex Gaussian random vectors with covari-
ance matrices as follows:

E(X1X
†
1) = IM1

, E(W2W
†
2 ) =

IM2

2
and

E(U2U
†
2 ) =

1

2

(
IM2

+ ρα21H
†
21H21

)−1

. (9)

Remark 1: Note that this covariance split satisfies the power
constraint in equation (1).

Lemma 2: For a given channel realization H , the above
described coding scheme can achieve the following rate region

Rc (H, ρ̄) − (2N1, 2N2),

where Rc (H, ρ̄) is as given in Lemma 1.
Using Lemma 1 and 2, respectively and similar method as

in the proof of Theorem 2 in [2] it can be proved that (for
more details refer to [10])

d∗IC(r1, r2) =min
i∈I

dOi
(ri), (10)

where ρ−dOi
(ri)=̇Pr (Ibi ≤ ri) , (11)

for i ∈ I = {1, · · · , 7} and r3 = r4 = r5 = (r1 + r2),
r6 = (2r1 + r2) and r7 = (r1 + 2r2).

III. EXPLICIT DMT OF THE ZIC

In this section we will evaluate the dOi
(ri)’s given in

equation (10) which would yield the explicit DMT expressions
for the ZIC. Using the first and second bound of Lemma 1 in
equations (11) it can be proved that

dOi
(ri) = αiidMi,Ni

(
ri

αii

)
,

∀ ri ∈ [0, (Mi ∧ Ni)αii] and i ∈ {1, 2},
where dm,n(r) is the optimal diversity order of a point-to-point
(PTP) MIMO channel with m transmit and n receive antennas.
To evaluate dO3

(r3), we write the bound Ib3 of Lemma 1 in
the following way

Ib3 = log

∣∣∣∣(IM1
+ ρ11H

†
11

(
IN1

+ ρ21H21H
†
21

)−1

H11

)∣∣∣∣
+ log

∣∣∣∣(IM2
+ ρ22H22

(
IM2

+ ρ21H
†
21H21

)−1

H
†
22

)∣∣∣∣
+ log

∣∣∣(IN1
+ ρ21H21H

†
21

)∣∣∣ ,

(a)
=

⎧⎨⎩
p∑

i=1

(1 + ρα21λi) +

q1∑
j=1

(1 + ρα11xj) +

q2∑
k=1

(1 + ρα22yk)

⎫⎬⎭ ,

where in step (a), we denoted the ordered non-zero (w.p.1)

eigenvalues of W1 = H
†
11

(
IN1

+ ρ21H21H
†
21

)−1

H11, W2 =

H22

(
IM2

+ ρ21H
†
21H21

)−1

H
†
22 and W3 = H21H

†
21 as x1 ≥

· · · ≥ xq1
> 0, y1 ≥ · · · ≥ yq2

> 0 and λ1 ≥ · · · ≥ λp >

0, respectively, and p = (M2 ∧ N1), q1 = (M1 ∧ N1) and
q2 = (M2 ∧ N2). Now putting λi = ρ−αi , for 1 ≤ i ≤ p,
xj = ρ−βj , for 1 ≤ j ≤ q1 and yk = ρ−γk , 1 ≤ k ≤ q2 in
the above equation and putting it in equation (11) we get

ρ−dO3
(r1+r2) = Pr

⎛⎝⎧⎨⎩
p∑

i=1

(α21 − αi)
+ +

q1∑
j=1

(α11 − βj)
+

+

q2∑
k=1

(α22 − γk)+

}
< (r1 + r2)

)
.

