
biopixR - Tools for Biological Image Processing and Analysis

Tim Brauckhoff and Stefan Rödiger

2024-07-15

Contents

1 Introduction to Techniques in Bioimage Informatics for Feature Extraction 3

2 History, Philosophy, and Aims of the biopixR Package 4

3 Concepts and Methods 5

3.1 License and Broader Open Source Context . 6

3.2 Version Control and Continuous Integration . 6

3.3 Naming Convention and Literate Programming . 7

3.4 Unit Testing of the biopixR Package . 8

3.5 Installation of the biopixR Package . 9

4 Functions for Quantitative Data Analysis in biopixR 10

4.1 importImage() - Importing Images into the R Environment 12

4.2 edgeDetection() - A modified Canny Edge Detector . 13

4.3 objectDetection() - A Function for Feature Extraction . 19

4.3.1 Edge Detection Method in objectDetection() . 20

4.3.2 Thresholding Method in objectDetection() . 24

4.3.3 Interactive Approach in objectDetection() . 26

4.4 Dealing with Fluorescence Reflection and Aggregation with sizeFilter() and proximityFilter() 27

4.5 Interpretation with resultAnalytics() . 32

4.6 Batch Proccesing Functions within the biopixR Package . 33

4.6.1 imgPipe() - One Image, One Function . 34

4.6.2 scanDir() - Whole Directory Analysis . 37

1

4.7 Functions for Droplet Analysis . 40

4.7.1 fillLineGaps() - Restoring Edge-Connectivity in Compartmented Images 41

4.8 Shape, Texture and unsupervised Machine Learning . 46

4.8.1 shapeFeatures() - Object Clustering Based on Shape Features 46

4.8.2 haralickCluster() - Image Classification Based on Texture Features 52

4.9 Helper Functions of the biopixR Package . 55

5 Discussion 56

5.1 Batch Processing and Big Data in R . 56

5.2 Cyclomatic Complexity of biopixR . 57

5.3 Capabilities and Limitations - A Comparative Analysis of Human and Software Performance 59

5.3.1 Preprocessing the Manual Analysis and Performing Analysis with biopixR 62

5.3.2 Visualization of Comparison between Human and Software Analysis 65

5.4 Exploring New Areas of Applicability . 73

6 Summary and Conclusion 77

7 Acknowledgement 78

References 81

2

1 Introduction to Techniques in Bioimage Informatics for Feature
Extraction

The volume of image data has increased rapidly due to the advancement of imaging technologies, including
microscopy, confocal microscopy, and super-resolution techniques (H. Peng 2008; Swedlow, Goldberg, and
Eliceiri 2009; Eliceiri et al. 2012; Sydor et al. 2015), as well as improvements in cell and tissue staining
(Swedlow and Eliceiri 2009; Moen et al. 2019). These advancements have broad applicability in fields such
as protein localization (Rigo et al. 2015), the environmental and cellular effects of microplastics (Cao et al.
2023; Jiang et al. 2024), diagnostics through microbead-assays (Dinter et al. 2023), deoxyribonucleic acid
(DNA) damage assessment (Reddig et al. 2018; Schneider et al. 2019), and general cell biology (Ecke et al.
2019). The exponential growth in image data has rendered manual processing impractical, thereby risking
accuracy and reproducibility (Caicedo et al. 2017). Consequently, the implementation of automated image
data processing is of paramount importance in order to guarantee the objectivity and reproducibility of the
results.

In light of recent developments, the utilization of microscopy in biomedical research has undergone a trans-
formation, shifting from a predominantly visual approach to a quantitative one (Paul-Gilloteaux 2023). The
demand for quantitative information from images to understand and develop biological concepts has led to
the emergence of bioimage informatics as a specialized field (Eliceiri et al. 2012; Murphy 2014). Bioimage
informatics is a field of study that focuses on the extraction of quantitative data from images with the aim of
interpreting or developing biological concepts. The objective is to automate and objectively analyze image
data while creating tools for visualization, storage, processing, and analysis (Swedlow, Goldberg, and Eliceiri
2009; H. Peng et al. 2012; Chessel 2017; Moen et al. 2019; Schneider et al. 2019). Achieving reproducible
results, defined as consistent outcomes across experiments or studies conducted under similar conditions, is a
primary objective in this field, with dedicated software playing a crucial role. Bioimage informatics employs
computational methods to efficiently analyze large volumes of image data, encompassing key aspects such
as image processing, machine learning, data management, and quantitative analysis (Schneider et al. 2019).

Fundamental operations in bioimage informatics include feature extraction, segmentation, registration, clus-
tering, classification, annotation, and visualization (H. Peng 2008; Brauckhoff and Rödiger to be published).
One of the principal techniques employed in the extraction of features from images is image segmentation,
which is a prerequisite for subsequent quantification. It involves the division of an image into distinct Re-
gions of Interest (ROI) by the assignment of labels to each pixel. The primary objective is to identify ROIs
pertinent to the specific task (H. Peng 2008; Ghosh et al. 2019; Niedballa et al. 2022). Thresholding is a
straightforward segmentation method. This approach involves comparing pixel values against one or more
intensity thresholds, which results in the image being partitioned into foreground and background regions

3

(Sonka and Fitzpatrick 2000; Jähne 2002). Another common approach is the use of edge detection algo-
rithms to outline objects of interest within an image (Canny 1986; Mittal et al. 2019). These techniques
permit researchers to identify specific features within an image that may not be apparent through traditional
manual analysis in a fast, reliable, and reproducible manner. The use of automated software ensures the
consistency, reproducibility, and objectivity of the results obtained.

As described in a previous study, a multitude of software applications exist for the analysis of image data.
(Schneider et al. 2019). In addition to Python, the statistical programming language R (R Core Team
2024) has become a central tool for data science and bioinformatics (Rödiger et al. 2015). As described in
subsequent sections, a multitude of R packages have been developed with the specific purpose of performing
image processing tasks. These packages address a range of requirements pertinent to bioimage informatics,
including the importation, segmentation, and annotation of images. While some of these techniques will
be discussed in the following sections, it is important to note that the existing packages do not cover all
aspects. The subsequent sections will elucidate how the biopixR package contributes to the open-source
image processing community by offering tools for feature extraction and automation. One significant appli-
cation of the biopixR package is the analysis of round, spherical objects in images, such as microbeads, cells,
seeds, or microplastics, which exhibit similar characteristics in their visual representations. Consequently,
this vignette will predominantly feature examples from this domain.

2 History, Philosophy, and Aims of the biopixR Package

In 2018, we initiated the development of algorithms within the R programming language as part of our
research in bioimage informatics. The primary objective was the analysis of data derived from microbead-
based assays (for the quantification of nucleic acid and protein biomarkers) and cell-based assays (such as the
analysis of DNA damage). During this period, we developed numerous scripts tailored to internal research
projects and contributed to private repositories, including codeberg.org. It is noteworthy that our initial
endeavors did not fully adhere to established software engineering practices, including unit testing, version
tagging, and continuous integration (CI). For this reason they were never public.

As the algorithms we developed proved to be inefficient and inadequate for meeting current scientific needs,
we resolved in 2023 to undertake a complete rewrite of the software. In October 2023, the initiative gained
significant traction with a transition to open repositories on GitHub (https://github.com). The adoption
of contemporary methodologies was intended to ensure enhanced software quality and facilitate greater
collaboration with both the scientific and open-source communities. This had the immediate consequence
that we received bug reports, stars, watches and contributions from other authors and users.

Our primary objective was to publish the package on the Comprehensive R Archive Network (CRAN),
which mandates high-quality software. This objective has been successfully achieved in 2024. Since then,
multiple versions of the package have been released, including the initial milestone release (0.2.4) on April 2,
2024, and the subsequent stable version (1.0) on June 3, 2024. Since our initial contributions to CRAN, we
have received valuable feedback and contributions from other package authors, including the author of the
data.table package.

The biopixR package was initially employed for the analysis of microbeads (Geithe et al. 2021), and
was subsequently utilized to perform quality control on microbeads in a 2024 study (Geithe et al. 2024).

4

https://codeberg.org/
https://github.com

The biopixR package has also been utilized in a recent publication (Dinter et al. 2023) for the precise
quantification of signal intensities. This study aimed to develop novel hydrophobic microbeads for the precise
quantification of amphiphilic molecules, such as phospholipids, on surfaces. These molecules are crucial in
the development of a multitude of pathological conditions, including atherosclerosis, cardiovascular disease,
infections, inflammatory disorders, cancer, and autoimmune diseases (Dinter et al. 2023).

The applications of biopixR can be extended to any research problem involving feature extraction from
images and the quantification of related image data. Such envisioned applications include the assessment
of wastewater for the detection of microplastics (Ding et al. 2020), the real-time localization of microbead-
based drug delivery systems (Bannerman and Wan 2016), and other fields within the life sciences, such as
cell biology (Schneider et al. 2019).

The aims of the biopixR package are to provide the functions needed for comprehensive image processing
like:

• Convenient import of images in widely used formats.
• Tools for preprocessing images with highly fragmented contours.
• Versatile image processing functions for quantitative analysis.
• Interactive approaches to feature extraction.
• Integration of these functions to create user-friendly pipelines.
• Enabling batch processing and automation for medium-throughput analysis.

All technical and experimental aspects of biopixR are aimed to adhere to the principles of reproducible
research. The development process was guided by the work of Wickham (2023) and the Guidelines provided
by the R Core Team (2024). Encompassing the package building, metastructure, licensing, testing, docu-
mentation and distribution of the software. In accordance with the principles of Agile Software Development
and Extreme Programming, several practices were implemented with the objective of ensuring the delivery of
high-quality software that meets the needs of both end users and developers. These practices include version
control, literate programming, unit testing, and continuous integration (Lanubile et al. 2010; Myers 2012;
Rödiger et al. 2015; Gregory 2021).

3 Concepts and Methods

The following chapters provide an insight into the principles and methods used in the development process
of the biopixR package, covering

• literate programming
• unit testing
• CI
• version control

as recommended by R. D. Peng, Kross, and Anderson (2016) and Wickham (2023). The development
workflow encompassed the following steps:

5

1. Developing accurate segmentation strategies for microbeads.
2. Creating filter functions to discard specific undesirable characteristics.
3. Developing preprocessing algorithms to enable segmentation for droplet-based experiments.
4. Employing unsupervised machine learning to extract useful information.
5. Optimizing existing functions and integrating them for batch processing.
6. Conducting unit tests for verification and validation.

In addition, the biopixR package provides a unique data set of microbead images and microbeads in water-oil
emulsions. These images serve as straightforward examples to demonstrate the capabilities and applications
of the biopixR package.

For the development and testing of the biopixR package, a Lenovo ThinkPad E15 Gen2 was utilized, featur-
ing 16 GB of RAM, an 11th Gen Intel® Core™ i5-1135G7 @ 2.40GHz × 8 processor, and a NV137 / Mesa
Intel® Xe Graphics (TGL GT2) graphics chip. The operating system (OS) employed was Ubuntu 22.04.3
LTS 64-bit. The R version used was 4.3.2, and the development environment was RStudio 2023.09.0+463
“Desert Sunflower” Release 2023-09-25.

3.1 License and Broader Open Source Context

biopixR is an open-source software package (licensed under the GNU Lesser General Public License (LGPL)
≥ 3)1 for the statistical programming language R, which is widely used in statistics, bioinformatics, and data
science. The core contributors of the biopixR package are listed in the DESCRIPTION file. R’s active com-
munity has developed numerous packages for a multitude of applications, which facilitate the development
of customized workflows, including data import, preprocessing, analysis, post-processing, and visualization,
within a reproducible environment (Rödiger et al. 2015; Giorgi, Ceraolo, and Mercatelli 2022). The growing
significance of image acquisition, processing, segmentation, feature extraction, and visualization in biological
research underscores the importance of comprehensive data processing and automation capabilities. Although
initially designed for statistical analysis, R, with its associated packages, is capable of effectively supporting
image analysis and automation (Chessel 2017; Haase et al. 2022).

3.2 Version Control and Continuous Integration

For the purpose of version control, the widely used Git system, which is available on all major development
platforms, was employed. Version control with Git enables the revision of changes and older versions of the
code by providing complete repository copies. Additionally, it permits individual adaptation by creating
distinct branches for the purpose of working on and experimenting with different versions while maintaining
a stable one. Most importantly, it facilitates the organized sharing and merging of changes among team
members, thereby significantly enhancing collaboration (Lanubile et al. 2010; Blischak, Davenport, and
Wilson 2016; Vuorre and Curley 2018).

GitHub, a Git repository hosting provider, offers a web-based user interface to facilitate collaboration in
open source projects. It incorporates tools for the reporting of bugs (Issues), collaboration (Pull requests),

1https://www.gnu.org/licenses/lgpl-3.0.de.html, accessed 07/11/2024

6

https://www.gnu.org/licenses/lgpl-3.0.de.html

and workflows (Actions) (Spinellis 2012; Cosentino, Luis, and Cabot 2016; Perez-Riverol et al. 2016). The
source code of the biopixR package is accessible at:

https://github.com/Brauckhoff/biopixR

CI is widely regarded as a good practice in software development. As team members frequently integrate
their code, sometimes multiple times a day, the combination of code from different contributors can lead to
significant issues with the software’s integrity and functionality. To address this issue, CI is employed as an
automated build and test system. It verifies the package’s functionality and compatibility across various OS.
This ensures that the code, package structure, metadata, and format remain functional. Therefore, CI is
able to simplify the process of error detection by identifying potential issues directly within the integration
process (Meyer 2014; Soares et al. 2022).

For R, the standard test suite is the R CMD check, which includes over 50 individual checks. These tests
encompass a range of topics, including metadata validation, package structure, DESCRIPTION files, Names-
pace, R code, and documentation.2 The R CMD check workflow for the biopixR package, based on the work
of Hester (2021), involves testing across all major OS. The tests were conducted on Windows, macOS, and
Linux. Furthermore, the developer version of R was tested on Linux. The source code for the CI setup using
GitHub workflows, as well as the test history can be accessed at:

https://github.com/Brauckhoff/biopixR/actions/workflows/R-CMD-check.yml

3.3 Naming Convention and Literate Programming

biopixR is an R package (≥ 4.2.0), designed using the S3 object system. S3 incorporates object-oriented pro-
gramming features while simplifying development through naming conventions (Chambers 2014). Typically,
functions and parameters in R packages are written using underscore separation (Bååth 2012). However, for
the purpose of differentiation, this convention was adapted. Underscore separation is employed solely for
variables and parameters introduced within the package. In accordance with the nomenclature convention
proposed by Bååth (2012), the functions of the biopixR package adhere to the lowerCamelCase style
(e.g., objectDetection()), with the exception to those designated to be interactive, which also utilize the
underscore_separated style (e.g., interactive_objectDetection()).

To enhance the formatting, consistency, and readability of the code, the styler package by Müller and
Walthert (2017) was employed and applied to the code. The styler package performs “non-invasive pretty
printing of R code”, whereby the code is formatted according to the tidyverse style guide (https://style.
tidyverse.org/).

Literate programming, introduced by Knuth (1984), combines source code and documentation in a single
file. This approach uses markup conventions (e.g., ‘#’) to format the documentation, generating outputs
in typesetting languages like Markdown. Literate programming is crucial for ensuring reproducibility of
analysis in software development (Vassilev et al. 2016). Additionally, inline code annotations have been
added to every function in the biopixR package.

The roxygen2, rmarkdown, and knitr packages were employed to write the documentation inline with the
code for the biopixR package.

2https://r-pkgs.org/r-cmd-check.html, accessed 07/08/2024

7

https://github.com/Brauckhoff/biopixR
https://github.com/Brauckhoff/biopixR/actions/workflows/R-CMD-check.yml
https://style.tidyverse.org/
https://style.tidyverse.org/
https://r-pkgs.org/r-cmd-check.html

3.4 Unit Testing of the biopixR Package

Software testing is a fundamental technique for the verification and validation of software, demonstrating
the absence of errors. Module or unit testing is one such testing procedure, whereby individual subprograms,
routines, or in R, functions are tested independently. This approach breaks down the entire package into
smaller, more manageable components, rather than testing the whole software at once. A principal benefit
of unit testing is the reduction of the debugging search area, as the specific function causing an issue is
identified during testing (Myers 2012). Given that R is a package-based programming ecosystem, ensuring
the correctness of distributed code is vital to guarantee the functionality of dependent packages (Vidoni
2021). A quantitative measure of the number of statements in a given code or function that are executed
without error by a set of tests is described by the term coverage (Zhu, Hall, and May 1997; Vidoni 2021).

The objective of testing is to verify that specific inputs are processed correctly to generate the expected
outputs and to ensure that error and warning statements operate as intended. In conclusion, tests confirm
that the code performs as expected, and these expectations are recorded in reproducible scripts. In R,
packages such as RUnit, svUnit, and testthat facilitate these tests (Wickham 2011; Myers 2012).

Unit tests for the biopixR package were created using the testthat package by Wickham (2009). The
tests are executed automatically as part of the package building process and during the R CMD check. The
unit test corresponding to each function is located in the /tests/testthat/ subdirectory of the biopixR
package. The following example provides insight into the testing procedure for the changePixelColor()
function, with the expectation that:

• The function throws an error when importing an object that is not a ‘cimg’.
• It does not throw an error when the input is correct: a ‘cimg’ object and coordinates as an x|y data

frame.
• The add.colour() function (incorporated in changePixelColor()) transforms a grayscale image into

one with three color channels.
• Normalization of col2rgb() results in values between 0 and 1 across three different channels.
• The color code is 0 0 1 for a pixel colored blue using the changePixelColor() function.
• The color code is 1 1 1 for a white pixel.
• The color code is 0 0 0 for a black pixel.

Expectations and examples used for the unit testing of the 'biopixR' package
library(testthat)
library(biopixR)

test_that("changePixelColor", {
mat <- matrix(0, 4, 4)
mat[2:3, 2:3] <- 1
img <- as.cimg(mat)
coordinates <- data.frame(x = c(1, 3),

y = c(1, 3))

expect_error(changePixelColor(mat, coordinates),

8

regexp = "image must be of class 'cimg'")
expect_no_error(changePixelColor(img, coordinates))

expect_equal(dim(img)[4], 1)
expect_equal(dim(add.colour(img))[4], 3)

expect_equal(as.vector(col2rgb("red") / 255), as.vector(c(1, 0, 0)))
expect_equal(as.vector(col2rgb("green") / 255), as.vector(c(0, 1, 0)))
expect_equal(as.vector(col2rgb("blue") / 255), as.vector(c(0, 0, 1)))

test <- changePixelColor(img, coordinates, color = "blue")
expect_equal(test[1, 1, ,], as.vector(c(0, 0, 1)))
expect_equal(test[2, 2, ,], as.vector(c(1, 1, 1)))
expect_equal(test[1, 2, ,], as.vector(c(0, 0, 0)))

})

3.5 Installation of the biopixR Package

The ongoing developments will be consistently updated in the GitHub repository. Consequently, the latest
developer version of the biopixR package can be accessed and downloaded directly from the repository using
the devtools package.

