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ABSTRACT 

The Multiple Model-Based Control (MMBC) technique utilizes 
knowledge of nominal plant dynamics and principles of Bayesian 
estimation to provide parameter independent trajectory track- 
ing accuracy. The MMBC algorithm is formed by augmenting a 
model-based controller with a closed-loop form of Multiple Model 
Adaptive Estimation (AMMAE). The AMMAE uses perturba- 
tion models of the combined plant and feedback control system, 
along with measurements of tracking error, to provide an esti- 
mate of the plant parameters. When MMBC is applied to the 
robotic manipulator control problem the AMMAE provides a 
payload estimate. The model-based controller combines the a 
‘priori knowledge of robot structure with the payload estimate 
to produce the multiple models of the manipulator dynamics 
required to maintain controller accuracy. Extensive simulation 
studies on the first three links of a PUMA-560 have versed the 
algorithm’s potential. MMBC provides a unique solution to the 
problem of maintaining trajectory tracking accuracy in uncertain 
payload environmenb. 
1 INTRODUCTION 

The intelligent manipulators required for advanced robotic telep- 
resence applications must be able to fully emulate human arm 
motion. The manipulator’s ability to duplicate the payload ca- 
pacity, range of motion, speed, and tracking accuracy of the hu- 
man arm system is essential if the man in the loop is to be able to 
operate the manipulator system in an intuitive manner. A long 
term goal of robotic system research at the Air Force Institute 
of Technology (AFIT) is the development of the enabling tech- 
nologies for a manipulator system capable of human arm emula- 
tion. One of the essential components of such a system will be 
a control strategy that permits accurate tracking over random 
high speed trajectories without a priori knowledge of payload. 
Current industrial robot control approaches can not provide the 
required level of performance. In this paper we propose a new 
form of adaptive model-based robot control which may provide 
a technique for accurately tracking high speed trajectories in the 
presence of payload uncertainty. 

Adaptive control of robotic manipulators is an area of ac- 
tive research. One of the most basic forms of adaptive control is 
the model-based approach. Experimental evaluations of model- 
based techniques have demonstrated their potential for improving 
tracking accuracy over high speed trajectories [11,1,7,15,12,2,28]. 
Those experiments have been conducted on both research robots 
[11,1,28] and existing industrial a r m s  whose control structures 
have been highly modified [15,12,2]. Unfortunately, the model- 
based approaches patterned after the computed-torque technique 
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can only adapt to changes in manipulator joint configuration [9]. 
The tracking performance of those algorithms degrades notice- 
ably in the presence of uncertain payloads [7], even for robots 
with high torque amplification drive systems [12]. 

Since the model-based control algorithm provides excellent 
tracking performance when accurate payload information is avail- 
able, one approach to adaptive control has been to augment that 
controller with a payload adaptation mechanism [24]. A common 
theme in adaptive model-based control design has been the use of 
Lyrrpunov theory to develop the adaptation algorithms [24]. Ex- 
perimental evaluations have attempted to estimate all equation 
of motion parameters that are a function of payload [7,23]. The 
Lyapunov based methods can be reduced to payload estimation 
[23] but no evaluations of adaptation based on payload estima- 
tion alone have been reported. While the experimental evalua- 
tions clearly demonstrate the potential of this form of adaptive 
robot control, Lyapunov based methods may not be appropriate 
for all possible robotic applications. 

Lyapunov theory guarantees that the controller will be sta- 
ble and that the steady state errors will asymptotically approach 
zero. Lyapunov theory does not predict how quickly the estima- 
tor will converge. Asymptotic stability is not a primary concern 
when the entire robotic motion may be completed in seconds 
and that motion is not repetitive. The global convergence proofs 
of Lyapunov techniques require a rigid robot assumption, and 
the estimation scheme can be susceptible to persistent excitation 
problems [24]. 

An alternative to the Lyapunov based approach is the use of 
stochastic estimation/adaptation techniques. In addition to pro- 
viding a fast means of parameter adaptation the stochastic ap- 
proach explicitly accounts for the numerous sources of noise and 
uncertainty in a real physical system. Multiple Model Adaptive 
Estimation (MMAE) is a Bayesian estimation approach that em- 
ploys multiple Kalman filters to quickly and accurately estimate 
parameters in the presence of noise and uncertainty. MMAE 
has been successfully applied to several difficult aerospace track- 
ing problems [21,20,3,5]. By combining the principles of MMAE 
and model-based control a powerful new form of adaptive model- 
based control was developed [27]. 