To evaluate this expression we need to derive the joint distri-
bution of �γ, �β and �α where �γ = {γ1, · · · , γq2

} and similarly �α

and �β. However, note that W1, W2 and W3 are not independent
and hence neither are �γ, �β and �α. Using Theorems 1 and 2
of [6] this distribution can be computed (see [10] for more
details). Now using this joint distribution, equation (11) and a
similar argument as in [2], we have

dO3
(r1 + r2) = min

�α,�γ,�β

Of

(
�α,�γ, �β, ᾱ

)
subject to the following constraints:

p∑
i=1

(α21 − αi) +

q1∑
j=1

(α11 − βj) +

q2∑
k=1

(α22 − γk) < (r1 + r2);

0 ≤ α1 ≤ · · · ≤ αp ≤ α21; 0 ≤ β1 ≤ · · · ≤ βq1
≤ α11;

0 ≤ γ1 ≤ · · · ≤ γq2
≤ α22; (αi + βj) ≥ α21, ∀(i + j) ≥ (N1 + 1);

(αi + γk) ≥ α21, ∀(i + k) ≥ (M2 + 1),

where Of

(
�α,�γ, �β, ᾱ

)
is given in equation (12). Following

similar arguments as in [6], it can be easily proved that for
arbitrary M1, M2, N1 and N2 this is a convex optimization
problem and hence can be solved using numerical methods.
However, in what follows, we will provide closed-form so-
lutions for two specific antenna configurations. In the first
example, we consider the case where M1 = M2 = N1 = N2.

Lemma 3: Consider the MIMO ZIC as shown in Figure 1,
with M1 = M2 = N1 = N2 = n and SNRs and INRs of
different links are as described in Section II with α21 = α

and α22 = 1 = α11. The DMT with F-CSIT (and short term
average power constraint, (1)) of this channel at multiplexing
gain pair (r1, r2) is given by

d∗ZC1
(r1, r2) = min {dn,n(r1), dn,n(r2), dz(r1 + r2)} (13)

where if α ≤ 1,

dz(r) =

{
αdn,3n( r

α
) + 2n2(1 − α), for 0 ≤ r ≤ nα;

2(1 − α)dn,n( (r−nα)
2(1−α) ), for nα ≤ r ≤ n(2 − α).

and if 1 ≤ α,

dz(r) =

{
dn,3n(r) + n2(α − 1), 0 ≤ r ≤ n;

(α − 1)dn,n

(
r−n
α−1

)
, n ≤ r ≤ nα.

(14)

Remark 2: Note that for α = 1, the optimal DMT becomes
d∗ZC1

(r1, r2) = min {dn,n(r1), dn,n(r2), dn,3n(r1 + r2)}
which is exactly the upper bound derived in [9].

Remark 3: Note from Figure 2 that, for low multiplex-
ing gains the optimal DMT is dominated by the terms
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Of

(
�α,�γ, �β, ᾱ

)
=

p∑
i=1

(M2 + N1 + M1 + N2 + 1 − 2i)αi +

q1∑
j=1

(M1 + N1 + 1 − 2j)βj +

q2∑
k=1

(M2 + N2 + 1 − 2k)γk

−(M1 + N2)(M2 ∧ N1)α21 +

q2∑
k=1

(M2−k)∧N2∑
i=1

(α21 − αi − γk)+ +

q1∑
j=1

(N1−j)∧M1∑
i=1

(α21 − αi − βj)
+; (12)
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Fig. 2: Comparison of optimal DMT on ZIC with
ᾱ = [1, 1, 1] to PTP performance.

dn,n(ri), i ∈ {1, 2}, i.e., single user point-to-point (PTP)
DMT is optimal. This should be compared to a MIMO MAC
channel, where there is a low multiplexing gain region where
the single user performance can be obtained with No-CSIT.
This suggests that, if the first receiver of the ZIC is made to
operate as a MAC receiver then in an appropriately defined
LMG region the optimal DMT of the IC can be attained with
no CSIT at all.

Consider a decoder (at the interfered receiver) which does
joint maximum-likelihood (ML) decoding of both the mes-
sages. However, the event where only the second user’s
message is decoded incorrectly is not considered as an error
event. Hereafter, we will refer to this decoder as the Individual
ML (IML) decoder. We also assume that both the transmitters
use random Gaussian codes. The DMT of such a system is
given by the following.