Install the 'devtools' package from CRAN.
'devtools' is required for installing R packages directly from GitHub repositories.
install.packages("devtools")

Install the 'biopixR' package from a GitHub repository.
'install_github' is a function in 'devtools' that is used to install R packages
hosted on GitHub.
The argument "Brauckhoff/biopixR" specifies the GitHub username/repo of the package.
devtools::install_github("Brauckhoff/biopixR")

The biopixR package is available on CRAN, which can be accessed at:

https://CRAN.R-project.org/package=biopixR

CRAN employs rigorous testing procedures to ensure that the package can be downloaded and built on
all major OS. Additionally, it validates the examples and documentation through the R CMD check. To
utilize the biopixR package, it is first necessary to install R (version 4.2.0 or higher) and then to execute the
following code:

Install the 'biopixR' package from CRAN.
install.packages("biopixR")

9

https://CRAN.R-project.org/package=biopixR

The results of the R CMD check conducted by CRAN can be accessed via the following link:

https://cran.r-project.org/web/checks/check_results_biopixR.html

4 Functions for Quantitative Data Analysis in biopixR

An overview of the functions present in the biopixR package is provided in Figure 1, as the function in
relation to the imgPipe() function are displayed.

foodweb(biopixR::imgPipe) |> plot()

Figure 1: Dependency Graph of Functions in the biopixR Package: This graph illustrates the levels
of complexity by depicting the descendants and ancestors of the imgPipe() function. The figure was created
using the foodwebr package (version 0.1.1) from Appleton-Fox (2022), with RStudio 2023.09.0+463 and R
4.3.2 on Linux (Ubuntu 22.04.3 LTS).

The biopixR package includes a series of microbead images to demonstrate its capabilities in the analysis
and processing of biological images (Figure 2). For further information regarding microbead assays and their
utilisation in biomedical research, please refer to the following reference (Rödiger et al. 2014).

The sample images illustrate the package’s functionalities, allowing users to explore and experiment with
image analysis and manipulation within the context of biotechnology and life sciences. Researchers and
practitioners may utilize these illustrations to comprehend the applicability of biopixR to their particular
imaging requirements, whether pertaining to cell biology, microscopy, or other biological imaging applica-
tions.

Load the biopixR package
library(biopixR)

10

https://cran.r-project.org/web/checks/check_results_biopixR.html

Set up a 2x2 plotting area
par(mfrow = c(2, 2))

Plot example images without axes and with a title
plot(beads, axes = FALSE, main = "beads")
plot(beads_large1, axes = FALSE, main = "beads_large1")
plot(beads_large2, axes = FALSE, main = "beads_large2")
plot(droplet_beads, axes = FALSE, main = "droplet_beads")

Reset the plotting area to a single plot
par(mfrow = c(1, 1))

Figure 2: Examples: Images of microbeads provided by the biopixR package.

A selection of these microbead images will be employed in the forthcoming demonstration of the biopixR

11

functions. As previously mentioned, the primary development objective was to analyze data derived from
microbead-based and cell-based assays.

This vignette will focus on the analysis of microbead particles made of polymethylmethacrylate (PMMA),
which are approximately 12 µm in size (Geithe et al. 2024). In the following sections and illustrations,
there is no further mention of the size of microbeads or any specifications provided in the
images. All algorithms are indifferent to diameter. At the end of this vignette, you will find a brief
example for analyzing cell-based assays.

4.1 importImage() - Importing Images into the R Environment

The biopixR package features an import function called importImage(). The function supports the importa-
tion of digital images in various file formats, including Joint Photographic Experts Group (JPEG), Portable
Network Graphics (PNG), Bitmap Image File (BMP), and Tagged Information Interchange Format (TIFF).
This function acts as a wrapper, integrating the capabilities of the magick and imager packages for import
and class conversion. Since most image processing operations in biopixR rely on imager, the importImage()
function converts all formats into the imager class ‘cimg’. During the development process, it was frequently
observed that images exhibited more than three dimensions within the color channel, specifically an addi-
tional transparency layer, also known as alpha. Such images often lead to challenging and elusive errors. To
address this issue, the importImage() function employs a process of detection and removal of the fourth
color dimension, if present.

The import function is demonstrated in Figure 3, where it is used to import two microbead images in BMP
and PNG formats.

Get the path to the 'beads.png' image file within the 'biopixR' package
path2img <- system.file("images/beads.png", package = "biopixR")

Import the image from the path specified by 'path2img' and store it in the
'microbeads' object
microbeads <- importImage(path2img)

Import the image 'fig6.1_transparent.bmp' from the 'figures' directory and
store it in the 'transparent_bead' object
transparent_bead <- importImage("figures/fig6.1_transparent.bmp")

Display the class of the 'microbeads' object
class(microbeads)

[1] "cimg" "imager_array" "numeric"

Set up a 1x2 plotting area
par(mfrow = c(1, 2))

12

Display imported images
plot(microbeads, axes = FALSE)
plot(transparent_bead, axes = FALSE)

Reset the plotting area to a single plot
par(mfrow = c(1, 1))

Figure 3: Example Images: Showcasing the functionality of the function for image import -
importImages(), with two images of microbeads.

4.2 edgeDetection() - A modified Canny Edge Detector

Edge detection (e.g., contours, lines) is crucial in various applications such as computer vision and object
recognition, particularly in medical image analysis. It aids in identifying regions with significant changes or
transitions within an image, thereby extracting valuable information by highlighting key elements like shapes,
patterns, or specific areas of interest. Various edge detection algorithms are available in R, with the Canny
edge detector, developed by Canny (1986), being the most widely implemented across multiple packages,
including those by Barthelme (2015) (imager); Ooms (2016) (magick); Mouselimis (2016) (OpenImageR);
and Beare, Lowekamp, and Yaniv (2018) (SimpleITK). Other noteworthy edge detection algorithms in the R
package OpenImageR includes those by Prewitt et al. (1970), Sobel (2014), Roberts (1980), and Scharr (2000).
After evaluating the different results (e.g., Figure 4), the Canny edge detection algorithm from the imager
package was selected for edge detection. The resulting binary image serves as a foundation for subsequent
feature extraction. Furthermore, the cannyEdges() function in imager offers adjustable parameters for
alpha and sigma, enabling users to customize thresholding and smoothing, providing the desired flexibility.

The process of Canny edge detection using the imager package comprises a series of steps. Initially, a
Gaussian filter is applied to the image, resulting in the smoothing of the image to remove noise. The degree of
smoothing can be adjusted by varying the value of the sigma parameter. Subsequently, the intensity gradient
is calculated to determine the magnitude of the edges. This is followed by the application of non-maximum

13

suppression, which serves to minimize the blur introduced previously. Subsequently, a double threshold
is applied. In the absence of provided thresholds, they are estimated through k-means clustering. The
calculated threshold can be adjusted using the alpha parameter. These thresholds are employed to classify
edges as either weak or strong. Finally, hysteresis is employed to combine these edges, with weak edges being
discarded if they are not in proximity to strong edges (Barthelme 2015; Barthelmé and Tschumperlé 2019).3

Set up a 1x2 plotting area
par(mfrow = c(1, 2))

Edge detection with 'Prewitt' method
OpenImageR::edge_detection(as.matrix(beads),

method = "Prewitt") |>
as.cimg() |>
plot(axes = FALSE,

main = "Prewitt - edge detection",
cex.main = 3.5)

text(c(10), c(10), c("A"), col = "darkred", cex = 3.5)

Edge detection with 'Canny' method
cannyEdges(beads) |> plot(axes = FALSE,

main = "Canny - edge detection",
cex.main = 3.5)

text(c(10), c(10), c("B"), col = "darkred", cex = 3.5)

Reset the plotting area to a single plot
par(mfrow = c(1, 1))

3http://dahtah.github.io/imager/canny.html, accessed 06/26/2024

14

http://dahtah.github.io/imager/canny.html

Figure 4: Comparison of Two Edge Detection Algorithms: A) Resulting image using the Prewitt et
al. (1970) edge detection algorithm from the OpenImageR package. The contours have higher intensity, but
the image is not binary. B) The Canny edge detection algorithm produces a binary image with distinct
contours.

In the context of microbead images, the contours that were identified frequently exhibited gaps, rendering
them inaccessible for subsequent labeling (Figure 5A). The figure depicts filled circles representing successfully
labeled microbeads, while the contours indicate unsuccessful labeling. Consequently, segmentation with
fragmented contours is incomplete, rendering the objects inaccessible for further analysis. To address this
issue, the magick package was employed to identify line ends (Figure 5B). Line ends can then be reconnected
to a neighboring line, provided that the line end does not share the same label. This process of reconnection
is constrained by a specific radius to prevent line ends from connecting across the entire image.

Set up the plotting area to have 1 row and 2 columns
par(mfrow = c(1, 2))

Apply Canny edge detection to the image 'beads_large1' with specified parameters
edge_canny <- cannyEdges(beads_large1, alpha = 0.8, sigma = 0)

Label the detected edges
labeled_canny <- label(edge_canny)

Plot the labeled edges without axes
plot(labeled_canny, axes = FALSE)
text(c(475), c(355), c("A"), col = "darkred", cex = 5)

15

Draw red arrows at specified coordinates
arrows(
x0 = 23,
y0 = 29,
x1 = 24,
y1 = 30,
col = "red",
lwd = 3

)
arrows(
x0 = 412,
y0 = 148,
x1 = 413,
y1 = 147,
col = "red",
lwd = 3

)
arrows(
x0 = 73,
y0 = 210,
x1 = 72,
y1 = 210,
col = "red",
lwd = 3

)

Mirror the detected edges across the x-axis
edge_canny_m <- mirror(edge_canny, axis = "x")

Convert the mirrored edge image to magick format
canny_magick <- cimg2magick(edge_canny_m)

Detect the coordinates of all line ends using morphology operation
lineends_canny <- image_morphology(canny_magick,

"HitAndMiss", "LineEnds")

Convert the extracted coordinates back into 'cimg' format
lineends_cimg <- magick2cimg(lineends_canny)

Find the coordinates of the line ends and transform into a data frame
end_points <- which(lineends_cimg == TRUE, arr.ind = TRUE)
end_points_df <- as.data.frame(end_points)

16

colnames(end_points_df) <- c("x", "y", "dim3", "dim4")

Highlight the line end pixel in green color on the original edge image
endpoints_img <- changePixelColor(as.cimg(edge_canny),

end_points_df,
color = "green",
visualize = FALSE)

Plot the image with highlighted line ends without axes
plot(endpoints_img, axes = FALSE)
text(c(475), c(355), c("B"), col = "darkred", cex = 5)

Highlight the line ends in green color on the original edge image
points(end_points_dfx, end_points_dfy, col = "green", lwd = 2)

Draw red arrows at specified coordinates
arrows(
x0 = 23,
y0 = 29,
x1 = 24,
y1 = 30,
col = "red",
lwd = 3

)
arrows(
x0 = 412,
y0 = 148,
x1 = 413,
y1 = 147,
col = "red",
lwd = 3

)
arrows(
x0 = 73,
y0 = 210,
x1 = 72,
y1 = 210,
col = "red",
lwd = 3

)

Set up the plotting area back to normal
par(mfrow = c(1, 1))

17

Figure 5: Segmentation Result with Canny Edge Detector: A) Segmentation result using the label()
function. The segmentation is incomplete, as not all microbeads are identified as foreground. Only the
contours are detected in these cases (highlighted by red arrows). B) Result of the cannyEdges() function,
showing detected line end pixels, which are colored and circled in green.

As illustrated in Figure 6A, the modified Canny edge detector, edgeDetection(), is capable of successfully
rejoining line ends, thereby enabling the detection of previously unlabeled microbeads, as shown in Figure
5A. For further visualization, the objectDetection() function was employed. This function employs the
edgeDetection() function and provides visual feedback as an output (Figure 6B).

Set up a 1x2 plotting area
par(mfrow = c(1, 2))

Detect objects in the 'beads_large1' image using the edge method with
specified alpha and sigma values
object_biopixR <-
objectDetection(beads_large1,

method = 'edge',
alpha = 0.8,
sigma = 0)

Perform edge detection on the 'beads_large1' image with specified alpha and
sigma values
edge_biopixR <- edgeDetection(beads_large1, alpha = 0.8, sigma = 0)

Label the detected edges in the 'edge_biopixR' image

18

labeled_biopixR <- label(edge_biopixR)

Plot the labeled edges without axes
plot(labeled_biopixR, axes = FALSE)
text(c(475), c(355), c("A"), col = "darkred", cex = 5)

Plot the marked objects from the object detection without axes
plot(object_biopixR$marked_objects, axes = FALSE)
text(c(475), c(355), c("B"), col = "darkred", cex = 5)

Reset the plotting area to a single plot
par(mfrow = c(1, 1))

Figure 6: Segmentation Result with Modified Canny Edge Detector: A) Segmentation result us-
ing the label() function, showing successful segmentation with all microbeads identified as part of the
foreground. B) Successful segmentation visualized using the objectDetection() function, with purple
contours around each microbead and green dots indicating their centers.

4.3 objectDetection() - A Function for Feature Extraction

The objectDetection() function of the biopixR package serves as a segmentation tool, offering various
methods for the extraction of objects of interest from an image. The extracted information includes the
center, size, and coordinates of each detected object. In the case of microbeads, it is essential to distinguish
between individual entities. Consequently, the objectDetection() function provides tools for segmentation

19

using either thresholding or edge detection. Both methods have distinct advantages depending on the specific
application, and their respective use cases will be presented in the following sections.

4.3.1 Edge Detection Method in objectDetection()

When edge detection is selected, the modified Canny edge detector, provided by the edgeDetection()
function, is used. As previously described in Chapter 4.2, the selection of the alpha and sigma parameters
plays a pivotal role in the performance of feature extraction. The objective is to modify the threshold (alpha)
to detect all objects without detecting noise, and to maintain a minimal level of smoothing (sigma) to avoid
merging proximate objects and to ensure accurate edge detection. To facilitate the selection of parameters,
the biopixR package offers a range of methods designed to assist users in this process:

Automated Parameter selection:

The biopixR package encompasses two distinct methods for the automated parameter selection process.
Both automation methods employ a fitness function to extract shape information via the shapeFeatures()
function. The fitness function evaluates the results using various input parameters, operating under the
assumption that the objects in question are circular. While the grid search method is time-consuming due to
its exhaustive testing of every possible parameter combination, the Pareto front optimization method samples
and analyzes a subset of combinations, allowing for a more rapid estimation of the optimal parameters.

Grid Search - To conduct a grid search, it is first necessary to create a parameter grid containing all
possible combinations of the alpha and sigma parameters. The range of alpha is predetermined and fixed at
0.1 to 1.5, while the range of sigma is also predetermined and fixed at 0 to 2, with both ranges incrementing
by 0.1. This process yields a grid of 315 objects, which represent the potential parameter combinations
to be tested. For each combination, a fitness value is calculated using the fitness function, with the entire
parameter grid being scanned in sequence. To achieve a balance between the two objectives of attaining
circular shaped objects and detecting all objects, the fitness value representing the shape is combined with
the number of detected objects. The results of this method are presented in Figure 7. The image analysis
process is relatively time-consuming, with a runtime of approximately five minutes for the example image.
Additionally, four of the microbeads could not be successfully detected.

Start the timer to measure the execution time of the code block
tictoc::tic()

Perform automated object detection on the 'beads_large1' image
static_result <- objectDetection(beads_large1,

method = 'edge',
alpha = 'static',
sigma = 'static')

Stop the timer and display the elapsed time
tictoc::toc()

257.414 sec elapsed

20

Figure 7: Results of Automated Feature Extraction Using Grid Search: The successfully detected
microbeads are highlighted through the internal visualization of the objectDetection() function. The
contours are outlined in purple, and the center of each object is marked with a green circle. Notably, four
microbeads were not detected by the algorithm (indicated by the red arrow).

Multi-objective Optimization - As mentioned above, automation must strike a balance between detecting
only objects with perfect shapes (losing information about the phenomena discussed above) and detecting
noise or unwanted areas around the objects, which can lead to the merging of nearby objects as seen in
thresholding (Figure 10). In grid search, combining both quality (shape features) and quantity (number of
objects detected) measures into a single value while maintaining this balance is a significant challenge. These
measures are controlled by the input parameters alpha and sigma. To solve this problem, another method
specifically designed to optimize multiple parameters, known as multi-objective optimization, has been used.

In R, this method is accessible through the GPareto package, which is designed for ‘Gaussian process-based
multi-objective optimization’. This approach is particularly well-suited to computationally intensive opti-
mization tasks (Binois and Picheny 2019). This criterion is met because the optimal parameter combination
must be identified through the extraction of shape features for each parameter combination, which is a
process that requires significant computational resources.

The objectives to be optimized are the parameters alpha and sigma. The Gaussian process is used to model
the objective functions based on a limited number of sample points. Gaussian regression predicts unknown
values by modeling the spatial correlation between sample points (Binois and Picheny 2019). The optimiza-
tion task can be formulated as follows: to detect all objects while maintaining circular shape characteristics
and avoiding the merging of nearby objects (quality/quantity trade-off).

The GPareto package aims to identify the set of optimal compromises, known as the Pareto set, consisting

21

of non-dominated points (points where no other point has better objectives). The visualization of the Pareto
set in the objective space is called the Pareto front (Binois and Picheny 2019) (Figure 8).

The default criterion selected is SMS-(EGO) - S-metric Selection Efficient Global Optimization, an extension
of the EGO algorithm tailored for multi-objective optimization. This method, used as an infill criterion, se-
lects new sample points by maximizing hypervolume improvement, effectively balancing exploration (finding
new areas) and exploitation (refining known good areas). Particle Swarm Optimization (PSO) is used as the
internal optimization routine to find the optimal sampling point (Binois and Picheny 2019).

The principle of this method involves:

1. Generating an initial set of observations.
2. Fitting the Gaussian process models to each objective independently.
3. Running an inner optimization loop to find the best point (new point as the maximizer of an infill

criterion).
4. Obtaining a new observation by running the simulator and updating the models accordingly.

The last two steps are repeated until the simulation budget of 20 is exhausted or a stopping criterion is met
(Binois and Picheny 2019).

Start the timer to measure the execution time of the code block
tictoc::tic()

Perform automated object detection on the 'beads_large1' image
gaussian_result <- objectDetection(beads_large1,

method = 'edge',
alpha = 'gaussian',
sigma = 'gaussian')

Starting optimization with :
The criterion SMS
The solver pso

Ite / Crit / New x / New y
No refPoint provided, 1.23 -8200 used
1 / -1980 / 0.1 2 / 0.301 -8390
2 / -3790 / 0.1 0 / 0.268 -9400
refPoint changed, 1.27 -8180 used
3 / -1420 / 0.37 0 / 0.234 -9390
4 / -542 / 0.525 0 / 0.235 -9390
5 / -507 / 0.834 0.85 / 0.224 -9000
6 / -935 / 0.1 0.795 / 0.244 -9080
7 / -376 / 0.432 0.424 / 0.231 -9300
8 / -153 / 0.271 0.287 / 0.244 -9370

22

9 / -153 / 0.888 0.414 / 0.231 -9300
10 / -80.8 / 0.295 1.34 / 0.238 -8600
11 / -89.6 / 0.707 1.47 / 0.231 -8480
12 / -84.3 / 0.718 0.194 / 0.235 -9390

Stop the timer and display the elapsed time
tictoc::toc()

43.987 sec elapsed

Figure 8: Uncertainty Plot of the Objective Space (left) & Pareto Front Approximation (right):
The Uncertainty Plot provides a visualization of the confidence levels in the estimate of the Pareto front
using Gaussian process modeling (x-axis: alpha; y-axis: sigma). The sample points used to construct the
model are highlighted in yellow, while the actual realizations of the Pareto set are highlighted in green. In
addition, the probability shades categorize regions of interest as white (indicating regions of high interest),
black (indicating regions of low interest), and gray (indicating regions of uncertainty). The Pareto Front
Plot visualizes the non-dominated solutions, known as the Pareto set. The optimal point within this set is
highlighted in green. The input parameters alpha and sigma corresponding to this optimal point were used
for the final analysis of the microbead image.