The Multiple Model-Based Control (MMBC) technique uti- 
lizes knowledge of nominal plant dynamics and principles of Bay- 
esian estimation to provide parameter independent trajectory 
tracking accuracy. The MMBC algorithm is formed by augment- 
ing a model-based controller with a closed-loop form of Multi- 
ple Model Adaptive Estimation (AMMAE). The AMMAE uses 
perturbation models of the combined plant and feedback control 
system, along with measurements of tracking error, to provide an 
estimate of the variable plant parameters. The model-based con- 
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4 t )  = h(q74,T,a , t )  (3) 

where f(0) and h(*)  are in general, nonlinear functions and ~ ( t )  
is a p vector of measurements. 
A robot system is inherently noisy. The noise sources arise kom 
imperfect calibration, incorrectly modeled components, and im- 
perfect measurements of the joint position. If the noises are as- 
sumed to be added linearly to Equations (2-3), the result is a 
stochastic non-linear differential equation of the following form: 

- (171. 

c 

troller combines the a priori knowledge of plant structure with 
the parameter estimate to produce the multiple models of the 
plant dynamics required to maintain tracking accuracy. MMBC 
was developed to reduce tracking error and therefore can be con- 
sidered a direct form of adaptive control [23]. 

The objective of this research was to develop a MMBC algo- 
rithm for robotic manipulators and determine if that algorithm 
has the potential to provide payload invariant trajectory track- 
ing performance. The test platform for that investigation was 
the fist  three links of a PUMA-560. The evaluated version of 
MMBC incorporated a AMMAE to provide payload information 
to the feedforward dynamic compensator of a previously evalu- 
ated model-based control law with constant PD feedback gain 
[12,15]. The results of our investigation suggest that robotic m% 
nipulator trajectory tracking performance can be made payload 
invariant by application of MMBC. This paper presents those 
results as follows. Section two reviews the general theoretical de- 
velopment of MMBC for rigid robotic manipulators. In section 
three MMBC trajectory tracking performance is analyzed for the 
PUMA case study. The development of the PUMA specific ver- 
sion of the MMBC is presented along with analysis of extensive 
simulation studies and a discussion of future research directions. 
Conclusions are presented in section four. 

2 MMBC of Rigid Robotic Manipulators 

The rigid robotic manipulator implementation of MMBC is a 
specific application of the more general principles of Multiple 
Model-Based Control. The estimation principles employed in 
the MMBC are not restricted to rigid plant dynamics and have 
been applied to control of flexible space structures [8,19]. A more 
general theoretical development of MMBC can be found in [27]. 
Additional information about the principles of Multiple Model 
Adaptive Estimation can be found in [18]. 

The nonlinear equations of motion for a rigid robot can be 
written as a function of payload: 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

n = number of links in the robot 
q, q,  q = n vectors of joint angles, velocities, and accelera- 
t ions. 
a = a 10 element vector representing the mass, mass cen- 
troid, and radii of gyration of the unknown payload 
N = n vector of gear ratios for each j o i n t ( z ~ z Q ) .  
D(q,a)  = n x n matrix of manipulator inertias which de- 
pend on the load, the position of the manipulator, and the 
gear ratio. 
M = diagonal n x n matrix of actuator inertia terms. 
h(q,q,a)  = n vector of centripetal and Coriolis torques. 
T, = n vector of static friction torques. 
B, = n vector of damping coefficients 
g ( q , a )  = n vector of gravity loading terms. 
T ( t )  = n vector of joint motor torques. 

The first step in applying the Multiple Model-Based Control 
technique to a robotic manipulator was to rewrite the non-linear 
equations of motion (1) in a more general form: 

S ( t )  = f ( q , Q , T , a , z , t )  (2) 

where: 

G’(t)  =scaling matrix for the additive system noise. 
0 W ( t )  =vector of zero mean, white Gaussian dynamics driv- 

V ( t )  =vector of zero mean, white Gaussian measurement 
ing noise. 

noise. 