Lemma 4: On a MIMO ZIC as in Lemma 3, the IML
decoder can achieve the following DMT

dIML
(n,n,n)(r1, r2) = min {dn,n(r1), dn,n(r2), dz(r1 + r2)}

where if α ≤ 1, dz(r) =⎧⎪⎪⎪⎨⎪⎪⎪⎩
αdn,2n( r

α
) + n2(1 − α), 0 ≤ r ≤ k0α;

αdn,2n( (r−(k−k0)(1−α))
α

) + (1 − α)(n − k + k0)
2, r ∈ S1;

αdn,2n(n − k + 1) + (1 − α)dn,n( (r−(k+1)α)
(1−α) ), r ∈ S2;

(1 − α)dn,n( (r−(k+1)α)
(1−α) ), k0α + (n − k0) ≤ r ≤ n,

for S1 = [kα, (k + 1)α] and S2 = [(k + 1)α, kα + 1],
k0 = 	n

2 
 and k0 ≤ k ≤ n and if 1 ≤ α,

dz(r) =

{
dn,2n(r) + n2(α − 1), 0 ≤ r ≤ n;
(α − 1)dn,n( r−n

α−1 ), n ≤ r ≤ nα.
(15)

Figure 2 illustrates that, indeed the IML decoder can achieve
the optimal DMT (with F-CSIT) of the MIMO ZIC on a
region of low multiplexing gains (LMG), whereas comparing
equations (14) to (15) we see that this is true at high MG

values also for α ≥ 1. Next, we formally define this LMG
region.

Definition 1: Consider a MIMO ZIC of Figure 1 with
a diversity order of d∗ZC(r1, r2) at MG tuple (r1, r2).
The MG tuple (r1, r2) is said to lie in the LMG
region if dMAC

(M1,M2,N1)
(r1, r2, ᾱ) = d∗ZC(r1, r2), where

dMAC
(M1,M2,N1)

(r1, r2, ᾱ) represents the optimal DMT of a 2-
user MAC with the common receiver having N1 antennas and
the two users having M1 and M2 antennas.

Example 1: From this definition, for n = 1 and αij =
1, i, j ∈ {1, 2}, we have MGL = {(r1, r2) : ((1− r1)∧ (1−
r2)) ≤ 2(1−r1−r2)} = {(r1, r2) : (r1∨r2)+2(r1∧r2) ≤ 1}.
Note that this region is same as that of Definition 3 of [11],
where this region was defined for a SISO IC. However, our
analysis in this paper is much more general since we consider
MIMO case and SNR�=INR.

Motivated by the femto-cell (FC) model, in [1] the optimal
DMT of the SISO ZIC was derived, we now consider the
corresponding MIMO case.

Lemma 5: Consider the ZIC, as shown in Figure 1 with,
M1 = M2 = N1 = N2 = n and α22 = α and α11 = α21 = 1.
The optimal DMT of this channel, with F-CSIT (and short
term average power constraint, (1)), at a MG tuple (r1, r2), is
given by

d∗ZC2
(r1, r2) = min {dn,n(r1), dn,n(r2), ds(r1 + r2)}

where if α ≤ 1,

ds(r) =

{
dn,3n(r) + n(n − k)(α − 1) + n(r − k − α)+,

for k ≤ r ≤ (k + 1) and 0 ≤ k ≤ (n − 1).

and if 1 ≤ α,

ds(r) =

{
dn,3n(r) + n2(α − 1), for 0 ≤ r ≤ n;

(α − 1)dn,n( (r−n)
(α−1) ), for n ≤ r ≤ nα.

Remark 4: Note that the fundamental DMT of the ZIC with
single antenna nodes and α22 = α, α11 = α21 = 1 was
derived in [1]. This clearly is a special case of Lemma 5 and
can be obtained by putting n = 1.

Since in general, the BS can host more antennas than the
user sets, in what follows, we consider a case where M1 =
M2 = M ≤ N1 ≤ N2. Further, to maintain simplicity, here
we will consider only the case of α11 = α22 = 1 ≤ α21 (the
general case will be reported in [10]).