The optimal alpha and sigma parameters, obtained through Gaussian process modeling, are utilized as input
for the edgeDetection() algorithm within the objectDetection() function. The detected microbeads are
displayed in Figure 9, with all microbeads being successfully identified.

Display the result of the automated parameter calculation using multi-objective
optimization
plot(gaussian_result$marked_objects, axes = FALSE)

23

Figure 9: Results of Automated Feature Extraction Using Multi-objective Optimization: The
detected microbeads are highlighted through the internal visualization of the objectDetection() function.
The contours are outlined in purple, and the center of each object is marked with a green circle. Notably,
all the microbeads are detected.

4.3.2 Thresholding Method in objectDetection()

Thresholding is a technique used in image processing to divide an image into various regions based on their
brightness or intensity values. By setting a specific threshold, it is possible to distinguish between foreground
objects (above the threshold) and background areas (below the threshold). This differs from edge detection,
which focuses on identifying abrupt changes in pixel intensities within images to locate boundaries of objects
or shapes. The thresholding method is particularly well-suited for images with high and inhomogeneous
backgrounds, as it incorporates background correction by solving the Screened Poisson Equation (SPE)
before applying the threshold. This correction is achieved through the use of the SPE() function from the
imagerExtra package (Ochi 2018), which is based on the method described by Morel, Petro, and Sbert
(2014). This approach addresses image artifacts such as inhomogeneous illumination and low contrast while
preserving image details (Morel, Petro, and Sbert 2014). Consequently, the method allows for the detection
of low-contrast objects against inconsistent backgrounds, such as transparent microbeads (Figure 10). The
thresholding method does not require any additional input, is highly robust and also performs well on
fluorescent microbead images. However, this approach has one disadvantage: the threshold is less strict than
edge detection, which may result in the merging of objects in proximity that would be regarded as separate
entities by the edge detection method.

24

Set up the plotting area to have 1 row and 2 columns
par(mfrow = c(1, 2))

Import the image of transparent beads
transparant_beads <-
importImage("figures/fig6_transparent_beads.bmp")

Plot the imported image without axes
plot(transparant_beads, axes = FALSE)
text(c(70), c(70), c("A"), col = "darkred", cex = 5)

Perform object detection on the transparent beads image using the 'threshold'
method
result_transparant <-
objectDetection(transparant_beads, method = 'threshold')

Plot the marked objects from the object detection result without axes
plot(result_transparant$marked_objects, axes = FALSE)
text(c(70), c(70), c("B"), col = "darkred", cex = 5)

Visualize merged microbeads
arrows(900, 800, 899, 801, col = "red", lwd = 7.5)

Reset the plotting area to the default 1 row and 1 column
par(mfrow = c(1, 1))

25

Figure 10: Transparent Microbeads: A) Original image of transparent microbeads, showing low contrast
between the microbeads and the background. B) Application of the threshold method, resulting in the
detection of the outer layer (halo) of the microbeads, successfully capturing the ligand signal. Detected
coordinates are colored in purple, with centers marked in green. The merging of proximate microbeads into
a single entity is exemplified by the red arrow.

4.3.3 Interactive Approach in objectDetection()

To facilitate parameter selection, an interactive object detection function was developed using the R pack-
age tcltk, which provides access to Tcl/Tk in R. The Graphical User Interface (GUI) is invoked via
the interactive_objectDetection() function (Figure 11). The alpha and sigma parameters of the
edgeDetection() function, discussed in Chapter 4.2, represent the threshold adjustment factor and the
smoothing factor, respectively. The corresponding sliders in the Tcl/Tk interface enable users to adjust
these parameters to optimize object detection. The detected objects are highlighted with purple contours
and green centers. The “Switch Method” button enables the user to toggle between edge detection and the
threshold method for object detection. Figure 11 illustrates that the threshold adjustment factor - alpha -
must be decreased, as not all microbeads are currently being detected. To facilitate the analysis of smaller
images, a scaling slider was incorporated into the interface, utilizing the imresize() function from the
imager package. This function employs bilinear interpolation to adjust the image size according to user
input (Barthelme 2015).

Open interactive Tcl/Tk interface for object Detection
interactive_objectDetection(beads_large1)

26

Figure 11: Graphical User Interface for Interactive Parameter Selection: The
interactive_objectDetection() function offers a user-friendly interface with sliders to adjust threshold,
smoothing, and scale. It also includes a button to switch between edge detection and thresholding methods.
Object contours are highlighted in purple and centers in green for easy visualization. This example was
executed in RStudio 2023.09.0+463 with R 4.3.2 on Linux (Ubuntu 22.04.3 LTS), displaying fluorescent
microbeads. The rendering process, including timestamps and the current state, is shown in the console.

In conclusion, the objectDetection() function gathers comprehensive data about image objects, which
facilitates the identification and differentiation of individual features. This process provides precise coordi-
nates for each object in the image, which serve as the foundation for further analysis and characterization of
features within the biopixR package. Moreover, the function provides a variety of methods for extracting
objects within an image, thereby ensuring its adaptability for a broad range of applications.

4.4 Dealing with Fluorescence Reflection and Aggregation with sizeFilter()
and proximityFilter()

In microbead-based assays, two phenomena must be avoided to prevent the generation of low-quality or incor-
rect results. These issues are exemplified in one of the images provided by the package (Figure 12). The first
issue arises when microbeads are in proximity to one another. As laterally-emitted light (Göröcs, McLeod,
and Ozcan 2015) has the potential to cause reflection from adjacent microbeads, potentially generating false
positive signals. To address this issue, we developed the proximityFilter() function.

Highlight unwanted microbead phenomena
plot(beads, axes = FALSE)
arrows(

27

x0 = 60,
y0 = 17,
x1 = 61,
y1 = 16,
col = "green",
lwd = 2

)
arrows(
x0 = 90,
y0 = 75,
x1 = 91,
y1 = 74,
col = "cyan",
lwd = 2

)
arrows(
x0 = 30,
y0 = 116,
x1 = 29,
y1 = 117,
col = "red",
lwd = 2

)

28

Figure 12: Unwanted Microbead Phenomena: The image is part of the biopixR package and illustrates
the various occurrences within a microbead sample. It is evident that some microbeads are situated in
proximity to one another, as indicated by the green arrow. Moreover, the microbeads have the potential to
aggregate, forming clusters such as doublets (highlighted by the red arrow) and multiplets (marked by the
cyan arrow).

The proximityFilter() function is used to filter objects based on a specified radius (Figure 13). For each
object, a square region is defined around its center, representing an area in which no other object is permitted.
In the event that another object is detected within this region, both objects are discarded. The user has the
option to specify the radius in pixels, or alternatively, it can be calculated automatically by the algorithm.
In the case of the latter, the algorithm assumes that the objects are circular and determines the radius based
on their size. The calculated radius is then extended by a factor called elongation. The default elongation
factor is 2, which means that an area of two radii (with one radius overlapping with the object) around the
object must be free of other objects for the object to pass the filter. The elongation factor can be adjusted
according to the user’s specific requirements.

Perform object detection on the 'beads' image using the 'edge' method
objects <-
objectDetection(beads,

method = 'edge',
alpha = 1,
sigma = 0)

Apply a proximity filter to the detected objects
filter_prox <-

29

proximityFilter(objects$centers,
objects$coordinates,
radius = "auto",
elongation = 2)

Change the pixel color of passing microbeads and highlight distinct objects in
different colors
visual <- changePixelColor(

beads,
filter_prox$coordinates,
color = factor(filter_prox$coordinates$value),
visualize = F

)

plot(visual, axes = FALSE)

Figure 13: Proximity Filtering Process: The objectDetection() function is initially employed for the
purpose of identifying all objects within the image. The resulting data from this function is then employed as
input for the proximityFilter(), with the radius set to automatic calculation. The final result is presented
through the use of the changePixelColor() function, wherein each passing object is highlighted in a distinct
color.

The second phenomenon is the aggregation of microbeads, which results in the formation of doublets and
multiplets. These aggregated microbeads must be discarded to achieve consistent and reproducible results

30

consisting of single microbeads. To address this issue, the sizeFilter() function was developed (Figure
14). This function filters objects based on their individual size, using specified lower and upper limits. These
limits can be set manually, interactively, or automatically. In the interactive approach, the size distribution
is plotted in the R environment, and the user is prompted in the console to enter the limits based on the
visualized distribution. In the automated approach, which is applicable when the number of objects exceeds
50, the interquartile range (IQR) is used to calculate the limits. Specifically, the filter applies the 1.5 * IQR
rule to determine the size thresholds. As described in several publications, the IQR rule is more suitable and
reliable for outlier estimation when dealing with large data sets. Consequently, the conventional statistical
threshold of n = 50 was selected (Miller 1991; Iglewicz and Hoaglin 1993; Seo 2006). This implies that at
least 25 objects must be included in the IQR to produce a representative range.

Set up the plotting area to have 1 row and 2 columns
par(mfrow = c(1, 2))

Apply a size filter to the detected objects from the previous chunk
filter_size <-
sizeFilter(
objects$centers,
objects$coordinates,
lowerlimit = 0,
upperlimit = 150

)

Plot the sizes of the detected objects and display upper limit
plot(objects$centers$size, ylab = "size in px")
abline(h = 150, col = "red") # Add a horizontal line at y = 150

Change the pixel color of the passing microbeads and highlight distinct
objects in different colors
visual <- changePixelColor(

beads,
filter_size$coordinates,
color = factor(filter_size$coordinates$value),
visualize = F

)

plot(visual, axes = FALSE)

Reset the plotting area to the default 1 row and 1 column
par(mfrow = c(1, 1))

31

2 4 6 8 10

10
0

20
0

30
0

40
0

Index

si
ze

 in
 p

x

Figure 14: Size Filtering Process: The same input utilized for the previously demonstrated proximity
filtering, obtained via the objectDetection() function, is employed in this instance. Due to an insufficient
number of objects for automated calculation, the size limits are provided manually based on the size distri-
bution shown on the left (in pixel - px). The provided limit is visualized through a red horizontal line. On
the right, the changePixelColor() visualization tool is employed to highlight the objects that meet the size
criteria in different colors.

As has been demonstrated, the biopixR package is an effective tool for addressing the undesired phenomena
present in microbead-based assays. The package provides automated filter functions, some of which include
interactive modules that facilitate applicability in laboratory settings.

4.5 Interpretation with resultAnalytics()

The resultAnalytics() function is designed to summarize the most important information about the
extracted features. This includes details such as the number of objects, center coordinates, size, intensity,
and the number of objects that did not pass the filtering process, if applied. It also provides coverage
information, which indicates the percentage of the image that is considered part of the objects. The function
takes the object coordinates and the image as input and calculates these properties.

The results are presented in the form of a list comprising two tables: one representing the average of all
features, providing a comprehensive summary of the entire image in a single row (Table 1), and the second
providing detailed information about each detected object (Table 2), which is useful but can be overwhelming
when there are hundreds of objects in the image. Users can also provide the unfiltered coordinates if filtering
was used; in this case, the function estimates the number of rejected objects based on the average size of all
detected objects.

32

Extract the results from the previous extraction and filtering in a concise manner
result <- resultAnalytics(beads,

coordinates = filter_size$coordinates,
unfiltered = objects$coordinates)

Displaying the summarized results for the whole image
result$summary

Table 1: Summary of extracted features in an image.

number of
objects

mean
(size)

sd (size) mean
(intensity)

sd
(intensity)

estimated
rejected

coverage

8 94.8 4.86 0.59 0.18 6 0.047
Abbreviations: sd - standard deviation

The output is obtained as list
Displaying the detailed results for every microbead
result$detailed

Table 2: Detailed results of the individual extracted features.

objectnumber size in px intensity sd(intensity) x y

1 93 0.577 0.177 63.97 8.68
2 96 0.630 0.189 69.01 20.24
3 98 0.593 0.183 9.23 37.97
4 96 0.628 0.183 53.27 39.62
5 97 0.591 0.177 108.66 43.86

7 84 0.606 0.177 35.39 97.61
8 100 0.531 0.167 58.69 101.17
10 94 0.567 0.169 39.50 125.00

Abbreviations: px - pixel, sd - standard deviation

4.6 Batch Proccesing Functions within the biopixR Package

This section presents two pipeline functions designed for the analysis of images. The initial function, termed
imgPipe(), integrates a number of functions from the biopixR package, thereby enabling comprehensive
analysis and filtering of an image through a single function. The second function, scanDir(), expands
the functionality of imgPipe() to encompass batch processing. This functionality enables the analysis of
entire directories, incorporating all the options, parameter adjustments, and individual filtering capabilities
provided by the imgPipe() function.

33

4.6.1 imgPipe() - One Image, One Function

The imgPipe() function combines multiple functions into a unified pipeline, including objectDetection(),
sizeFilter(), proximityFilter(), and resultAnalytics(). This function is capable to analyse a single
image, but was also designed to be capable of processing multiple color channels concurrently. As an
illustration, if an image contains objects that are distinguishable by color, with each object detectable in a
separate channel, these images can be submitted for analysis using the imgPipe() function. The function
will analyze both images and combine the results, providing a summary of the number of objects detected
in each image. This feature is particularly advantageous for the analysis of dual-colored microbeads.

This section illustrates the application of the imgPipe() function. Figure 15 presents the initial state, which
depicts the dual-colored microbead image (A) and the two single-color channels (B & C). The images are
imported via the importImage() function, which automatically converts the imported TIFF image into a
‘cimg’ object. Subsequently, the images are transformed into grayscale and utilized as input for the imgPipe()
function. Edge detection is employed for feature extraction, with the identical alpha and sigma parameters
applied to both images (Figure 15B and C). It can be observed in Figure 15A that overlapping microbeads
are present. To exclude these from the subsequent analysis, the proximityFilter() is enabled within the
imgPipe() function. The output is in similar format as presented in Chapter 4.5, with the addition of a
data frame comparing the differently encoded microbeads (Table 3 and 4).

Import the dual-color microbead image
dual_color <- importImage("figures/fig19.2_dual_color.tif")

Import the green fluorescence channel
green_beads <- importImage("figures/fig19.3_green_channel.tif")

Import the red fluorescence channel
red_beads <- importImage("figures/fig19.1_red_channel.tif")

Set up the plotting area to have 1 row and 3 columns
par(mfrow = c(1, 3))

Plot the dual-color microbeads without axes
plot(dual_color, axes = FALSE)
text(c(60), c(60), c("A"), col = "darkred", cex = 5)

Plot the green channel image without axes
plot(green_beads, axes = FALSE)
text(c(60), c(60), c("B"), col = "darkred", cex = 5)

Plot the red channel image without axes
plot(red_beads, axes = FALSE)
text(c(60), c(60), c("C"), col = "darkred", cex = 5)

34

Reset the plotting area to the default 1 row and 1 column
par(mfrow = c(1, 1))

Figure 15: Dual Colored Microbeads: Images to be analyzed using the imgPipe() function. A) The
image displays both microbead populations with different emission spectra, as indicated by the green and
red signals. B) Shows the first input image with only the green emission detected. C) Shows the second
input image with only the red emission detected. Note: The microbeads in this image are only a few pixels
in size and are highlighted in the respective color for easy identification.

Discard second image present in image depth and transform into grayscale (green)
green_beads <-
as.cimg(green_beads[1:dim(green_beads)[1],

1:dim(green_beads)[2],
1,
1:dim(green_beads)[4]]) |>

grayscale()

Discard second image present in image depth and transform into grayscale (red)
red_beads <-
as.cimg(red_beads[1:dim(red_beads)[1],

1:dim(red_beads)[2],
1,
1:dim(red_beads)[4]]) |>

grayscale()

Applying pipeline to analyse both fluorescence channels with enabled
proximity filter
res_pipe <- imgPipe(green_beads,

color1 = "green",
red_beads,
color2 = "red",
method = 'edge',
alpha = 0.7,

35

sigma = 2,
sizeFilter = FALSE,
proximityFilter = TRUE)

Table 3: Summary of extracted features from dual-color mi-
crobeads

number
of objects

mean
(size)

sd
(size)

mean
(intensity)

sd
(intensity)

estimated
rejected

coverage of color
1

of color
2

255 23.1 2.53 0.214 0.235 9 0.009 142 113
Abbreviations: sd - standard deviation

Table 4: Detailed information about encoded Objects

color number of objects mean(size) sd(size) mean(intensity) sd(intensity)

green 142 23.3 2.10 0.278 0.025
red 113 22.9 2.98 0.130 0.018

Abbreviations: sd - standard deviation

To provide a conclusive visual representation of the findings, the original image, which depicts both popula-
tions of microbeads, is presented. Each detected microbead is indicated by a colored circle: microbeads with
green emission are highlighted with a blue circle, and those with red emission are marked with an orange
circle. Overlapping microbeads are not marked, as they are excluded from the analysis (Figure 16).

Define a vector of colors
colors <- c("blue", "orange")

Plot the dual-color microbead image
plot(dual_color, axes = FALSE)

Add points to the plot at the center coordinates of the microbeads
The points are colored based on their fluorescent signal (green/red)
points(res_pipe$detailed$x,

res_pipe$detailed$y,
col = colors[factor(res_pipe$detailed$color)],
lwd = 3)

36

Figure 16: Result of the Analysis of dual colored Microbeads: The original image showing both
microbead populations is presented. Detected microbeads with green emission are circled in blue, and those
with red emission are circled in orange. Overlapping microbeads are not circled, due to their proximity and
the resulting exclusion from the analysis.

In conclusion, this function provides a comprehensive pipeline for image analysis, encompassing both the
initial preprocessing tasks, such as filtering, and the final analysis. The function may be applied to a single
image devoid of encoded objects or to multiple images representing a single population of encoded objects.

4.6.2 scanDir() - Whole Directory Analysis

The scanDir function enables the analysis of images across entire directories. To ensure reliability and
performance, the software includes a number of features designed to enhance the robustness and efficiency of
the analysis process. These include double file checks via Message Digest 5 (MD5) sum comparison, multi-
core processing capabilities, and the option to generate a log file that documents the analysis process and
results.

MD5 sum - To increase the quality of the analysis, the function incorporates a verification process to
check that the data is unique within the analysis directory. This is accomplished through the utilization of
the MD5 algorithm, originally developed by Rivest (1992). The MD5 algorithm is a standard practice in
computer science for ensuring file integrity and identifying identical files. The application of this algorithm
results in the generation of a unique “fingerprint” for each file (Rivest 1992; Cechova 2020). In R this
can be accomplished by invoking the md5sum() function from the tools package, which computes a 128-
bit summary of the file contents, represented by 32 hexadecimal digits. Subsequently, the fingerprints are
subjected to analysis to identify any duplicates. In the event that duplicate files are identified, the function

37

is terminated and the user is prompted to remove the duplicated files. However, due to its relatively short
length (128-bit, 32 character, hexadecimal string) and the nature of hashing algorithms, it is possible for two
different files to have the same MD5 value. This is called MD5 collision. In theory, this can be problematic
in scenarios where hash values are used as a security measure or for data integrity checks since it may lead
to false positives or negatives. However, we can additionally employ the file name and meta data (e.g., file
creation date) alongside these hash values to counteract this issue.