The basic structure of a model-based controller allows the 
control system to be separated into a precompensator and plant 
block that produce a nominal output, and a feedback block that 
produces a perturbation output. That control structure can be 
represented in state space form as a perturbation regulator [26]. 
The precompensator element produces a nominal control input 
given the desired position, velocity and acceleration trajectory. 
Applying the nominal input to the plant generates the nominal 
position and velocity states. The difference between the desired 
and nominal states is assumed to result from the disturbances in 
the system, W ( t ) .  The feedback gains, K(a, t)  attempt to drive 
the difference to zero. The perturbation plant, F‘(a, t ) ,  is the 
first-order result of the truncated Taylor series of f(q, q,  T, a,  t ) .  

The model of the closed-loop perturbation plant matrix can 
be represented by: 

i ( t )  = F ( a , t ) z ( t )  + G(a , t )W( t )  (6) 
r ( t )  = R(t )z ( t )  + V ( t )  (7) 

where: 

z = In-vector of position and velocity perturbation states 
F ( a , t )  = F’(a, t )  - G ( a , t ) K ( a , t )  
F‘(a , t )  = a nonlinear square matrix function of a and a 
linear function of the states that describes the homogeneous 
perturbation state dynamics characteristics. 
K ( a ,  t )  = a square matrix of position and velocity feedback 

G ( a , t )  = a square matrix that transforms the noise into 
the state space. 
z ( t )  = a pvector of noise corrupted measurements of the 
error states. 
R ( t )  = the measurement matrix that transforms the states 
into the measurement space. 

gains 

Bayesian estimation in a multiple model configuration can be 
used to determine the unknown parameter a in Equation (6) [18]. 
The basic premise of the AMMAE technique is that the varia- 
tiom in the continuous parameter vector a can be discretized 
into a finite set of possible vector values, (al ,  az, . . . , aK) .  The 
discretization of a must be large enough that there is a discernible 
difference between the models but not so large as to induce un- 
acceptable errors in the estimate. The AMMAE is composed of 
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K Kalman filters fllDnipg in parallel, each of whose plant mod- 
els is based upon an assumed parameter variation aj as shown 
in Figure 1. For a sampled data system the individual Kalman 
filter equations are: 

%(tF) = *(t;+1,t;)%(t;+) (8) 
P ( t f )  = b(ti+l,ti)P(t;+))B'(t;+l,ti) i Q d ( t i )  (9) 
i ( t ;+ )  = %(tC)  + K(t ; ) [ z ( t ; )  - H(t;)d(tf)] (10) 
P(t') = P(tC) - K(t ; )H( t ; )P( t r )  (11) 
K ( t ; )  = P ( t f ) H = ( t ; ) [ H ( t ; ) P ( t f ) H = ( t ; )  + R(t;)]- l  (12) 

where: 

e i(tr) = the estimate of the state vector at time ti just prior 

e %(ti+) = the state vector at time t; after the measurement 

e P ( t f )  =the covariance matrix of the state at time tC. 
e P(t') =the covariance matrix of the state at time t'. 
e z ( t i )  = the vector of noise corrupted measurements of the 

e H ( t ; )  = the measurement matrix that transforms the states 

e K ( t ; )  = the Kalman filter gain matrix at time t i .  
e b( t ;+ l , t i )  = the state transition matrix associated with 

F ( a j , t )  of Equation (6), defined as the 2n x 2n matrix that 
satisfies &(t, t i )  = F(aj ,  t)+(t,  t i )  with +(ti, t;) = I .  

Q ( t )  is the strength of the Gaussian noise, 

to the measurement being processed at t i .  

has been processed at ti .  

error states at timet;. 

into the measurement space. 

Q d ( k )  = +(ti+l,T)G(T)Q(r)GT(7)QT(ti+1,T)dT and 

W(t):E[W(t)WT(t + T ) ]  = Q(t)a(~). 
e R(t;)  = the matrix of the Gaussian noise strength, V(t;): 

Each of the Kalman filters is presented with the same mea- 
surement vector, .(ti) and produces a state estimate based upon 
its internally assumed model. The state estimate is used to gener- 
ate the filter residuals, +(t;)  = [ ~ ( t ; )  - H(t;)5(ti:)] .  The residuals 
are passed to an executive program that computes a conditional 
probability, p j ( t ; )  (see Equations (13-14)) and the direction of 
the parameter variation (see Equation (16)). 