Lemma 6: Consider the ZIC, as shown in Figure 1 with,
M1 = M2 = M ≤ N1 ≤ N2, α11 = α22 = 1 and α21 = α ≥
1. The optimal DMT of this channel with F-CSIT (and short
term average power constraint (1)), at multiplexing gain pair
(r1, r2), is given by

d∗ZC3
(r1, r2) = min {dM,N1

(r1), dM,N2
(r2), dZCs

(r1 + r2)}
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where for k ∈ {0, 1 · · · (M − 1)}
dZCs

(rs) =⎧⎨⎩
αdM,(M+N1+N2)(

rs

α
) + (M + N2)((rs − kα − 1)+

+(M − k)(1 − α)) + M(N1 − M), ∀rs ∈ [kα, (k + 1)α];
dM,(N1−M)(rs − Mα), ∀rs ∈ [Mα, M(α − 1) + N1].
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Fig. 3: Optimal DMT of different ZICs with ᾱ = [1, 1, 1].

In Figure 3, explicit DMT curves of the MIMO ZIC for a
few antenna configurations are plotted and compared against
the performance of orthogonal schemes such as frequency
division (FD) or time division (TD) multiple-access. It can
be noticed from the figure that the gain of interference
management technique over the orthogonal access schemes
can be significant, particularly in MIMO ZICs. These orthog-
onal schemes (FD/TD) are the simplest coding schemes with
No-CSIT. In the following, we will show that much better
performance (than the FD/TD schemes) can be achieved by
other No-CSIT schemes.

Lemma 7: Consider the MIMO ZIC as in Lemma 6. The
DMT achieved by the IML decoder on this channel with No-
CSIT, at multiplexing gain pair (r1, r2), is given by

dIML
(M,M,N1)

(r1, r2) = min {dM,N1
(r1), dM,N2

(r2), ds(r1 + r2)}
where for k ∈ {0, 1 · · · (M − 1)}
ds(rs) =⎧⎨⎩

αdM,(M+N1)(
rs

α
) + M((rs − kα − 1)+

+(M − k)(1 − α)) + M(N1 − M), ∀rs ∈ [kα, (k + 1)α];
dM,(N1−M)(rs − Mα), ∀rs ∈ [Mα, M(α − 1) + N1].

The explicit DMT of the (M, N1, M, N2) IC under the
symmetric MG requirement i.e., r1 = r2 = rsym, is plotted
in Figure 4. Comparing the performance improvement of the
IML decoder on the (2, 4, 2, 4) ZIC with respect to that on the
(2, 2, 2, 4) ZIC, we realize that a larger number of antennas
at the interfered receiver can completely compensate for the
lack of CSIT. Another important fact brought out by this
figure is that on some ZICs the optimal DMT with F-CSIT
is identical to that of the corresponding ZIC with No-CSIT.
In what follows, we characterize such a class of ZICs.

Corollary 1: The optimal DMT of a MIMO ZIC as consid-
ered in Lemma 6, with F-CSIT and symmetric MG require-
ment r1 = r2 = rsym, is identical to that of a corresponding
ZIC with No-CSIT. The explicit expression for the DMT can
be obtained by putting r1 = r2 in Lemma 7.
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Fig. 4: Optimal DMT of different ZICs with ᾱ = [1, 1, 1].

IV. CONCLUSION

The DMT of the MIMO ZIC with CSIT is characterized.
Besides serving as an upper bound to the DMT of the 2-user
MIMO IC, it reveals several insights about this channel. It
is found that the gain of interference management schemes
over that of orthogonal schemes, such as TDMA/FDMA, is
much more on a MIMO system than that achievable on a SISO
channel. It is also illustrated that a larger number of antennas
at the interfered receiver can completely compensate for the
lack of CSIT on a ZIC. A class of ZICs is found for which
it was proved that availability of the CSIT does not improve
the DMT performance of the system.
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