Parallel Processing - In R, each image and its respective analysis script is sequentially processed on a
single core of the Central Processing Unit (CPU), by default. This approach is especially time-consuming
when analyzing multiple images from an entire experiment. The use of parallel processing in R allows
for the simultaneous execution of multiple processes, thereby enhancing performance and speed. The use
of packages such as parallel, snow, foreach, and doParallel allows computations to be distributed
across multiple cores, within R. This is particularly advantageous for complex data analysis tasks and data-
intensive applications, where parallel programming can significantly reduce computation time (Weston 2009;
Schmidberger et al. 2009; Corporation and Weston 2011; R. D. Peng 2022).4

The foreach package provides a straightforward and efficient approach to implementing parallel processing.
Consequently, this package was employed to enable parallel processing in the scanDir() function. The
function was designed with the objective of achieving high parallelizability, thereby enabling each image
to be analyzed on a separate core. For instance, if six cores are available, six images can be analyzed
concurrently, thereby markedly accelerating the analysis process. The user may specify the number of cores
to be utilized; alternatively, 75 % of all cores are used for computation.

The following section illustrates the functionality of the scanDir() function through an analysis of a directory
containing the example images provided by the biopixR package (Figure 2). The ‘threshold’ method is
employed without enabling any additional filtering processes. The resulting Table 5 will be saved in the
working directory path in comma-separated value (CSV) format, if the Rlog parameter is set to TRUE.

Get the path to the 'images' directory within the 'biopixR' package
path2dir <- system.file("images", package = "biopixR")

Scan the directory for images and process them using the 'threshold' method
res_scanDir <- scanDir(
path = path2dir,
method = 'threshold',
sizeFilter = FALSE,
proximityFilter = FALSE,
Rlog = FALSE

)

Display an excerpt of the obtained results
Showing columns 3 to 9 of the results, excluding file paths and md5 sums
res_scanDir[, 3:9]

4https://nceas.github.io/oss-lessons/parallel-computing-in-r/parallel-computing-in-r.html, accessed 06/27/2024

38

https://nceas.github.io/oss-lessons/parallel-computing-in-r/parallel-computing-in-r.html

Table 5: Results obtained by the whole directory analysis.

number of
objects

mean
(size)

sd (size) mean
(intensity)

sd
(intensity)

estimated
rejected

coverage

beads_large1 80 99.2 48.55 0.712 0.158 0 0.043
beads_large2 667 90.6 38.38 0.215 0.047 0 0.042
beads 9 127.7 86.19 0.678 0.142 0 0.071
droplet_beads 5 88.8 3.03 0.183 0.049 0 0.026
Abbreviations: sd - standard deviation

Log File - As one of the fundamental principles of this package is to facilitate reproducible research,
the function documents the analysis process in an RMarkdown file and generates a comprehensive log file in
Portable Document Format (PDF) format. R and RMarkdown are widely recognized tools for reproducible re-
search (Baumer et al. 2014; Rödiger et al. 2015; Calero Valdez 2020). This package facilitates reproducibility
through its open-source nature, which allows for the straightforward publication of analysis scripts. Further-
more, the log file provides visual quality control and comparability. Moreover, the detailed results (similar
to Table 2) for each individual image within a directory are accessible via the R Data Serialization (RDS)
files, saved as part of the logging process.

The following page (Figure 17) presents the log file generated from the RMarkdown file representing the results
for this analysis. The directory of the analysis is first noted in the caption, followed by a series of logging
steps that indicate the current status of the image being analyzed. Furthermore, the log file will indicate any
instances of analysis failure resulting from errors in image processing. Subsequently, all images within the
specified directory are plotted with the file name serving as the title. The detection of objects is indicated
by green circles around their centers, providing an overview for verification of the analysis’s compliance with
expectations and the option of reanalyzing specific files if necessary.

39

Figure 17: Log file created by the scanDir() function. (first page)

4.7 Functions for Droplet Analysis

In attempts involving microbead emulsions, the focus lies on situations where microbeads exist within a
watery reaction environment that is surrounded by a hydrophobic matrix, particularly fluorinated oils. This
results in the formation of small (sherical or non-spherical) microbead-water compartments with nanoliter
to microliter volumes, which are often called partitions (Figures 18A). The objective of this approach is to
separate individual microbeads from their surrounding reaction environments to avoid cross-reactions. Ap-
plications include the clonal amplification, single molecule detection and absolute quantification. Depending
on the emulsification method employed, partitions of homogeneous size or heterogeneous (dispersed) size
may be generated. (Rödiger et al. 2014).

Here, a common and challenging problem encountered in image analysis is the presence of discontinuous
contours. This phenomenon presents a significant challenge to image processing tasks, such as segmentation,
labeling, and feature extraction. Consequently, ensuring edge connectivity is an essential aspect of an effective

40

and reliable edge detector (Mittal et al. 2019). However, addressing low-level connectivity from the outset
can present significant challenges, and there appear to be limited to no options available in R for addressing
this issue. To address this issue, we propose the fillLineGaps() function.

4.7.1 fillLineGaps() - Restoring Edge-Connectivity in Compartmented Images

To demonstrate the functionality of the fillLineGaps() function in restoring edge connectivity, a practical
example will be presented from a microbead-based emulsion Polymerase Chain Reaction (ePCR) assay. This
area can benefit from imaging techniques, particularly to enhance applicability in Point-of-Care Testing
(POCT), as the current method, Fluorescence-Activated Cell Sorting (FACS), is less suited for this purpose.
The following example demonstrates the integration of data from two images to quantify droplets and
microbeads. The objective is to identify the frequency of events where a single microbead joins a droplet in
comparison to those where multiple microbeads are present within one droplet.

The images utilized in this section comprise a brightfield view and a fluorescent channel image. The brightfield
view displays droplets with fragmented edges, some of which contain microbeads. In contrast, the fluorescent
channel image exclusively reveals the microbeads (Figures 18A and B).

Set up the plotting area to have 1 row and 2 columns
par(mfrow = c(1, 2))

Plot the droplets containing microbeads without axes
plot(droplets, axes = FALSE)
text(c(10), c(10), c("A"), col = "darkred", cex = 6)

Plot the fluorescence channel (only microbeads) without axes
plot(droplet_beads, axes = FALSE)
text(c(10), c(10), c("B"), col = "darkred", cex = 6)

Reset the plotting area to the default 1 row and 1 column
par(mfrow = c(1, 1))

41

Figure 18: Images from an ePCR Assay: A) Brightfield view of a water-oil emulsion, showing droplets,
some of which contain microbeads. The droplet contours are highly fragmented. B) Fluorescent channel of
the same image, displaying only the microbeads.

The initial stage of the analysis involves the utilization of the fillLineGaps() function with the objective of
restoring edge connectivity within the droplet image. This function identifies line endpoints and interpolates
pixels to generate continuous contours. Initially, a threshold is applied to segment the contours and mi-
crobeads. Afterwards, object detection is performed on the fluorescence image to extract the coordinates of
the objects, which are then excluded from the droplet image to prevent false reconnections between partition
contours and microbeads.

Subsequently, an iterative scanning for line ends is initiated using the image_morphology() function from
the magick package. The area surrounding the line ends is scanned within a specific radius, and reconnected
with the closest contour using the adaptiveInterpolation() function. Following the reconnection phase,
the contours undergo a thinning process, which is carried out by the image_morphology() function. These
steps are repeated until the predefined number of iterations has been reached. The function includes an
internal visualization that highlights the added pixels in purple (Figure 19). The method creates discrete
partitions by closing the gaps in their contours, thus facilitating the correct labeling of the droplet partitions.

Restoring edge connectivity
closed_gaps <- fillLineGaps(droplets,
droplet_beads,
threshold = "13%",
alpha = 1,
sigma = 0.1,
radius = 5,
iterations = 3,
visualize = TRUE

)

42

0 50 100 150

10
0

80
60

40
20

Figure 19: Image of Droplets with Restored Edge Connectivity: The result of utilizing the
fillLineGaps() function is displayed. The pixels added by the function are highlighted in purple. It
can be seen that the performance is accurate in simpler regions where straight lines are reconnected. How-
ever, in areas where smaller droplets are present between larger droplets, the reconstruction appears to be
more challenging.

Having addressed the initial issue of discontinuous edges, the focus now shifts back to characterizing the
partitions. This is achieved by labeling the ‘closed_gaps’ image. Once the partitions have been labeled
and are therefore regarded as distinct, the next step is to ascertain the number of microbeads within each
partition. This is achieved by utilizing the centroid coordinates of the microbeads, as opposed to analyzing
each individual pixel. Each partition is then examined to identify which ones contain coordinates that
correspond to the centers of the microbeads.

Label the resulting image without discontinuous contours
lab_partitions <- label(closed_gaps)

Convert the labeled droplet partitions to a data frame and keep values
greater than 0
df_lab_part <- as.data.frame(lab_partitions) |>
subset(value > 0)

Perform object detection on the microbeads within the droplets
e_beads <- objectDetection(droplet_beads,

method = 'edge',

43

alpha = 1,
sigma = 2)

Extract the relevant columns (containing coordinates)
coords1 <- df_lab_part[, 1:2] # Coordinates of doplet partitions
coords2 <- round(e_beads$centers[, 2:3]) # Center coordinates of microbeads

Convert the coordinates to character strings for easy matching
coords1_str <- apply(coords1, 1, paste, collapse = ",")
coords2_str <- apply(coords2, 1, paste, collapse = ",")

Find the matching indices between the two sets of coordinates
matches <- which(coords1_str %in% coords2_str)

Subset the data frame using the matching indices
bead_partition <- df_lab_part[matches,]

Create a table of the frequency of each partition value
numeration <- table(as.character(bead_partition$value))

The results are presented in Table 6. The first column of the Table specifies the number of partitions, and
the second column lists those that are devoid of microbeads. Column three shows the number of partitions
that contain microbeads. The final two columns indicate the frequency of occurrence of single microbeads
within a droplet, as well as the occurrence of multiple microbeads within a single droplet. Figure 20 provides
a visual representation of the result. The different microbead containing droplets are highlighted in distinct
colors, demonstrating the successful restoration of partition contours and subsequent labeling process.

Create resulting data frame highlighting the number of events with one
microbead and multiple microbeads per droplet partition
res_df <- data.frame(
partitions = length(unique(df_lab_part$value)),
empty_partitions =
length(unique(df_lab_part$value)) - length(unique(bead_partition$value)),

bead_partitions = length(unique(bead_partition$value)),
single_bead = length(which(numeration == 1)),
muliple_beads = length(which(numeration > 1))

)

Display resulting data frame
res_df

44

Table 6: Analysis of microbead-based ePCR

partitions empty partitions microbead partitions single microbead multiple microbeads

418 414 4 3 1

Identify the droplets, which contain the microbeads
vis <- which(df_lab_part$value %in% bead_partition$value)

Change the pixel color of the partitions containing microbeads and
Highlight their distinctivness with different colors
colored_droplets <- changePixelColor(

droplets,
df_lab_part[vis,],
color = factor(df_lab_part$value[vis]),
visualize = F

)

Add the colored droplets and the marked microbeads to visualize the result
add(list(colored_droplets, e_beads$marked_objects)) |> plot(axes = FALSE)

Figure 20: Visualizing the Result of the Droplet Analysis: The visualization obtained by the
objectDetection() function, representing the detected microbeads, is combined with the highlighting
of microbead-containing droplets using the changePixelColor() function. The partitions formed by the
droplets are highlighted in different colors, indicating that they are distinct from one another.

45

In conclusion, this function displays considerable capacity to serve as a tool for image preprocessing, rendering
more intricate images accessible for subsequent analysis. It enables the implementation of novel experimental
approaches, as exemplified by the approach presented in this section. Moreover, it is currently the only
available tool in R with a dedicated function for this purpose. It is important to note that the function
does have certain limitations. One such limitation is that the restoration of connectivity can create small
partitions that were not present in the original image.

4.8 Shape, Texture and unsupervised Machine Learning

Digital images are numerical representations of physical objects, combined with a point spread function
(PSF). The PSF describes the intensity distribution of an image and serves as a physical reference, often
utilized in image restoration, denoising, and object detection (Siddik et al. 2023; Song et al. 2024). This
numerical representation enables a variety of computational approaches to gain insights into the object’s
characteristics, such as texture and shape extraction. To facilitate pattern recognition of these characteristics,
the biopixR package incorporates two clustering algorithms that employ unsupervised machine learning
techniques, namely Self-Organizing Maps (SOM) and the Partitioning Around Medoids (PAM) algorithm.

4.8.1 shapeFeatures() - Object Clustering Based on Shape Features

The shapeFeatures() function employs the objectDetection() function to extract objects from an image.
Subsequently, these objects are analyzed with respect to their individual shape and intensity characteristics,
including features such as pixel-intensity, area, perimeter, radius, eccentricity, circularity, and aspect ratio
(AR). Subsequently, the extracted features are summarized by incorporating these characteristics into the
resultAnalytics() output.

The shapeFeatures() function is capable of utilizing unsupervised machine learning techniques, specifically
SOM. When SOMs are enabled, the function can classify detected objects based on their shape and intensity
features, with the final output table including a row with classes that indicate the corresponding group for
each object as determined by the SOM. This entails that the features are projected onto a two-dimensional
plane, with similar features situated in proximity and dissimilar features positioned at a greater distance.
The features are mapped to specific positions, designated as units, with each unit being associated with
a codebook vector, representing the average of all features mapped to that unit. The number of these
codebook vectors can be controlled through the somegrid() function of the kohonen package (Kohonen
1990, 2013; Wehrens and Kruisselbrink 2006, 2018). In biopixR, this is managed via the xdim and ydim
parameters, providing the dimensions for the codebook vector gird. To utilize SOMs in R, the kohonen
package is employed (Wehrens and Kruisselbrink 2006). The biopixR package, enables the usage of SOMs
to access patterns in shape-related and pixel-intensity characteristics of image objects.

The aforementioned characteristics can be employed to distinguish image objects such as microbeads. The
functionality of this classification is illustrated in Figure 21A, where non-circular objects (doublets and
multiplets) are classified as a distinct group in comparison to single microbeads. The individual shape and
intensity features of each microbead in the image are displayed as boxplots (Figure 21B). The characteristics
of the microbeads marked with a red point in Figure 21A are also highlighted with a red point within the
boxplot. The distinction between doublets and multiplets is readily apparent. Doublets and multiplets are

46

characterized by their larger size, perimeter, and radius, as well as lower circularity and higher eccentricity.
This reflects their oval appearance, which differentiates them from single microbeads.

Extract shape related features and group them using SOM
shape_features <-
shapeFeatures(beads,

alpha = 1,
sigma = 0,
xdim = 2,
ydim = 1,
SOM = TRUE)

par(mfrow = c(2, 1))

Define a vector of colors
colors <- c("darkgreen", "darkred")

Plot the example image containing microbeads
beads |> plot(axes = FALSE)

Add solid circles to the plot with coordinates at the microbeads' centers
The points are colored based on the 'class' factor in 'shape_features'
points(
shape_features$x,
shape_features$y,
col = colors[factor(shape_features$class)],
pch = 19,
cex = 1.2

)
text(c(15), c(15), c("A"), col = "darkred", cex = 3.5)

Create a data frame from 'shape_features' with selected columns
shape_df <- data.frame(
size = shape_features$size,
intensity = shape_features$intensity,
perimeter = shape_features$perimeter,
circularity = shape_features$circularity,
eccentricity = shape_features$eccentricity,
radius = shape_features$mean_radius,
aspectRatio = shape_features$aspect_ratio

)

Min-Max Normalization Function
min_max_norm <- function(x) {

47

(x - min(x)) / (max(x) - min(x))
}

Apply the Min-Max Normalization function to each column of the data frame
df_normalized <- as.data.frame(lapply(shape_df, min_max_norm))

Create a boxplot of the normalized data
boxplot(
df_normalized,
ylab = "normalized values",
xaxt = "n"

)

Add axis ticks and diagonal labels
axis(1, at = 1:ncol(shape_df), labels = FALSE) # Add axis ticks but no labels
text(
x = seq_len(ncol(df_normalized)),
y = -0.1,
labels = colnames(df_normalized),
adj = 0,
srt = -45,
xpd = TRUE

)

Extract rows to highlight where 'shape_features$class' equals 2
highlight_rows <-
which(shape_features$class == 2) # Example row indices to highlight

Add points for the specific rows for each column
for (col in 1:ncol(df_normalized)) {
points(
rep(col, length(highlight_rows)),
df_normalized[highlight_rows, col],
col = "red",
pch = 19,
cex = 1.5

)
}
text(c(0.5), c(0.9), c("B"), col = "darkred", cex = 3.5)

48

Figure 21: Clustering of Microbeads Using SOM within shapeFeatures(): A) This simple example
demonstrates the use of the shapeFeature() function to group microbeads. One group is marked by a green
point at its center, and the other group is marked by a red circle. B) The different features used as input
characteristics for analysis by the SOM are plotted to compare the different groups. Features corresponding
to objects marked by red circles in A are highlighted in red.

To validate the AR calculations performed using the biopixR package, a reference figure containing circles
with known ground truth ARs was employed for comparison (Figure 22). The AR represents the ratio of an
object’s dimensions and can be described as follows (Takashimizu and Iiyoshi 2016):

49

𝐴𝑅 = 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑚𝑎𝑗𝑜𝑟 𝑎𝑥𝑖𝑠
𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑚𝑖𝑛𝑜𝑟 𝑎𝑥𝑖𝑠 (1)

A simplified method is utilized to calculate the major and minor axes. The distance from each perimeter
pixel to the object’s center is measured, with the largest distance representing the major radius and the
smallest distance representing the minor radius. This function is based on the assumption that the object
is symmetrical. The major and minor axes are then obtained by multiplying the respective radii by a factor
of two. The validity of this simplification for symmetrical objects is illustrated in the following comparison.

Figure 22: Circles with different Aspect Ratios (ARs): This is a modified image, originally derived
from the publication of Takashimizu and Iiyoshi (2016). The enumeration of objects is read from left to
right, beginning with the object in the top left (Table 7).

The results of the analysis of Figure 22 using the shapeFeatures() function are presented in Table 7, which
demonstrates the ability to access shape-related information. It is noteworthy that circularity begins at a
value of approximately one, which represents a perfect circle, and then decreases with an increasing AR. In
contrast, eccentricity begins at zero and reaches 0.8 for the final circle. The radius represents the mean of
the largest and smallest distances from a perimeter pixel to the microbeads’ center. As the circle becomes
more oval, the standard deviation increases, which can be explained by the aforementioned calculation. The
AR is compared with the ground truth data (Figure 23). Notably, the calculations for the individual circles
are accurate, with the exception of objects 5 and 6, where the AR deviates by 0.3 and 0.5, respectively.

Import the image of different circles
circles <- importImage("figures/fig3_analysis_circ.png")

Convert the imported image to grayscale
circles <- grayscale(circles)

Extract shape related features from the grayscale image
shapes <- shapeFeatures(circles, alpha = 1, sigma = 0)

50

Display the obtained shape related information
data <- shapes[, c(1,8:12)]

Table 7: Comparison of aspect ratios.

objectnumber circularity eccentricity mean(radius) sd(radius) aspect ratio

1 0.925 0.012 57.0 0.319 1.02
2 0.903 0.060 54.1 1.977 1.13
3 0.855 0.121 51.2 3.968 1.27
4 0.873 0.186 48.2 5.963 1.46
5 0.772 0.336 41.8 9.695 2.01

6 0.670 0.439 39.0 11.567 2.56
7 0.702 0.430 39.1 11.568 2.51
8 0.618 0.541 35.4 13.185 3.35
9 0.447 0.667 32.8 14.744 5.01
10 0.269 0.823 29.4 15.606 10.27

Abbreviations: sd - standard deviation

2 4 6 8 10

2
4

6
8

10

Comparison of data frames

Objectnumber

A
sp

ec
t R

at
io

Ground Truth
shapeFeatures

Figure 23: Performance of the shapeFeatures() function in regards to the Aspect Ratio: This
plot compares the aspect ratio calculated by the biopixR package with ground truth data from a publication
(Takashimizu and Iiyoshi 2016). The ground truth data is shown in blue, and the obtained results are shown
in green.