E[V(t;)VT(t;)] = R(ti). 

(13) 
A 

pj(ti) = prob{a = aj I Z(t;)  = Z ; }  

where: 

e Z(ti-1) = the measurement history up to time ti-1 
e f,(ti)l,,z(ti-,)(z, I aj, Z;-l) = the conditional probability 

that the j T a  filter was correct. For the assumed Gaus- 
sian distribution it has the form *e(-l/zrlA-lr) 

when Aft;) = [H( t i )P( t r )HT(t ; )  + R(t;)] .  
e the denominator scales the conditional probability such that 

p j ( t i )  = 1 

The conditional mean of the parameter variation Aa at t; is given 
by: 

K 
Aa(t;) 5 ajpj( t ; )  (15) 

j = 1  

Therefore Aa(t;) is the smoothed optimal Bayesian estimate of 
the parameter variation. 

The sign on the residuals from the K h a n  filters indicates 
whether h a  is to be added to the current value of 1 in the feed- 
forward element or subtracted from it as shown below: 

i(t;) = i ( t ; - ~ )  + Aa(t;)SIGN[f(r(t,))] (16) 

where i is the actual parameter estimate output from the AMMAE 
and f( e) is a degree of design freedom used to maximize perfor- 
mance for a speCific application. 

For the robot control case a represents an estimate of the 
payload vector and the MMBC law is defined as: 

N T ( t )  = [D(q,h) + N2bf][gd + 2[wne + wie]  + 
h ( ~ ,  (1. h) + N'B,Q + T, + g(n, a) (17) 

where 

e e = qd - q ,  the joint position error vector 
e ( = diagonal matrix of desired damping ratios 

w, = diagonal matrix of desired natural frequency 

The achilles heal of the MMBC approach is the potentially large 
number of Kalman filters required to estimate all ten elements of 
the payload vector. However, a little knowledge of manipulator 
dynamics allows a great reduction in algorithm complexity. Ex- 
perimental evaluations have shown that most of the degradation 
in model-based algorithm performance can be recovered with just 
knowledge of payload mass and centroid [2,12,13]. If the length 
of the links is large, compared to the distance of the payload 
centroid from the end-effector axis ,  only mass information is re- 
quired [2,12,13]. Therefore, i is a scalar and the AMMAE is 
reduced to a single bank of filters. When physical insight can 
not reduce the number of Kalman filters other techniques can be 
applied to reduce the computational burden [8,19]. 

3 PUMA Case Study 

The objective of this case study was to determine if the MMBC 
algorithm has the potential to provide payload invariant trajec- 
tory tracking performance. The test case for that effort was the 
first three links of a PUMA-560. The PUMA-560 was an appro- 
priate test case because [13,15]: 

e its trajectory tracking performance has been extensively 

tracking performance is a function of payload, 
e reducing the payload vector to just the mass parameter has 

minimal impact on large link tracking performance, and 
existing facilities could be modified to experimentally eval- 
uate algorithm performance if the simulation tests were suc- 
cessful. 

The ability to accurately compensate for payload with only mass 
information reduces a to the scaler case. The reduction to a 
scalar estimation task is appropriate for an initial evaluation. If 
the MMBC could not perform adequately for single parameter 
adaption there would be no point investigating more complex 
payload estimation requirements. 

Without loss of generality, the payload was assumed to be a 
point mass rigidly attached to the end of the third link. The gen- 
eral form of the MMBC shown in Equation (17) can be reduced 
to 

studied, 
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without degradation of PUMA trajectory tracking performance 
[15]. The K p  and K ,  PD gain values are identical to those em- 
ployed in previous experimental evaluations [12,15]. The con- 
stant PD gains were designed to produce critically damped re- 
sponse when the link was in its minimal inertial configuration. 