In summary, the AR calculations performed by the biopixR package are found to be generally accurate

51

in comparison to the ground truth data, with most calculations demonstrating close alignment with the
reference data. Minor discrepancies were observed at ARs of 10/6 and 2. The output obtained by the
function is presented in Table 7. In the initial example, the shapeFeatures() function was successful in
clustering the microbeads according to their shape characteristics, thereby demonstrating its utility as a tool
for pattern recognition based on these features.

4.8.2 haralickCluster() - Image Classification Based on Texture Features

One aspect of interest in bioimage informatics is texture-related information. In bioimage informatics, tex-
ture refers to the spatial arrangement or pattern of structures within an image. It can provide important
information like intensity variations, frequency content, and spatial relationships between pixels or regions
in an image. Texture is crucial for various applications such as classification, segmentation, and diagnosis
(e.g., to distinguish different microbeads, types of tissues, cells, or pathological conditions within histology
images).

To extract this information from images, several computational methods were proposed by Haralick, Shan-
mugam, and Dinstein (1973). The haralickCluster() function incorporates several of these calculations,
including contrast, angular second moment, correlation, variance, sum average, and entropy. As proposed by
Haralick, Shanmugam, and Dinstein (1973), these texture features are employed for image classification in
the biopixR package. Consequently, the haralickCluster() function incorporates a clustering algorithm,
namely PAM.

The haralickCluster() function accepts a directory path as input, ensuring file uniqueness through the use
of MD5 sums, as detailed in Chapter 4.6.2. To calculate the Haralick features, the image is first transformed
into a Gray Level Co-occurrence Matrix (GLCM). Therefore an empty square matrix is generated with
dimensions corresponding to the total number of gray levels in the image. This matrix records the frequency
of specific pixel intensities being adjacent to each other. Subsequently, the matrix is normalized by dividing
by the total number of co-occurrence pairs. Adjacency is considered in four directions: horizontal, vertical,
left diagonal, and right diagonal (Haralick, Shanmugam, and Dinstein 1973; V 2012; Löfstedt et al. 2019).
Subsequently, the features - contrast, angular second moment, correlation, variance, sum average, and entropy
- are calculated. Some calculations were derived from the radiomics package, which also focuses on texture
analysis but is currently not maintained.5 Subsequently, the extracted features are clustered using the PAM
algorithm.

The PAM algorithm consists of two parts: BUILD, which selects a specified number of objects as initial
medoids, and SWAP, which improves the clustering process towards a local optimum by assigning each object
to the closest medoid and recalculating the medoids to enhance within-cluster similarity. The algorithm starts
this process by using a dissimilarity matrix as input which is then organized into defined clusters, with the
medoids serving as robust representatives of cluster centers. The number of medoids is typically set with a
predetermined number of groups (k) (Maechler et al. 1999; Reynolds et al. 2006; Schubert and Rousseeuw
2019). To utilize the PAM algorithm and to determine the number of k the cluster package was used
(Maechler et al. 1999). The silhouette method, proposed by Rousseeuw (1987), provides a relative quality
measure of the clustering, thereby providing a useful tool for approximating the optimal number of clusters
(k). The haralickCluster() function in the biopixR package integrates the texture description of an image,

5https://CRAN.R-project.org/package=radiomics, accessed 06/30/2024

52

https://CRAN.R-project.org/package=radiomics

as proposed by Haralick, Shanmugam, and Dinstein (1973), with PAM clustering, enabling the classification
of images in a directory based on these characteristics.

The following example illustrates the application of the haralickCluster() function to four images of
microbeads, provided by the biopixR package (Figure 2). The resulting output is presented in Table 8. The
results of the Haralick texture feature calculations for the different images, which served as input for the
PAM algorithm, are presented in Figure 27. The results presented in Table 8 are represented in the plots,
which illustrate the different texture features for the various images. Notably, beads and beads_large1 are
consistently quite similar, while beads_large2 and droplet_beads also exhibit similarities with each other.
However, these two groups differ between one another, as depicted in Figure 27.

Get the path to the 'images' directory within the 'biopixR' package
path2dir <- system.file("images", package = "biopixR")

Extract and group texture related characteristics based on Haralick texture features
img_clus <- haralickCluster(path2dir)

Table 8: Result of grouping according to texture features.

file name md5sum cluster

beads_large1.bmp 7b88193bf99c4efebb5e2e8f4b8066fe 1
beads_large2.png b37015555151d6b387ea8a7ced30eaa3 2
beads.png 504d83fb571b8e8156f188b57733a60c 1
droplet_beads.png 67b542a4f0ec7f9f306dd9b0a4099dbc 2

Figure 24: Part of Figure 27.

53

Figure 25: Part of Figure 27.

Figure 26: Part of Figure 27.

54

Figure 27: Extracted Haralick Texture Features: The scaled values of the calculated texture features
for the four example images shown in Figure 2 are depicted. The results for the calculation of Angular Second
Moment, Correlation, Sum of Squares: Variance, Inverse Difference Moment, Sum Average, Sum Variance,
and Entropy are presented for each image. Note: These values were obtained during the execution of the
function and are not included in the function’s output.

To sum up, the haralickCluster() function is capable of extracting texture features and clustering im-
ages based on these features. To describe the texture characteristics of an image, the Haralick features
were employed (Haralick, Shanmugam, and Dinstein 1973). For the purpose of clustering, a derivative of
the k-means algorithm, PAM, was applied to classify the images according to the extracted features. The
haralickCluster() function utilizes eight of the fourteen texture features proposed by Haralick, Shan-
mugam, and Dinstein (1973), thereby enabling the analysis and clustering of entire directories within a
single, user-friendly function.

4.9 Helper Functions of the biopixR Package

The function adaptiveInterpolation() scans an increasing radius around the provided coordinates and
connects them with the nearest labeled region. This function is designed to be incorporated into the
fillLineGaps() function, which performs the thresholding and line end detection preprocessing. The line
ends serve as coordinates and origins for interpolation. The adaptiveInterpolation() function generates
a matrix with dimensions matching those of the original image. The initial matrix is populated solely with
background values (0), corresponding to a black image. Subsequently, the function searches for line ends and
identifies the nearest labeled region within a specified radius of the line end, excluding the cluster of the line
end itself as a nearest neighbor. In the event that another cluster is identified, the interpolatePixels()
function, which connects two points in a matrix, array, or image, is employed to connect the line end to this
cluster. This results in the transformation of specific pixels within the matrix into foreground pixels with a
value of 1.

The function changePixelColor() is a visualization tool that enables users to modify the color of a specified

55

set of pixels within an image. To perform this operation, the coordinates of the targeted pixels must be
provided.

5 Discussion

The primary design objectives for the development of our package were to ensure low complexity, high
maintainability, reliability, and a broad application spectrum, including automation features. Specifically,
the objective was to reduce the number of dependencies on other packages in order to reduce overall com-
plexity. Parallel processing and automation with Gaussian process models were incorporated to optimize
the performance of pipelines for batch processing and medium-throughput analysis. In this chapter, we will
assess the reliability of the biopixR package by comparing its performance with that of manual analysis
data. Furthermore, we will evaluate its suitability for use in the field of cell biology, with a particular focus
on the quantification of DNA damage.

5.1 Batch Processing and Big Data in R

Microbead technology represents a highly versatile tool for the implementation of highly parallelized quan-
titative multiparameter assays, which are capable of detecting nucleic acids and proteins. This technology
offers several advantages, including low cost, minimal labor, high speed, and high-throughput automation,
which make it particularly appealing for POCT applications (Rödiger et al. 2014; Zhang et al. 2019).
Microbead assays are typically analyzed using fluorescence microscopy of a 96-well plate, with each well
typically generating five images, resulting in up to 480 images for a single assay. Consequently, automation
and batch processing are essential for analyzing data in this area of research.

Although R is a programming language that naturally supports the customized development of batch pro-
cessing, we observed while collaborating with peers in wet laboratories that it is beneficial to offer certain
routines as simple and easy-to-understand functions for average users. We have achieved this objective by
implementing the functions imgPipe() and scanDir(). To the best of our knowledge, only the FIELDimageR
and pliman packages provide comparable approaches, though they cater to very specific use cases distinct
from ours (Matias, Caraza‐Harter, and Endelman 2020; Olivoto 2022). Our approach enables users to an-
alyze large data sets in medium-sized batches, depending on the computing performance. In an anecdotal
example, we processed approximately 180 images with an average size of 1.4 MB (bmp, single channel) in
20 minutes using a computer with the specifications described in Chapter 3. This represents a substan-
tial reduction in the time required for scientific work, as many scientists traditionally perform such tasks
manually.

In the R programming language, the execution of for loops is a time-consuming, sequential process that
iterates through each provided variable in a linear fashion. To enhance the efficiency of image data analysis,
vectorization was employed. This approach permits the application of operations to entire vectors, which
significantly accelerates the calculations. Additionally, the foreach package was utilized to further optimize
the processing speed. This package enables parallel processing in R, allowing the utilization of multiple
CPU cores, thereby markedly reducing the time required for computationally intensive tasks (Weston 2009;
Corporation and Weston 2011). To enhance user-friendliness, the package supports the importation of

56

images in a variety of formats, which are automatically converted to the imager format, ‘cimg’. The function
facilitates the seamless importation of a variety of image formats (e.g., JPEG, PNG, BMP) from a single
folder. This capability represents a distinctive feature of our batch processing function, allowing for the
processing of images with different formats in a single batch. Moreover, the function checks for the presence
of an alpha channel, which contains transparency information that can interfere with several functions. To
mitigate potential issues, the import function ensures the removal of the alpha channel.

At this time, it is not evident that the existing implementation will yield any further significant performance
improvements. The primary factors influencing the speed of processing are the speed of the CPU and the
number of cores available. Given the absence of a suitable implementation for graphics chips, there is no
potential for improvement in that area. However, the use of Hierarchical Data Format 5 (HDF5) could
potentially result in enhanced speeds through the implementation of techniques such as chunking (including
adjustments to the chunk cache size), compression to improve input/output (I/O) performance, parallelism
at the CPU and file system levels, as well as access pattern optimization (Folk et al. 2011; Koranne 2011).
This approach has not yet been subjected to evaluation and would be a task for future analysis projects.

Another objective for optimization could be the controlled import of images to prevent Random-Access
Memory (RAM) overload. Given that R utilizes memory to store imported and generated data, directories
containing a substantial volume of images can readily overload the RAM, leading to process termination
and software crashes (Prajapati 2013). At present, the issue can only be mitigated manually by dividing the
directory into multiple subdirectories and analyzing them individually. Future advancements should include
strategies to avoid memory overload, such as reading images in batches. R provides a number of packages
that address this problem, including disk.frame (ZJ and Poon 2019), bigmemory (Kane et al. 2008), and
ff (Daniel Adler 2007). Nevertheless, the applicability of these packages for ‘cimg-lists’ has not been further
evaluated and would also be considered a task for future projects.

5.2 Cyclomatic Complexity of biopixR

As previously stated, the biopixR package was designed with the intention of maintaining a minimalistic
approach, with the objective of reducing dependencies and code complexity. It is of vital importance to
ensure the reproducibility of software, not only for the advancement of our own work but also for the
broader scientific community (Gentleman and Temple Lang 2007; Rödiger et al. 2015). One approach to
achieving this objective involves minimizing dependencies on external packages or libraries, with the goal of
relying on single archives whenever feasible. Consequently, the biopixR package requires the R programming
language (≥ 4.2.0), the imager, magick, and tcltk libraries, the data.table and cluster packages, and
suggests the use of the knitr, rmarkdown, doParallel, kohonen, imagerExtra, GPareto, and foreach
packages, all of which are available exclusively from CRAN.

A widely recognized metric used in both industry and research to evaluate code complexity is the cyclomatic
complexity metric, also known as the McCabe Metric, which was introduced by McCabe (1976). This
metric provides a quantitative measure of code complexity based on graph theory. Given the importance
of ensuring long-term stability and reproducibility, it is crucial to maintain the complexity of individual
package functions at a low level (McCabe 1976; Ebert et al. 2016).

The complexity of the biopixR package is quantified using the cyclocomp package, which measures the
linearly independent paths through the code of a function, taking into account structures such as functions,

57

loops, and control statements (e.g., if, break, next, and return) (Csardi 2016).6 Higher cyclomatic complexity
values indicate more complex functions. The resulting complexity values for the functions of the biopixR
package are presented in Table 9. The user-accessible functions are highlighted, while the helper functions,
which are part of the main functions, are also listed. In the context of the R programming language, cyclomatic
complexity can be regarded as an indicator of code maintainability, readability, and scalability. In general,
lower values indicate code that is logically structured and easy to maintain, whereas higher values suggest
more complex code that may be less maintainable.

Load the 'kableExtra' library for enhanced table formatting
library(kableExtra)

Calculate the cyclomatic complexity for the 'biopixR' package
cyclocomp_df <- cyclocomp::cyclocomp_package("biopixR")

Remove row names from the data frame
rownames(cyclocomp_df) <- NULL

Table 9: Cyclomatic complexity in the ‘biopixR‘ package. Cy-
clomatic complexity measures the number of linearly independent
paths through the code, with higher scores indicating more com-
plex code and lower scores indicating simpler, more maintainable
code. The cyclomatic complexity was calculated using the cyclo-
comp package. Main functions accessible by the user are high-
lighted in bold, while other functions include helper functions and
global variables that are part of the main functions.

name cyclocomp

imgPipe 42
computeGLCM 32

haralickCluster 32
scanDir 30

objectDetection 29

proximityFilter 21
fillLineGaps 18

adaptiveInterpolation 13
interactive_objectDetection 13

sizeFilter 12

changePixelColor 11
edgeDetection 9
shapeFeatures 7
importImage 6

6https://github.com/MangoTheCat/cyclocomp, accessed 07/03/2024

58

https://github.com/MangoTheCat/cyclocomp

rescueFill 5

resultAnalytics 3
wait_time_long 3

fillInit 1
guessKmeans 1

interpolatePixels 1

logIt 1
nonmax 1

print_with_timestamp 1
printWithTimestamp 1

value 1

x 1
y 1

In summary, all functions in the biopixR package have a cyclomatic complexity value of less than 50,
with complexity increasing in the pipeline functions. In comparison, the pliman package, which offers a
comparable pipeline for object quantification as described in Brauckhoff and Rödiger (to be published), has
its analyze_objects() function scoring a cyclomatic complexity of 107.

5.3 Capabilities and Limitations - A Comparative Analysis of Human and Soft-
ware Performance

A number of illustrative examples demonstrate that each individual microbead is accurately identified. How-
ever, the identification of aggregated microbeads, which are referred to as doublets or multiplets, does not
align with the expected pattern. It is important to note that not every visually distinguishable microbead is
regarded as a single object. The observed phenomenon, whereby doublets are identified as a single entity, is
a consequence of the disappearance of their edges along the contact surface. The same principle applies to
multiplets. Consequently, the software will undercount the number of objects in an image when aggregated
microbeads are present. This variability could be addressed by integrating a watershed algorithm, a special-
ized segmentation algorithm capable of distinguishing touching objects (Beucher 1992; Pau et al. 2010). To
demonstrate the discrepancy and comprehend the capabilities, an experiment was conducted to compare the
manual analysis of three microbead images (Figure 28) (n=5) with the results obtained using the biopixR
package.

A statistical comparison of the data will be conducted using the R package irr, which includes various meth-
ods for analyzing interrater reliability (Matthias Gamer 2005). To compare the manual and software-based
methods, the Intraclass Correlation Coefficient (ICC) will be utilized. The ICC was originally introduced
by Fisher (1992) and measures the correlation within a class of data, such as repeated measurements of
the same objective. Typically, ICC values range between 0 and 1. Values below 0.5 indicate low reliability,
while values above 0.8 or 0.9 indicate good to excellent reliability (Liljequist, Elfving, and Skavberg Roaldsen
2019). The ICC is based on the analysis of variances and, for the chosen one-way model, can be defined as

59

the ratio of variances (Bartko 1966). In the calculation, the software is considered to be one rater, and the
mean of the five manual analyses is considered to be the other rater.

To further assess the differences between the two methods, a paired Student’s t-test will be applied to deter-
mine whether there are any statistically significant differences in the obtained results. This test compares the
mean differences and is designed for paired data, such as pre- and post-treatment measurements on a single
individual (Hsu and Lachenbruch 2014). To perform the test, the single result obtained by the software was
replicated five times, matching the five measurements derived from the manual analysis. Both methods are
regarded as paired observations derived from the same images but employing different methods (treatments).
To ensure the accuracy of this test, the data from the manual analysis will be tested for normal distribution
using the Shapiro-Wilk normality test (Shapiro and Wilk 1965).

The manual analysis was conducted using a Shiny app, which is accessible at:

https://brauckhoff.shinyapps.io/umfrage/; language: German

The survey was conducted by three colleagues in the same field of study (biotechnology), myself, and an
independent individual from a completely different field of study. The initial objective of this survey was to
enumerate each microbead, including those that are part of doublets or multiplets. The second task was to
enumerate only the individual microbeads that are part of the aggregated structures. The aforementioned
tasks were completed for three images, which are displayed in Figure 28. The images were selected for
analysis because they depict varying amounts of microbeads and the phenomena of aggregated microbeads.

60

https://brauckhoff.shinyapps.io/umfrage/

Figure 28: Microbead Images for Manual Analysis: These three images represent varying quantities
of microbeads. Each image displays a unique combination of dimensions and the presence of doublets and
multiplets at varying amounts. Note: image1 - top; image2 - middle; image3 - buttom

61

5.3.1 Preprocessing the Manual Analysis and Performing Analysis with biopixR

Initially, the data must be subjected to preprocessing in order to facilitate the display of the results. This
process entails combining the results of the five individual analyses and running the biopixR package on
the same images in order to obtain the comparative data frame. Subsequently, the two data frames, derived
from the manual and software analysis, are merged for further processing. The individual processing steps
are illustrated in the code below, and the final data utilized for analysis is depicted in Tables 10 and 11.

The design of the algorithm suggests that the software will yield lower count values for the first task. This
discrepancy can be attributed to the algorithm’s approach to doublets and multiplets, which are treated as
single entities. In contrast, humans are able to visually distinguish individual microbeads even when they
are part of doublets or multiplets. The results of task 1 are presented in Table 10. It is evident that manual
counting for the image1 with fewer microbeads was accurate, with a standard deviation of 3.27. However,
for the two larger images (Figure 28 image2 & 3) with higher numbers of microbeads, the standard deviation
of the manual analysis increased to approximately 30. As anticipated, the algorithmic analysis produced a
smaller object count than that obtained via manual counting for the first two images (Figure 28 image1 &
2). To interpret these findings, a statistical analysis was conducted and the results were visualized.