3.1 AMMAE Implementation 
The process of transforming the stochastic non-linear differential 
equation (4) to a perturbation regulator (6) required the partial 
derivative of Equation (4) with respect to q and q evaluated at the 
nominal q, q, T, a,. A program using MACSYMA [lo] commands 
was developed to provide a symbolically reduced set of equations 
for F'(aj, t) [27]. The first three links of the PUMA were modeled 
using the equations and inertial parameters developed by Tarn 
in [25]. The friction and motor damping information was from 
experimental evaluations by Leahy and Saridis (151. 

The plant matrix used by the Kalman filters was: 

where K represents a block diagonal matrix of the constant po- 
sition and velocity gains, K p  and K,,. W ( t )  was assumed to 
be added to the nominal torque. Therefore the G(aj,ti) matrix 
which transforms the torque noise into the state space had the 
following form: 

r 0 0 0  11 

The only measurements available on the PUMA-560 are the 
actual joint positions. Therefore the ody measurements input to 
the Kalman filters are the error in the position states. Since z( t ; )  
is a linear function of the position states: 

1 0 0 0 0 0  
H(t;)= [ o o l o o o ]  0 1 0  0 0 0 (21) 

The F(aj,t;) and G(aj,ti) matrices are payload and trajec- 
tory dependent, but can be assumed constant over the sample 
period [27,13]. Therefore, @(t i ,  and Qd(t;) were accurately 
approximated by: 

+ ( t ; , t ; - ~ )  % I+  F(aj,ti)At + 1/2F2(aj,ti)At2 (22) 
Qd(ti) Z5 G(ti)QGT(ti)At (23) 

where At is the sample period. 
The value of measurement noise, V was determined from the 

resolution of the encoders. The probability density function of 
the noise is uniform with zero mean and covariance equal to zt1/2, 
the encoder resolution, and was approximated by a Gaussian dis- 
tribution with identical mean and covariance. Additional noise 
information can be easily added via shaping filters [17]. The 
dynamics driving noise, Q ( t ) ,  was tuned to provide the best per- 
formance of the AMMAE. Once Q(t) was selected, that value was 
held constant for all test trajectories. The initial conditions of 
$ ( t o )  and P(t0)  were assumed to be zero. Further details about 
the filters and their tuning may be found in [26]. 

The procedure used to discretize the parameter space so that 
the different Kalman filters are based on sdciently different 

models is outlined in (261. An optimal technique for the dis- 
cretization of a was beyond the scope of this research. Previous 
PUMA research suggested that a reasonable discretization could 
be achieved with only three levels. Therefore, K = 3 and the aj 

values for the filters were set at 0.0, 2.5 and 5.0 Kg. The residual 
function, f(r(t;)), used in Equation (16) was simply the joint 2 
residual from the 2.5 Kg filter. 

3.2 Simulation Studies 
The tracking performance of the MMBC was initially evaluated 
by digital simulation. Every effort was made to produce simula- 
tion results that would produce a valid indicator of real PUMA 
performance. The feedforward compensator, PD servo loop, and 
the AMMAE were all updated with new measurement infonna- 
tion at a 142 Hz sample rate. 142 He corresponds to the fastest 
sample rate supported by our experimental evaluation environ- 
ment. The test trajectories have been utilized in previous PUMA 
evaluations [15,12]. Robot motion was simulated by a 4th or- 
der Runga-Kutta integration of Equation (1) which also included 
Gaussian dynamic driving noise and uniform measurement noise 
[27]. Due to space limitations only the error profiles of joint 2 
are included. A more complete set is in [16]. 

The tracking performance of the MMBC algorithm was com- 
pared to two other forms of model-based control. Both forms 
of Single Model-Based Control (SMBC) were just realizations of 
Equation (18) without payload adaption, i. e. the value of B was 
held constant. The difference between the two SMBC algorithms 
was in the constant B value. Worst case model-based control per- 
formauce was simulated by a version of the SMBC with B = 0. 
Peak model-based performance was simulated by artificially in- 
farming the second version of SMBC of the payload value nsed 
by the arm simulator. Ideally the performance of the MMBC 
and the artifically informed SMBC would be identical. 