Read CSV files containing manual count data
n1 <- read.csv("data/comparison/combined_data.csv")
n2 <- read.csv("data/comparison/combined_data_20240107084710.csv")
n3 <- read.csv("data/comparison/combined_data_20240302124005.csv")
n4 <- read.csv("data/comparison/combined_data_20240304210901.csv")
n5 <- read.csv("data/comparison/combined_data_20240701124906.csv")

Calculate mean and standard deviation for manual analysis for each image (task 1)
manual_all <-
data.frame(
image1_all = c(
mean(n1$Clicks[1], n2$Clicks[1], n3$Clicks[1], n4$Clicks[1], n5$Clicks[1]),
sd(c(
n1$Clicks[1], n2$Clicks[1], n3$Clicks[1], n4$Clicks[1], n5$Clicks[1]

))
),

image2_all = c(
mean(n1$Clicks[3], n2$Clicks[3], n3$Clicks[3], n4$Clicks[3], n5$Clicks[3]),
sd(c(
n1$Clicks[3], n2$Clicks[3], n3$Clicks[3], n4$Clicks[3], n5$Clicks[3]

))
),

image3_all = c(
mean(n1$Clicks[5], n2$Clicks[5], n3$Clicks[5], n4$Clicks[5], n5$Clicks[5]),

62

sd(c(
n1$Clicks[5], n2$Clicks[5], n3$Clicks[5], n4$Clicks[5], n5$Clicks[5]

))
)

)

Calculate mean and standard deviation for manual analysis for each image (task 2)
manual_clott <-
data.frame(
image1_clot = c(
mean(n1$Clicks[2], n2$Clicks[2], n3$Clicks[2], n4$Clicks[2], n5$Clicks[2]),
sd(c(
n1$Clicks[2], n2$Clicks[2], n3$Clicks[2], n4$Clicks[2], n5$Clicks[2]

))
),

image2_clot = c(
mean(n1$Clicks[4], n2$Clicks[4], n3$Clicks[4], n4$Clicks[4], n5$Clicks[4]),
sd(c(
n1$Clicks[4], n2$Clicks[4], n3$Clicks[4], n4$Clicks[4], n5$Clicks[4]

))
),

image3_clot = c(
mean(n1$Clicks[6], n2$Clicks[6], n3$Clicks[6], n4$Clicks[6], n5$Clicks[6]),
sd(c(
n1$Clicks[6], n2$Clicks[6], n3$Clicks[6], n4$Clicks[6], n5$Clicks[6]

))
)

)

Transpose and modify column names
manual_all <- t(manual_all)
colnames(manual_all) <- c("Count", "sd")

manual_clott <- t(manual_clott)
colnames(manual_clott) <- c("Count", "sd")

Import images for comparison with manual analysis
image1 <- importImage("figures/fig21.1_comparison.bmp")
image2 <- importImage("figures/fig21.2_comparison.png")
image3 <- importImage("figures/fig21.3_comparison.bmp")

63

Perform object detection on the images (comparison for task 1)
comparison1_img1 <- objectDetection(image1, alpha = 0.8, sigma = 0.7)
comparison1_img2 <- objectDetection(image2, alpha = 0.4, sigma = 0)
comparison1_img3 <- objectDetection(image3, alpha = 1, sigma = 0)

Use pipeline function with size filtering to estimate amount of aggregated
microbeads (comparison for task 2)
comparison2_img1 <- imgPipe(image1,

alpha = 0.8,
sigma = 0.7,
sizeFilter = T)

comparison2_img2 <- imgPipe(image2,
alpha = 0.4,
sigma = 0,
sizeFilter = T)

comparison2_img3 <- imgPipe(image3,
alpha = 1,
sigma = 0,
sizeFilter = T)

Create a data frame for the first comparison
df_comparison1 <- data.frame(
factor = c("image1", "image2", "image3"),
software = c(
length(comparison1_img1$centers$value),
length(comparison1_img2$centers$value),
length(comparison1_img3$centers$value)

),
manual = as.numeric(manual_all[, 1]),
manual_sd = as.numeric(manual_all[, 2])

)

Create a data frame for the second comparison
df_comparison2 <- data.frame(
factor = c("image1", "image2", "image3"),
software = c(
comparison2_img1$summary$estimated_rejected,
comparison2_img2$summary$estimated_rejected,
comparison2_img3$summary$estimated_rejected

),
manual = as.numeric(manual_clott[, 1]),
manual_sd = as.numeric(manual_clott[, 2])

)

64

Table 10: Comparison in object quantification for task 1. The
table summarizes the quantification of all microbeads, including
singlets and individual microbeads within doublets or multiplets.
The analysis was conducted on the three example images presented
at the beginning of this chapter. The ‘biopixR‘ package was used
for software-based quantification, while the manual analysis is pre-
sented as the average count (n = 5) with the standard deviation.

image software manual sd(manual)

image1 87 100 3.27
image2 713 744 33.71
image3 439 424 28.06
Abbreviations: sd - standard deviation

Table 11: Comparison in object quantification for task 2. The ta-
ble presents the results of counting individual microbeads within
aggregated clusters, such as doublets or multiplets. The analy-
sis was performed on the three aforementioned images using the
‘biopixR‘ package and manual analysis (n = 5). For the manual
analysis, the average count and standard deviation are reported.

image software manual sd(manual)

image1 26 25 4.18
image2 144 89 28.89
image3 7 10 4.56
Abbreviations: sd - standard deviation

5.3.2 Visualization of Comparison between Human and Software Analysis

To assess the reliability of the software in comparison to manual analysis, the ICC was calculated. The
count data for both tasks were subjected to a Shapiro-Wilk test to ascertain their normal distribution. The
resulting p-values, all greater than 0.05, indicate that the data is normally distributed. Subsequently, a paired
Student’s t-test was conducted to compare the two methods. The results are presented in the corresponding
plots for each task, with statistically significant differences marked with an asterisk (*) (p < 0.05).

In the first image, the software produced a significantly lower result compared to manual counting, which
is an expected outcome. In contrast, for the other two images, the software results fall within the standard
deviation of the manual analysis, with no statistically significant difference (Figure 29). The ICC calculated
for the first task was 0.998, indicating excellent reliability between the results obtained by the software and
those obtained through manual analysis.

65

Load the 'irr' library for calculating the ICC
library(irr)

Calculate the ICC for the 'software' and 'manual' columns in df_comparison1
icc_result1 <- icc(df_comparison1[, 2:3])

Print the ICC result
print(icc_result1)

Single Score Intraclass Correlation

Model: oneway
Type : consistency

Subjects = 3
Raters = 2
ICC(1) = 0.998

F-Test, H0: r0 = 0 ; H1: r0 > 0
F(2,3) = 894 , p = 6.86e-05

95%-Confidence Interval for ICC Population Values:
0.965 < ICC < 1

Vectorized approach for running Shapiro-Wilk test and checking normality
normality_p_values <- sapply(1:6, function(i) {
shapiro.test(c(n1$Clicks[i],

n2$Clicks[i],
n3$Clicks[i],
n4$Clicks[i],
n5$Clicks[i]))$p.value

})

Check normality and print results
for (i in 1:6) {
if (normality_p_values[i] < 0.05) {
message <- "Data is not normally distributed."

} else {
message <- "Data is normally distributed."

}
print(paste(
"Test",
i,

66

":",
message,
"(p-value =",
round(normality_p_values[i], digits = 3),
")"

))
}

[1] "Test 1 : Data is normally distributed. (p-value = 0.544)"
[1] "Test 2 : Data is normally distributed. (p-value = 0.257)"
[1] "Test 3 : Data is normally distributed. (p-value = 0.377)"
[1] "Test 4 : Data is normally distributed. (p-value = 0.834)"
[1] "Test 5 : Data is normally distributed. (p-value = 0.82)"
[1] "Test 6 : Data is normally distributed. (p-value = 0.544)"

Define indices for the paired t-tests
indices1 <- c(1, 3, 5) # Rows represnting the results for task 1
indices2 <- 1:3 # Rows in comparative data frame for task 1

Perform paired t-test for each selected pair of indices and collect p-values
p_values <- mapply(function(i, j) {
t.test(
rep(df_comparison1$software[j], 5),
c(n1$Clicks[i], n2$Clicks[i], n3$Clicks[i], n4$Clicks[i], n5$Clicks[i]),
paired = TRUE

)$p.value
}, indices1, indices2)

Significance threshold for the t-tests
significance_threshold <- 0.05

Set up the plot area with custom x and y limits
plot(
1:nrow(df_comparison1),
df_comparison1$software,
type = "n",
xaxt = "n",
xlim = c(0.5, nrow(df_comparison1) + 0.5),
ylim = range(
c(
df_comparison1$software,
df_comparison1$manual + df_comparison1$manual_sd

)

67

),
main = "Comparison of Methods",
xlab = "Factors",
ylab = "Counts"

)

Add custom x-axis labels
axis(1,

at = 1:nrow(df_comparison1),
labels = df_comparison1$factor)

Add points for the 'software' method
points(
1:nrow(df_comparison1),
df_comparison1$software,
pch = 16,
col = "darkcyan",
cex = 1.5

)

Add points for the 'manual' method
points(
1:nrow(df_comparison1),
df_comparison1$manual,
pch = 16,
col = "orange",
cex = 1.5

)

Add error bars for the 'manual' method
arrows(
x0 = 1:nrow(df_comparison1),
y0 = df_comparison1$manual - df_comparison1$manual_sd,
x1 = 1:nrow(df_comparison1),
y1 = df_comparison1$manual + df_comparison1$manual_sd,
angle = 90,
code = 3,
length = 0.1,
col = "orange"

)

Add asterisks to indicate significant differences based on p-values
for (i in 1:nrow(df_comparison1)) {

68

if (p_values[i] < significance_threshold) {
text(
i,
max(df_comparison1$software[i], df_comparison1$manual[i]) + 40,
"*",
cex = 1.5,
col = "black"

)
}

}

Add legend to the plot
legend(
"topright",
legend = c("Software", "Manual"),
col = c("darkcyan", "orange"),
pch = 16

)

10
0

30
0

50
0

70
0

Comparison of Methods

Factors

C
ou

nt
s

image1 image2 image3

*

Software
Manual

Figure 29: Comparison of Software and Manual Object Quantification (Task 1): All microbeads,
including those in doublets or multiplets, are quantified manually by five different individuals (n = 5) and
by the software biopixR. The resulting counts for each method are shown, with software results in darkcyan
and manual analysis results in orange. The manual analysis is shown as mean ± standard deviation. Note:
Statistical significance was calculated using a paired Student’s t-test, with * p < 0.05.

The second task is to estimate the number of microbeads present within doublets and multiplets. The data
for this analysis is presented in Table 11. The results from both the software and manual analysis of images

69

one and three are comparable, with a low standard deviation for the latter. The first image, with lower image
dimensions, and the third, with a low number of doublets and multiplets, are comparatively straightforward
to analyze. In contrast, the second image depicts a larger number of these structures, resulting in greater
variability in the results obtained by manual analysis, with a standard deviation of nearly 30 (Figure 28 and
Table 11). In order to create a comparable software result for this task, the imgPipe() function with an
enabled sizeFilter() was employed. The algorithm estimates the number of rejected microbeads within
these structures by dividing the number of discarded pixels by the mean size of the remaining objects
(microbeads). The aforementioned results are illustrated in Figure 30, which demonstrates that the software
and manual analysis yield nearly identical outcomes for images one and three. However, the differing outcome
for image two is illustrated, with a statistically significant difference between the methods. The calculated
ICC for task 2 indicates a high degree of reliability between the methods, with a score of 0.86.

Same for task 2
Load the 'irr' library for calculating the ICC
library(irr)

Calculate the ICC for the 'software' and 'manual' columns in df_comparison2
icc_result2 <- icc(df_comparison2[, 2:3])

Print the ICC result
print(icc_result2)

Single Score Intraclass Correlation

Model: oneway
Type : consistency

Subjects = 3
Raters = 2
ICC(1) = 0.86

F-Test, H0: r0 = 0 ; H1: r0 > 0
F(2,3) = 13.3 , p = 0.0322

95%-Confidence Interval for ICC Population Values:
-0.092 < ICC < 0.996

Check for normality see analysis of task 1

Perform paired t-test for each selected pair of indices and collect p-values
p_values <- sapply(1:nrow(df_comparison2), function(i) {
t.test(
rep(df_comparison2$software[i], 5),
c(n1$Clicks[i * 2],

70

n2$Clicks[i * 2],
n3$Clicks[i * 2],
n4$Clicks[i * 2],
n5$Clicks[i * 2]),

paired = TRUE
)$p.value

})

Significance threshold for the t-tests
significance_threshold <- 0.05

Set up the plot area with custom x and y limits
plot(
1:nrow(df_comparison2),
df_comparison2$software,
type = "n",
xaxt = "n",
xlim = c(0.5, nrow(df_comparison2) + 0.5),
ylim = range(
c(
df_comparison2$software,
df_comparison2$manual + df_comparison2$manual_sd

)
),
main = "Comparison of Methods",
xlab = "Factors",
ylab = "Counts"

)

Add custom x-axis labels
axis(1,

at = 1:nrow(df_comparison2),
labels = df_comparison2$factor)

Add points for the 'software' method
points(
1:nrow(df_comparison2),
df_comparison2$software,
pch = 16,
col = "darkcyan",
cex = 1.5

)

71

Add points for the 'manual' method
points(
1:nrow(df_comparison2),
df_comparison2$manual,
pch = 16,
col = "orange",
cex = 1.5

)

Add error bars for the 'manual' method
arrows(
x0 = 1:nrow(df_comparison2),
y0 = df_comparison2$manual - df_comparison2$manual_sd,
x1 = 1:nrow(df_comparison2),
y1 = df_comparison2$manual + df_comparison2$manual_sd,
angle = 90,
code = 3,
length = 0.1,
col = "orange"

)

Add asterisks to indicate significant differences based on p-values
for (i in 1:nrow(df_comparison2)) {
if (p_values[i] < significance_threshold) {
text(
i,
max(df_comparison2$software[i], df_comparison2$manual[i]) - 90,
"*",
cex = 1.5,
col = "black"

)
}

}

Add legend to the plot
legend(
"topright",
legend = c("Software", "Manual"),
col = c("darkcyan", "orange"),
pch = 16

)

72

20
40

60
80

12
0

Comparison of Methods

Factors

C
ou

nt
s

image1 image2 image3

*

Software
Manual

Figure 30: Comparison of Software and Manual Object Quantification (Task 2): Only microbeads
that are part of doublets or multiplets are counted. Manual analysis was conducted by five different indi-
viduals (n = 5) and compared to the software biopixR. The resulting counts for each method are shown,
with software results in darkcyan and manual analysis results in orange. The manual analysis is depicted
as mean ± standard deviation. Note: Statistical significance was calculated using a paired Student’s t-test,
with * p < 0.05.

In conclusion, as the complexity of images increases, as evidenced by an elevated number of objects and the
occurrence of phenomena such as doublets and multiplets, manual analysis becomes increasingly inaccurate,
resulting in high standard deviations and compromised reproducibility. This highlights the necessity of the
biopixR package for the reproducible quantification of image objects. In terms of reliability, the results
obtained using the biopixR package are comparable to those obtained through manual analysis, but without
the variation introduced by human error, as indicated by the calculated ICC. In conclusion, this section
demonstrates the significance of the biopixR package in enhancing the reliability, quality, and reproducibility
of object quantification in image analysis.

5.4 Exploring New Areas of Applicability

The biopixR package was initially designed and developed with a primary focus on microbeads. However,
its applicability extends beyond this area of research. The package can be utilized for any image analysis
task requiring feature extraction of spherical or round objects, including fields such as microplastic analysis
and tracking (Bannerman and Wan 2016; Ding et al. 2020) and cell biology (Schneider et al. 2019). To
illustrate the diverse applications of the biopixR package beyond microbeads, we present an example of its
use in analyzing images obtained from cell biology studies.

DNA Double-strand breaks (DSBs) represent a particularly severe form of DNA damage, frequently resulting
in apoptotic cell death in the absence of repair. The quantification of these breaks can be achieved through

73

immunofluorescence staining, which employs antibodies directed against the phosphorylated histone protein
H2AX (𝛾H2AX). This staining technique results in the formation of 𝛾H2AX foci, which serve as a quanti-
tative representation of the number of DNA DSBs. The number of DSBs is proposed to reflect the efficacy
of anti-tumor agents and, therefore, facilitate the assessment of individual patient responses to therapies.
Furthermore, the number of DSBs may be used to evaluate the general cytotoxic effects of treatments in
vivo. This approach allows for the precise modulation of therapy according to the individual needs of patients
(Rödiger et al. 2018; Ruhe et al. 2019; Schneider et al. 2019).

In the following example, the biopixR package was employed to highlight extracted 𝛾H2AX foci. To quantify
the green fluorescent 𝛾H2AX foci, the green color channel was initially extracted to enable the distinct
identification of each individual foci using the objectDetection() function. The extracted foci were then
visualized using the changePixelColor() function, with a unique color assigned to each distinct foci (Figure
31B). Subsequently, the number of foci per cell was determined in order to assess the state of the culture or
tissue. This entailed the segmentation of cells through the application of the objectDetection() function
to the blue color channel, which represents the DAPI-stained nuclei. By comparing the coordinates, the
number of foci per cell was extracted. As illustrated in Figure 32, the majority of cells exhibit no DNA
damage, with 27 % displaying a single foci and a small proportion demonstrating higher levels of damage
with multiple foci.

Import the image from the specified file path
DSB_img <- importImage("figures/tim_242602_c_s6c1+2+3m3.tif")

Extract the green channel from the image representing yH2AX
yH2AX <- DSB_img[, , , 2] |> as.cimg()

Perform object detection on the green channel image using the 'edge' method
with specified parameters alpha and sigma
DSB <-
objectDetection(yH2AX,

method = 'edge',
alpha = 1.3,
sigma = 0)

Change the pixel colors of the detected objects
colored_DSB <-
changePixelColor(yH2AX,

DSB$coordinates,
color = factor(DSB$coordinates$value),
vis = FALSE)

Plot the imported image without axes
plot(DSB_img, axes = FALSE)

Add a text annotation "A" at coordinates (50, 60) with dark red color and size 6

74

text(c(50), c(60), c("A"), col = "darkred", cex = 6)

Plot the image with colored objects without axes
plot(colored_DSB, axes = FALSE)

Add a text annotation "B" at coordinates (50, 60) with dark red color and size 6
text(c(50), c(60), c("B"), col = "darkred", cex = 6)

Figure 31: Visualization of the Application of biopixR in Cell Biology: A) The image shows HepG2
cells with nuclei stained using DAPI. The quantitative marker for DNA double-strand breaks, 𝛾H2AX, is
targeted with a specific antibody and appears as green fluorescent foci. The experimental procedure adheres
to the method described in Rödiger et al. (2018). B) The 𝛾H2AX foci are quantified using the biopixR
package, with the detected foci highlighted in different colors by the changePixelColor() function.