Initial evaluations duplicated the test conditions employed in 
previous evaluations of payload effects on PUMA performance 
[12]. The arm was commanded to move from (O', -135O, 135') 
to (QO", -9O0,45") in 1.5 seconds. Payload was constant at 2.3 
Kg and the MMBC a value was initialized to zero, The perfor- 
mance of the MMBC didn't meet the ideal, but as Figure 2 il- 
lustrates that the AMMAE can very quickly provide an estimate 
of payload that will signiricantly reduce the tracking error. The 
AMMAE locked onto a payload estimate by 0.4 seconds, and the 
oscillations in the transient region have minimal effect on track- 
ing performance. Examples of AMMAE payload estimates are in 
[27]. The peak tracking and final position errors of the MMBC 
were very close to the artifically informed SMBC and a signif- 
icant improvement over those produced by the SMBC without 
payload information. 

To determine if the MMBC performance was payload invari- 
ant the single verse multiple model comparison was performed 
over an ensemble of payloads. The payload mass was varied 
from 0-9 Kg in 1 Kg increments and the tracking performance 
simulated. The results were averaged to get a true indication of 
MMBC performance. Figure 3 compares the mean tracking ac- 
curacy of the MMBC and the artificially informed SMBC. Even 
for simulation results, the differences between the two algorithms 
were minimal. MMBC error was always within one standard de- 
viation (U) of the ideal. For this set of test conditions, the MMBC 
demonstrated the potential to provide payload invariant tracking 
performance. 
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To provide a more through test of MMBC capabilities, a task 
was simulated where the robot picks up an unknown payload and 
while in motion, inadvertently drops the payload. The payload 
was initially set to 2.3 Kg and WM reset to zero, 0.6 seconds into 
the trajectory. The drop time was after the initial acquisition pe- 
riod and before the peak velocity. The MMBC and SMBC were 
initialized with B values of 0.0 Kg and 2.3 Kg respectively. The 
artificially informed SMBC algorithm switches payload informa- 
tion to 0.0 Kg at 0.6 seconds. As the Figure 4 shows, the MMBC 
rapidly adapted to both payload changes maintaining excellent 
tracking performance. Similar results were produced for other 
payload values and drop times [27]. 

The dependence of algorithm performance on trajectory was 
also evaluated. While the shape of the error profiles varies slightly 
from trajectory to trajectory the dependence on payload was 
niinimal [Iq. A more optimal set of tuning parameters may 
eliminate the slight trajectory dependence. 
3.3 Discussion 

Our initial development and evaluation identified several areas of 
future research. More general techniques for linearizing manip- 
ulator dynamics have been proposed [22,4]. The computational 
advantage of those techniques, if any, over our symbolic formu- 
lation will be investigated. The results presented here required 
a bank of three filters employing two states for each joint. Ad- 
ditional results indicate that the payload estimation can be ac- 
complished by only monitoring the motion of a single joint. A 
reduction in the sire of the filter bank may also be possible. Sim- 
ulation studies are underway to evaluate the feasibility of those 
modifications. The ability of the MMBC to provide payload in- 
variant tracking for manipulators that require payload mass and 
centroid information is also under investigation. 

The MMBC is designed to take advautage of the latest ad- 
vances in microprocessor technology. VHSIC researchers at AFIT 
have developed an application specific processor (ASP) with a 
high speed floating point double precision adder and multiplier 
controlled by the microcode in a laser programmable ROM [6]. 
The microcode required to implement a K h a n  filter on that 
chip is currently under development. The Kalman filter ASP will 
reduce the computational time of the individual Kalman filters 
used in MMBC to the microsecond range. 

4 Conclusion 

The Multiple Model-Based Control (MMBC) technique provides 
a unique solution to the problem of maintaining robotic manip- 
ulator trajectory tracking accuracy in uncertain payload envi- 
ronments. Robotic applications of MMBC are not restricted by 
excitation requirements or rigid body dynamics. The MMBC 
algorithm utilises knowledge of nominal manipulatar dynamics 
and principles dclosed-loop multiple model Bayesian estimation 
to quickly and accurately adapt to payload variations. Extensive 
simulation studies have demonstrated the payload independent 
trajectory tracking accuracy of MMBC. The simulation results 
clearly warrant experimental evaluation and further testing of the 
algorithm's potential.Current MMBC research is concentrated on 
experimentally evaluating tracking performance. Refinements to 
the MMBC technique should produce a robot control algorithm 
with the ability to emulate human arm gross motion. 
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