Extract the blue channel from the image representing nuclei
core <- DSB_img[, , , 3] |> as.cimg()

Perform object detection on the blue channel using the 'threshold' method
cores <- objectDetection(core, method = 'threshold')

Function to compare coordinates from two data frames
compareCoordinates <- function(df1, df2) {

Create a single identifier for each coordinate pair in both data frames
df1$coord_id <- paste(round(df1$mx), round(df1$my), sep = ",")
df2$coord_id <- paste(df2$x, df2$y, sep = ",")

Find matches between the coordinate identifiers

75

matches <- df2$coord_id %in% df1$coord_id

DT <- data.table(df2)
DT$DSB <- matches

Summarize the results
result <-
DT[, list(count = length(which(DSB == TRUE))), by = value]

return(result)
}

Compare coordinates between detected DSB centers and cores' coordinates
count <- compareCoordinates(DSB$centers, cores$coordinates)

Extract the counts for further analysis
to_analyze <- count[, 2]

Create a frequency table of the counts
event_counts <- table(to_analyze)

Create a barplot of the frequency distribution of yH2AX foci per cell
barplot(
event_counts,
xlab = "foci per cell",
ylab = "frequency",
cex.axis = 1.2,
cex.lab = 1.4,
cex.main = 1.6

)

76

Figure 32: Quantification of 𝛾H2AX Foci per Cell: The bar plot displays the results of quantitative
foci extraction from cellular images using the biopixR package. It shows the distribution of 𝛾H2AX foci
per cell, revealing that most cells exhibit few or no DNA double-strand breaks, indicated by the absence of
𝛾H2AX foci. The frequency of events (number of foci per cell) is plotted to illustrate this distribution.

In conclusion, this illustrative example of DNA damage assessment illustrates the capabilities of the biopixR
package in cell biology. The utilization of edge detection for foci extraction in conjunction with thresholding
for nuclei identification serves to demonstrate the suitability of biopixR for complex imaging tasks. The
integration of multiple segmentation strategies within a unified function enhances the flexibility of biopixR,
rendering it applicable across diverse fields within the life sciences.

6 Summary and Conclusion

The present extended vignette demonstrates the efficacy and versatility of the biopixR package for a multi-
tude of tasks involving the analysis of image data, including microbead-based and cell-based assays. Specif-
ically, we have demonstrated that software-based object detection is capable of identifying objects with
greater speed and efficiency, while quantifying features from images in a more reliable manner compared
to manual analysis. Given that the biopixR package is work in progress, there is scope for optimization
and further improvements. Ongoing testing continues to reveal bugs, which will be addressed in a timely
manner. Some of the issues identified during the writing process include a problem with the scanDir()
function, where the log function is not able to locate the documentation file. Another area for improvement
is the optimization of the haralickCluster() function by replacing loops with vectorized operations, as
the current use of loops results in slower performance. Moreover, the enhancement of unit tests and the
integration of the quality control package covr into the continuous integration workflow will also contribute
to an improvement in code quality. Long-term objectives include the development of an interactive Shiny
application to provide a graphical web interface for the functions available in biopixR, thereby enhancing
the program’s accessibility to a broader user base. Another objective is to enhance the package’s applicabil-
ity for analyzing double-strand breaks, building on initial experiments that have already demonstrated its
potential in this area.

77

7 Acknowledgement

We would like to express our gratitude to Dr. Franziska Dinter (BTU Cottbus - Senftenberg, Senftenberg,
Germany) and Dr. Coline Kieffer (PSL University, Paris, France) for providing the microbead images, con-
ducting the related experiments and discussion. Their contributions were essential for the development and
testing of the biopixR package. Additionally, our appreciation goes to those who performed the manual
analysis for comparing the developed software against human performance: Julius Rublack, Juliane Hohlfeld,
Niclas Anschütz, and Tim Stübner.

78

sessionInfo()

R version 4.3.2 (2023-10-31)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 22.04.3 LTS

Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.10.0
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0

locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=de_DE.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=de_DE.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=de_DE.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=de_DE.UTF-8 LC_IDENTIFICATION=C

time zone: Europe/Berlin
tzcode source: system (glibc)

attached base packages:
[1] tcltk stats graphics grDevices utils datasets methods
[8] base

other attached packages:
[1] irr_0.84.1 lpSolve_5.6.20 kableExtra_1.4.0 biopixR_1.1.0
[5] magick_2.8.3 imager_1.0.2 magrittr_2.0.3 foodwebr_0.1.1
[9] knitr_1.46

loaded via a namespace (and not attached):
[1] tidyselect_1.2.1 viridisLite_0.4.2 dplyr_1.1.4 fastmap_1.1.1
[5] pracma_2.4.4 digest_0.6.35 lifecycle_1.0.4 cluster_2.1.6
[9] processx_3.8.4 KrigInv_1.4.2 compiler_4.3.2 rlang_1.1.4
[13] tools_4.3.2 igraph_2.0.3 utf8_1.2.4 yaml_2.3.8
[17] data.table_1.15.4 htmlwidgets_1.6.4 mclust_6.0.1 xml2_1.3.6
[21] DiceDesign_1.10 KernSmooth_2.23-22 withr_3.0.0 purrr_1.0.2
[25] desc_1.4.3 grid_4.3.2 rgenoud_5.9-0.10 rgl_1.2.8
[29] fansi_1.0.6 colorspace_2.1-0 emoa_0.5-2 scales_1.3.0
[33] MASS_7.3-60 readbitmap_0.1.5 cli_3.6.2 mvtnorm_1.2-4
[37] crayon_1.5.2 rmarkdown_2.26 remotes_2.4.2.1 generics_0.1.3
[41] rstudioapi_0.16.0 stringr_1.5.1 parallel_4.3.2 tiff_0.1-12
[45] base64enc_0.1-3 vctrs_0.6.5 Matrix_1.6-4 jsonlite_1.8.8

79

[49] bookdown_0.37 callr_3.7.6 fftwtools_0.9-11 kohonen_3.0.12
[53] systemfonts_1.0.5 jpeg_0.1-10 DiceKriging_1.6.0 cyclocomp_1.1.1
[57] tidyr_1.3.0 glue_1.7.0 ps_1.7.6 rngWELL_0.10-9
[61] stringi_1.8.4 randtoolbox_2.0.4 munsell_0.5.1 imagerExtra_1.3.2
[65] tibble_3.2.1 pillar_1.9.0 anMC_0.2.5 htmltools_0.5.8.1
[69] R6_2.5.1 pso_1.0.4 GPareto_1.1.8 ks_1.14.1
[73] tidygraph_1.3.1 bmp_0.3 evaluate_0.24.0 pbivnorm_0.6.0
[77] lattice_0.22-5 png_0.1-8 tictoc_1.2 Rcpp_1.0.12
[81] svglite_2.1.3 xfun_0.43 pkgconfig_2.0.3

80

References
Appleton-Fox, Lewin. 2022. “Foodwebr: Visualise Function Dependencies.” https://github.com/lewinfox/

foodwebr.
Bååth, Rasmus. 2012. “The State of Naming Conventions in R.” The R Journal 4 (2): 74–75. https:

//doi.org/10.32614/RJ-2012-018.
Bannerman, Dawn, and Wankei Wan. 2016. “Multifunctional Microbeads for Drug Delivery in TACE.”

Expert Opinion on Drug Delivery 13 (9): 1289–1300. https://doi.org/10.1080/17425247.2016.1192122.
Barthelme, Simon. 2015. “Imager: Image Processing Library Based on ‘CImg’.” CRAN: Contributed

Packages, August. https://doi.org/10.32614/cran.package.imager.
Barthelmé, Simon, and David Tschumperlé. 2019. “Imager: An R Package for Image Processing Based on

CImg.” Journal of Open Source Software 4 (38): 1012. https://doi.org/10.21105/joss.01012.
Bartko, John J. 1966. “The Intraclass Correlation Coefficient as a Measure of Reliability.” Psychological

Reports 19 (1): 3–11. https://doi.org/10.2466/pr0.1966.19.1.3.
Baumer, Ben, Mine Cetinkaya-Rundel, Andrew Bray, Linda Loi, and Nicholas J. Horton. 2014. “R Mark-

down: Integrating a Reproducible Analysis Tool into Introductory Statistics.” Technology Innovations in
Statistics Education 8 (1). https://doi.org/10.5070/t581020118.

Beare, Richard, Bradley Lowekamp, and Ziv Yaniv. 2018. “Image Segmentation, Registration and Char-
acterization in R with SimpleITK.” Journal of Statistical Software 86 (8). https://doi.org/10.18637/jss.
v086.i08.

Beucher, Serge. 1992. “The Watershed Transformation Applied to Image Segmentation.” Scanning Mi-
croscopy 1992 (6): 28.

Binois, Mickaël, and Victor Picheny. 2019. “GPareto: An R Package for Gaussian-Process-Based Multi-
Objective Optimization and Analysis.” Journal of Statistical Software 89 (8). https://doi.org/10.18637/
jss.v089.i08.

Blischak, John D., Emily R. Davenport, and Greg Wilson. 2016. “A Quick Introduction to Version Control
with Git and GitHub.” Edited by Francis Ouellette. PLOS Computational Biology 12 (1): e1004668.
https://doi.org/10.1371/journal.pcbi.1004668.

Brauckhoff, Tim, and Stefan Rödiger. to be published. “Exploring Image Analysis with R: Applications and
Advancements,” to be published.

Caicedo, Juan C, Sam Cooper, Florian Heigwer, Scott Warchal, Peng Qiu, Csaba Molnar, Aliaksei S Vasile-
vich, et al. 2017. “Data-Analysis Strategies for Image-Based Cell Profiling.” Nature Methods 14 (9):
849–63. https://doi.org/10.1038/nmeth.4397.

Calero Valdez, André. 2020. “Making Reproducible Research Simple Using RMarkdown and the OSF.” In
Lecture Notes in Computer Science, 27–44. Springer International Publishing. https://doi.org/10.1007/
978-3-030-49570-1_3.

Canny, John. 1986. “A Computational Approach to Edge Detection.” IEEE Transactions on Pattern
Analysis and Machine Intelligence PAMI-8 (6): 679–98. https://doi.org/10.1109/tpami.1986.4767851.

Cao, Jingwen, Ran Xu, Fuhan Wang, Yuan Geng, Tianchao Xu, Mengran Zhu, Hongli Lv, Shiwen Xu,
and Meng-yao Guo. 2023. “Polyethylene Microplastics Trigger Cell Apoptosis and Inflammation via
Inducing Oxidative Stress and Activation of the NLRP3 Inflammasome in Carp Gills.” Fish &Amp;
Shellfish Immunology 132 (January): 108470. https://doi.org/10.1016/j.fsi.2022.108470.

Cechova, Monika. 2020. “Ten Simple Rules for Biologists Initiating a Collaboration with Computer Scien-
tists.” Edited by Scott Markel. PLOS Computational Biology 16 (10): e1008281. https://doi.org/10.

81

https://github.com/lewinfox/foodwebr
https://github.com/lewinfox/foodwebr
https://doi.org/10.32614/RJ-2012-018
https://doi.org/10.32614/RJ-2012-018
https://doi.org/10.1080/17425247.2016.1192122
https://doi.org/10.32614/cran.package.imager
https://doi.org/10.21105/joss.01012
https://doi.org/10.2466/pr0.1966.19.1.3
https://doi.org/10.5070/t581020118
https://doi.org/10.18637/jss.v086.i08
https://doi.org/10.18637/jss.v086.i08
https://doi.org/10.18637/jss.v089.i08
https://doi.org/10.18637/jss.v089.i08
https://doi.org/10.1371/journal.pcbi.1004668
https://doi.org/10.1038/nmeth.4397
https://doi.org/10.1007/978-3-030-49570-1_3
https://doi.org/10.1007/978-3-030-49570-1_3
https://doi.org/10.1109/tpami.1986.4767851
https://doi.org/10.1016/j.fsi.2022.108470
https://doi.org/10.1371/journal.pcbi.1008281
https://doi.org/10.1371/journal.pcbi.1008281

1371/journal.pcbi.1008281.
Chambers, John M. 2014. “Object-Oriented Programming, Functional Programming and R.” Statistical

Science 29 (2). https://doi.org/10.1214/13-sts452.
Chessel, Anatole. 2017. “An Overview of Data Science Uses in Bioimage Informatics.” Methods 115 (Febru-

ary): 110–18. https://doi.org/10.1016/j.ymeth.2016.12.014.
Corporation, Microsoft, and Steve Weston. 2011. “doParallel: Foreach Parallel Adaptor for the ‘Parallel’

Package.” CRAN: Contributed Packages. The R Foundation. https://doi.org/10.32614/cran.package.
doparallel.

Cosentino, Valerio, Javier Luis, and Jordi Cabot. 2016. “Findings from GitHub: Methods, Datasets and
Limitations.” In Proceedings of the 13th International Conference on Mining Software Repositories. ICSE
’16. ACM. https://doi.org/10.1145/2901739.2901776.

Csardi, Gabor. 2016. “Cyclocomp: Cyclomatic Complexity of R Code.” CRAN: Contributed Packages. The
R Foundation. https://doi.org/10.32614/cran.package.cyclocomp.

Daniel Adler, Oleg Nenadic, Christian Gläser. 2007. “Ff: Memory-Efficient Storage of Large Data on Disk
and Fast Access Functions.” CRAN: Contributed Packages. The R Foundation. https://doi.org/10.
32614/cran.package.ff.

Ding, Ning, Di An, Xiufeng Yin, and Yingxue Sun. 2020. “Detection and Evaluation of Microbeads and
Other Microplastics in Wastewater Treatment Plant Samples.” Environmental Science and Pollution
Research 27 (13): 15878–87. https://doi.org/10.1007/s11356-020-08127-2.

Dinter, Franziska, Thomas Thiehle, Uwe Schedler, Werner Lehmann, Peter Schierack, and Stefan Rödiger.
2023. “Immobilisation of Lipophilic and Amphiphilic Biomarker on Hydrophobic Microbeads,” January.
https://doi.org/10.1101/2023.01.10.523433.

Ebert, Christof, James Cain, Giuliano Antoniol, Steve Counsell, and Phillip Laplante. 2016. “Cyclomatic
Complexity.” IEEE Software 33 (6): 27–29. https://doi.org/10.1109/ms.2016.147.

Ecke, Annemarie, Anne-Helen Lutter, Jenny Scholka, Anna Hansch, Roland Becker, and Ursula Anderer.
2019. “Tissue Specific Differentiation of Human Chondrocytes Depends on Cell Microenvironment and
Serum Selection.” Cells 8 (8): 934. https://doi.org/10.3390/cells8080934.

Eliceiri, Kevin W, Michael R Berthold, Ilya G Goldberg, Luis Ibáñez, B S Manjunath, Maryann E Martone,
Robert F Murphy, et al. 2012. “Biological Imaging Software Tools.” Nature Methods 9 (7): 697–710.
https://doi.org/10.1038/nmeth.2084.

Fisher, R. A. 1992. “Statistical Methods for Research Workers.” In Breakthroughs in Statistics, 66–70.
Springer New York. https://doi.org/10.1007/978-1-4612-4380-9_6.

Folk, Mike, Gerd Heber, Quincey Koziol, Elena Pourmal, and Dana Robinson. 2011. “An Overview of the
HDF5 Technology Suite and Its Applications.” In Proceedings of the EDBT/ICDT 2011 Workshop on
Array Databases. EDBT/ICDT ’11. ACM. https://doi.org/10.1145/1966895.1966900.

Geithe, Christiane, Bo Zeng, Carsten Schmidt, Franziska Dinter, Dirk Roggenbuck, Werner Lehmann, Gre-
gory Dame, Peter Schierack, Katja Hanack, and Stefan Rödiger. 2021. “A Multiplex Microchamber
Diffusion Assay for the Antibody-Based Detection of microRNAs on Randomly Ordered Microbeads,”
March. https://doi.org/10.1101/2021.03.19.436219.

———. 2024. “A Multiplex Microchamber Diffusion Assay for the Antibody-Based Detection of microRNAs
on Randomly Ordered Microbeads.” Biosensors and Bioelectronics: X 18 (June): 100484. https://doi.
org/10.1016/j.biosx.2024.100484.

Gentleman, Robert, and Duncan Temple Lang. 2007. “Statistical Analyses and Reproducible Re-

82

https://doi.org/10.1371/journal.pcbi.1008281
https://doi.org/10.1214/13-sts452
https://doi.org/10.1016/j.ymeth.2016.12.014
https://doi.org/10.32614/cran.package.doparallel
https://doi.org/10.32614/cran.package.doparallel
https://doi.org/10.1145/2901739.2901776
https://doi.org/10.32614/cran.package.cyclocomp
https://doi.org/10.32614/cran.package.ff
https://doi.org/10.32614/cran.package.ff
https://doi.org/10.1007/s11356-020-08127-2
https://doi.org/10.1101/2023.01.10.523433
https://doi.org/10.1109/ms.2016.147
https://doi.org/10.3390/cells8080934
https://doi.org/10.1038/nmeth.2084
https://doi.org/10.1007/978-1-4612-4380-9_6
https://doi.org/10.1145/1966895.1966900
https://doi.org/10.1101/2021.03.19.436219
https://doi.org/10.1016/j.biosx.2024.100484
https://doi.org/10.1016/j.biosx.2024.100484

search.” Journal of Computational and Graphical Statistics 16 (1): 1–23. https://doi.org/10.1198/
106186007X178663.

Ghosh, Swarnendu, Nibaran Das, Ishita Das, and Ujjwal Maulik. 2019. “Understanding Deep Learning
Techniques for Image Segmentation.” ACM Computing Surveys 52 (4): 1–35. https://doi.org/10.1145/
3329784.

Giorgi, Federico M., Carmine Ceraolo, and Daniele Mercatelli. 2022. “The R Language: An Engine for
Bioinformatics and Data Science.” Life 12 (5): 648. https://doi.org/10.3390/life12050648.

Göröcs, Zoltán, Euan McLeod, and Aydogan Ozcan. 2015. “Enhanced Light Collection in Fluorescence
Microscopy Using Self-Assembled Micro-Reflectors.” Scientific Reports 5 (1). https://doi.org/10.1038/
srep10999.

Gregory, Peggy. 2021. Agile Processes in Software Engineering and Extreme Programming: 22nd Interna-
tional Conference on Agile Software Development, XP 2021, Virtual Event, June 14-18, 2021, Proceedings.
Edited by Casper Lassenius, Xiaofeng Wang, and Philippe Kruchten. Lecture Notes in Business Infor-
mation Processing Ser. v.419. Cham: Springer International Publishing AG.

Haase, Robert, Elnaz Fazeli, David Legland, Michael Doube, Siân Culley, Ilya Belevich, Eija Jokitalo, Martin
Schorb, Anna Klemm, and Christian Tischer. 2022. “A Hitchhiker's Guide Through the Bio-Image
Analysis Software Universe.” FEBS Letters 596 (19): 2472–85. https://doi.org/10.1002/1873-3468.14451.

Haralick, Robert M., K. Shanmugam, and Its’Hak Dinstein. 1973. “Textural Features for Image Classifi-
cation.” IEEE Transactions on Systems, Man, and Cybernetics SMC-3 (6): 610–21. https://doi.org/10.
1109/tsmc.1973.4309314.

Hester, Jim. 2021. “GitHub Actions for the R language.” https://github.com/r-lib/actions.
Hsu, Henry, and Peter A. Lachenbruch. 2014. “Paired t Test.” Wiley StatsRef: Statistics Reference Online,

September. https://doi.org/10.1002/9781118445112.stat05929.
Iglewicz, Boris, and David C. Hoaglin. 1993. How to Detect and Handle Outliers. The @ASQC Basic

References in Quality Control: Statistical Techniques 16. Milwaukee, Wis.: ASQC Quality Press.
Jähne, Bernd, ed. 2002. Digital Image Processing. [CD-ROM-Ausg. der] 5., überarb. und erw. [gedr.] Aufl.

Engineering Online Library. Berlin: Springer.
Jiang, Jiahui, Xiaoyu Cai, Hongyu Ren, Guangli Cao, Jia Meng, Defeng Xing, Jes Vollertsen, and Bingfeng

Liu. 2024. “Effects of Polyethylene Terephthalate Microplastics on Cell Growth, Intracellular Products
and Oxidative Stress of Scenedesmus Sp.” Chemosphere 348 (January): 140760. https://doi.org/10.1016/
j.chemosphere.2023.140760.

Kane, Michael J., John W. Emerson, Peter Haverty, and Charles Determan. 2008. “Bigmemory: Manage
Massive Matrices with Shared Memory and Memory-Mapped Files.” CRAN: Contributed Packages. The
R Foundation. https://doi.org/10.32614/cran.package.bigmemory.

Knuth, D. E. 1984. “Literate Programming.” The Computer Journal 27 (2): 97–111. https://doi.org/10.
1093/comjnl/27.2.97.

Kohonen, T. 1990. “The Self-Organizing Map.” Proceedings of the IEEE 78 (9): 1464–80. https://doi.org/
10.1109/5.58325.

———. 2013. “Essentials of the Self-Organizing Map.” Neural Networks 37 (January): 52–65. https:
//doi.org/10.1016/j.neunet.2012.09.018.

Koranne, Sandeep. 2011. Handbook of Open Source Tools. 1st ed. SpringerLink. Boston, MA: Springer US.
Lanubile, F., C. Ebert, R. Prikladnicki, and A. Vizcaino. 2010. “Collaboration Tools for Global Software

Engineering.” IEEE Software 27 (2): 52–55. https://doi.org/10.1109/ms.2010.39.

83

https://doi.org/10.1198/106186007X178663
https://doi.org/10.1198/106186007X178663
https://doi.org/10.1145/3329784
https://doi.org/10.1145/3329784
https://doi.org/10.3390/life12050648
https://doi.org/10.1038/srep10999
https://doi.org/10.1038/srep10999
https://doi.org/10.1002/1873-3468.14451
https://doi.org/10.1109/tsmc.1973.4309314
https://doi.org/10.1109/tsmc.1973.4309314
https://github.com/r-lib/actions
https://doi.org/10.1002/9781118445112.stat05929
https://doi.org/10.1016/j.chemosphere.2023.140760
https://doi.org/10.1016/j.chemosphere.2023.140760
https://doi.org/10.32614/cran.package.bigmemory
https://doi.org/10.1093/comjnl/27.2.97
https://doi.org/10.1093/comjnl/27.2.97
https://doi.org/10.1109/5.58325
https://doi.org/10.1109/5.58325
https://doi.org/10.1016/j.neunet.2012.09.018
https://doi.org/10.1016/j.neunet.2012.09.018
https://doi.org/10.1109/ms.2010.39

Liljequist, David, Britt Elfving, and Kirsti Skavberg Roaldsen. 2019. “Intraclass Correlation – a Discussion
and Demonstration of Basic Features.” Edited by Ferdinando Chiacchio. PLOS ONE 14 (7): e0219854.
https://doi.org/10.1371/journal.pone.0219854.

Löfstedt, Tommy, Patrik Brynolfsson, Thomas Asklund, Tufve Nyholm, and Anders Garpebring. 2019.
“Gray-Level Invariant Haralick Texture Features.” Edited by Mathieu Hatt. PLOS ONE 14 (2): e0212110.
https://doi.org/10.1371/journal.pone.0212110.

Maechler, Martin, Peter Rousseeuw, Anja Struyf, and Mia Hubert. 1999. “Cluster: ‘Finding Groups in
Data’: Cluster Analysis Extended Rousseeuw Et Al.” CRAN: Contributed Packages. The R Foundation.
https://doi.org/10.32614/cran.package.cluster.

Matias, Filipe Inácio, Maria V. Caraza‐Harter, and Jeffrey B. Endelman. 2020. “FIELDimageR: An R
Package to Analyze Orthomosaic Images from Agricultural Field Trials.” The Plant Phenome Journal 3
(1). https://doi.org/10.1002/ppj2.20005.

Matthias Gamer, Ian Fellows Puspendra Singh, Jim Lemon. 2005. “Irr: Various Coefficients of Interrater
Reliability and Agreement.” CRAN: Contributed Packages. The R Foundation. https://doi.org/10.
32614/cran.package.irr.

McCabe, T. J. 1976. “A Complexity Measure.” IEEE Transactions on Software Engineering SE-2 (4):
308–20. https://doi.org/10.1109/tse.1976.233837.

Meyer, Mathias. 2014. “Continuous Integration and Its Tools.” IEEE Software 31 (3): 14–16. https:
//doi.org/10.1109/ms.2014.58.

Miller, Jeff. 1991. “Short Report: Reaction Time Analysis with Outlier Exclusion: Bias Varies with
Sample Size.” The Quarterly Journal of Experimental Psychology Section A 43 (4): 907–12. https:
//doi.org/10.1080/14640749108400962.

Mittal, Mamta, Amit Verma, Iqbaldeep Kaur, Bhavneet Kaur, Meenakshi Sharma, Lalit Mohan Goyal,
Sudipta Roy, and Tai-Hoon Kim. 2019. “An Efficient Edge Detection Approach to Provide Better
Edge Connectivity for Image Analysis.” IEEE Access 7: 33240–55. https://doi.org/10.1109/access.2019.
2902579.

Moen, Erick, Dylan Bannon, Takamasa Kudo, William Graf, Markus Covert, and David Van Valen. 2019.
“Deep Learning for Cellular Image Analysis.” Nature Methods 16 (12): 1233–46. https://doi.org/10.1038/
s41592-019-0403-1.

Morel, Jean-Michel, Ana-Belen Petro, and Catalina Sbert. 2014. “Screened Poisson Equation for Image
Contrast Enhancement.” Image Processing On Line 4 (March): 16–29. https://doi.org/10.5201/ipol.
2014.84.

Mouselimis, Lampros. 2016. “OpenImageR: An Image Processing Toolkit.” CRAN: Contributed Packages.
The R Foundation. https://doi.org/10.32614/cran.package.openimager.

Müller, Kirill, and Lorenz Walthert. 2017. “Styler: Non-Invasive Pretty Printing of R Code.” CRAN:
Contributed Packages. The R Foundation. https://doi.org/10.32614/cran.package.styler.

Murphy, Robert F. 2014. “A New Era in Bioimage Informatics.” Bioinformatics 30 (10): 1353–53. https:
//doi.org/10.1093/bioinformatics/btu158.

Myers, Glenford J. 2012. The Art of Software Testing. Edited by Corey Sandler and Tom Badgett. 3rd ed.
Hoboken, N.J.: J. Wiley & Sons.

Niedballa, Jürgen, Jan Axtner, Timm Fabian Döbert, Andrew Tilker, An Nguyen, Seth T. Wong, Christian
Fiderer, Marco Heurich, and Andreas Wilting. 2022. “Imageseg: An R Package for Deep Learning-Based
Image Segmentation.” Methods in Ecology and Evolution 13 (11): 2363–71. https://doi.org/10.1111/2041-

84

https://doi.org/10.1371/journal.pone.0219854
https://doi.org/10.1371/journal.pone.0212110
https://doi.org/10.32614/cran.package.cluster
https://doi.org/10.1002/ppj2.20005
https://doi.org/10.32614/cran.package.irr
https://doi.org/10.32614/cran.package.irr
https://doi.org/10.1109/tse.1976.233837
https://doi.org/10.1109/ms.2014.58
https://doi.org/10.1109/ms.2014.58
https://doi.org/10.1080/14640749108400962
https://doi.org/10.1080/14640749108400962
https://doi.org/10.1109/access.2019.2902579
https://doi.org/10.1109/access.2019.2902579
https://doi.org/10.1038/s41592-019-0403-1
https://doi.org/10.1038/s41592-019-0403-1
https://doi.org/10.5201/ipol.2014.84
https://doi.org/10.5201/ipol.2014.84
https://doi.org/10.32614/cran.package.openimager
https://doi.org/10.32614/cran.package.styler
https://doi.org/10.1093/bioinformatics/btu158
https://doi.org/10.1093/bioinformatics/btu158
https://doi.org/10.1111/2041-210x.13984
https://doi.org/10.1111/2041-210x.13984

210x.13984.
Ochi, Shota. 2018. “imagerExtra: Extra Image Processing Library Based on ‘Imager’.” CRAN: Contributed

Packages. The R Foundation. https://doi.org/10.32614/cran.package.imagerextra.
Olivoto, Tiago. 2022. “Lights, Camera, Pliman! An R Package for Plant Image Analysis.” Methods in

Ecology and Evolution 13 (4): 789–98. https://doi.org/10.1111/2041-210x.13803.
Ooms, Jeroen. 2016. “Magick: Advanced Graphics and Image-Processing in R.” CRAN: Contributed Pack-

ages. The R Foundation. https://doi.org/10.32614/cran.package.magick.
Pau, Grégoire, Florian Fuchs, Oleg Sklyar, Michael Boutros, and Wolfgang Huber. 2010. “EBImage—an R

Package for Image Processing with Applications to Cellular Phenotypes.” Bioinformatics 26 (7): 979–81.
https://doi.org/10.1093/bioinformatics/btq046.

Paul-Gilloteaux, Perrine. 2023. “Bioimage Informatics: Investing in Software Usability Is Essential.” PLOS
Biology 21 (7): e3002213. https://doi.org/10.1371/journal.pbio.3002213.

Peng, Hanchuan. 2008. “Bioimage Informatics: A New Area of Engineering Biology.” Bioinformatics 24
(17): 1827–36. https://doi.org/10.1093/bioinformatics/btn346.

Peng, Hanchuan, Alex Bateman, Alfonso Valencia, and Jonathan D. Wren. 2012. “Bioimage Informat-
ics: A New Category in Bioinformatics.” Bioinformatics 28 (8): 1057–57. https://doi.org/10.1093/
bioinformatics/bts111.

Peng, Roger D. 2022. R Programming for Data Science. Leanpub. https://bookdown.org/rdpeng/
rprogdatascience/.

Peng, Roger D., Sean Kross, and Brooke Anderson. 2016. Mastering-Software-Development-in-R/Mastering
Software Development in R (Book).pdf at Master · Simbosky/Mastering-Software-Development-in-R.
GitHub. Leanpub. https://github.com/simbosky/Mastering-Software-Development-in-R/blob/master/
Mastering%20Software%20Development%20in%20R%20(book).pdf.

Perez-Riverol, Yasset, Laurent Gatto, Rui Wang, Timo Sachsenberg, Julian Uszkoreit, Felipe da Veiga
Leprevost, Christian Fufezan, et al. 2016. “Ten Simple Rules for Taking Advantage of Git and GitHub.”
Edited by Scott Markel. PLOS Computational Biology 12 (7): e1004947. https://doi.org/10.1371/journal.
pcbi.1004947.

Prajapati, Vignesh. 2013. Big Data Analytics with R and Hadoop. Online-Ausg. Birmingham: Packt
Publishing.

Prewitt, Judith MS et al. 1970. “Object Enhancement and Extraction.” Picture Processing and Psychopic-
torics 10 (1): 15–19.

R Core Team. 2024. “Writing R Extensions.” https://cran.r-project.org/doc/manuals/R-exts.html.
Reddig, Annika, Claudia E. Rübe, Stefan Rödiger, Peter Schierack, Dirk Reinhold, and Dirk Roggenbuck.

2018. “DNA Damage Assessment and Potential Applications in Laboratory Diagnostics and Precision
Medicine.” Journal of Laboratory and Precision Medicine 3 (4): 31–31. https://doi.org/10.21037/jlpm.
2018.03.06.

Reynolds, A. P., G. Richards, B. de la Iglesia, and V. J. Rayward-Smith. 2006. “Clustering Rules: A
Comparison of Partitioning and Hierarchical Clustering Algorithms.” Journal of Mathematical Modelling
and Algorithms 5 (4): 475–504. https://doi.org/10.1007/s10852-005-9022-1.

Rigo, Norbert, Chengfu Sun, Patrizia Fabrizio, Berthold Kastner, and Reinhard Lührmann. 2015. “Protein
Localisation by Electron Microscopy Reveals the Architecture of the Yeast Spliceosomal b Complex.” The
EMBO Journal 34 (24): 3059–73. https://doi.org/10.15252/embj.201592022.

Rivest, R. 1992. “The MD5 Message-Digest Algorithm.” Request for Comments. RFC 1321; RFC Editor.

85

https://doi.org/10.1111/2041-210x.13984
https://doi.org/10.32614/cran.package.imagerextra
https://doi.org/10.1111/2041-210x.13803
https://doi.org/10.32614/cran.package.magick
https://doi.org/10.1093/bioinformatics/btq046
https://doi.org/10.1371/journal.pbio.3002213
https://doi.org/10.1093/bioinformatics/btn346
https://doi.org/10.1093/bioinformatics/bts111
https://doi.org/10.1093/bioinformatics/bts111
https://bookdown.org/rdpeng/rprogdatascience/
https://bookdown.org/rdpeng/rprogdatascience/
https://github.com/simbosky/Mastering-Software-Development-in-R/blob/master/Mastering%20Software%20Development%20in%20R%20(book).pdf
https://github.com/simbosky/Mastering-Software-Development-in-R/blob/master/Mastering%20Software%20Development%20in%20R%20(book).pdf
https://doi.org/10.1371/journal.pcbi.1004947
https://doi.org/10.1371/journal.pcbi.1004947
https://cran.r-project.org/doc/manuals/R-exts.html
https://doi.org/10.21037/jlpm.2018.03.06
https://doi.org/10.21037/jlpm.2018.03.06
https://doi.org/10.1007/s10852-005-9022-1
https://doi.org/10.15252/embj.201592022

https://doi.org/10.17487/RFC1321.
Roberts, Lawrence G. 1980. Machine Perception of Three-Dimensional Solids. Garland Pub.
Rödiger, Stefan, Michał Burdukiewicz, Konstantin A. Blagodatskikh, and Peter Schierack. 2015. “R as an

Environment for the Reproducible Analysis of DNA Amplification Experiments.” The R Journal 7 (2):
127–50. https://doi.org/10.32614/RJ-2015-011.

Rödiger, Stefan, Claudia Liebsch, Carsten Schmidt, Werner Lehmann, Ute Resch-Genger, Uwe Schedler,
and Peter Schierack. 2014. “Nucleic Acid Detection Based on the Use of Microbeads: A Review.”
Microchimica Acta 181 (11–12): 1151–68. https://doi.org/10.1007/s00604-014-1243-4.

Rödiger, Stefan, Marius Liefold, Madeleine Ruhe, Mark Reinwald, Eberhard Beck, and P. Markus Deckert.
2018. “Quantification of DNA Double-Strand Breaks in Peripheral Blood Mononuclear Cells from Healthy
Donors Exposed to Bendamustine by an Automated 𝛾H2AX Assay—an Exploratory Study.” Journal of
Laboratory and Precision Medicine 3 (May): 47–47. https://doi.org/10.21037/jlpm.2018.04.10.

Rousseeuw, Peter J. 1987. “Silhouettes: A Graphical Aid to the Interpretation and Validation of Cluster
Analysis.” Journal of Computational and Applied Mathematics 20 (November): 53–65. https://doi.org/
10.1016/0377-0427(87)90125-7.

Ruhe, Madeleine, Dominik Rabe, Christoph Jurischka, Julia Schröder, Peter Schierack, P. Markus Deckert,
and Stefan Rödiger. 2019. “Molecular Biomarkers of DNA Damage in Diffuse Large-Cell Lymphoma—a
Review.” Journal of Laboratory and Precision Medicine 4 (5): 1–20. https://doi.org/10.21037/jlpm.2019.
01.01.

Scharr, Hanno. 2000. “Optimale Operatoren in Der Digitalen Bildverarbeitung.” https://doi.org/10.11588/
HEIDOK.00000962.

Schmidberger, Markus, Martin Morgan, Dirk Eddelbuettel, Hao Yu, Luke Tierney, and Ulrich Mansmann.
2009. “State-of-the-Art in Parallel Computing with R.” https://doi.org/10.5282/UBM/EPUB.8991.

Schneider, Jens, Romano Weiss, Madeleine Ruhe, Tobias Jung, Dirk Roggenbuck, Ralf Stohwasser, Peter
Schierack, and Stefan Rödiger. 2019. “Open Source Bioimage Informatics Tools for the Analysis of
DNA Damage and Associated Biomarkers.” Journal of Laboratory and Precision Medicine 4 (0): 1–27.
https://doi.org/10.21037/jlpm.2019.04.05.

Schubert, Erich, and Peter J. Rousseeuw. 2019. “Faster k-Medoids Clustering: Improving the PAM, CLARA,
and CLARANS Algorithms.” In Lecture Notes in Computer Science, 171–87. Springer International
Publishing. https://doi.org/10.1007/978-3-030-32047-8_16.

Seo, Songwon. 2006. “A Review and Comparison of Methods for Detecting Outliers in Univariate Data
Sets.” http://d-scholarship.pitt.edu/7948/.

Shapiro, S. S., and M. B. Wilk. 1965. “An Analysis of Variance Test for Normality (Complete Samples).”
Biometrika 52 (3–4): 591–611. https://doi.org/10.1093/biomet/52.3-4.591.

Siddik, Abu Bucker, Steven Sandoval, David Voelz, Laura E. Boucheron, and Luis Varela. 2023. “Deep
Learning Estimation of Modified Zernike Coefficients and Recovery of Point Spread Functions in Turbu-
lence.” Optics Express 31 (14): 22903. https://doi.org/10.1364/oe.493229.

Soares, Eliezio, Gustavo Sizilio, Jadson Santos, Daniel Alencar da Costa, and Uirá Kulesza. 2022. “The
Effects of Continuous Integration on Software Development: A Systematic Literature Review.” Empirical
Software Engineering 27 (3). https://doi.org/10.1007/s10664-021-10114-1.

Sobel, Irwin. 2014. “An Isotropic 3x3 Image Gradient Operator.” Presentation at Stanford A.I. Project
1968, February.

Song, Feijun, Qiao Chen, Xiongxin Tang, and Fanjiang Xu. 2024. “Analytical Model of Point Spread Func-

86

https://doi.org/10.17487/RFC1321
https://doi.org/10.32614/RJ-2015-011
https://doi.org/10.1007/s00604-014-1243-4
https://doi.org/10.21037/jlpm.2018.04.10
https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/10.21037/jlpm.2019.01.01
https://doi.org/10.21037/jlpm.2019.01.01
https://doi.org/10.11588/HEIDOK.00000962
https://doi.org/10.11588/HEIDOK.00000962
https://doi.org/10.5282/UBM/EPUB.8991
https://doi.org/10.21037/jlpm.2019.04.05
https://doi.org/10.1007/978-3-030-32047-8_16
http://d-scholarship.pitt.edu/7948/
https://doi.org/10.1093/biomet/52.3-4.591
https://doi.org/10.1364/oe.493229
https://doi.org/10.1007/s10664-021-10114-1

tion Under Defocused Degradation in Diffraction-Limited Systems: Confluent Hypergeometric Function.”
Photonics 11 (5): 455. https://doi.org/10.3390/photonics11050455.

Sonka, Milan, and J. Michael Fitzpatrick, eds. 2000. Handbook of Medical Imaging. SPIE Press Monograph
PM80. Bellingham, Wash.: SPIE Press.

Spinellis, Diomidis. 2012. “Git.” IEEE Software 29 (3): 100–101. https://doi.org/10.1109/ms.2012.61.
Swedlow, Jason R., and Kevin W. Eliceiri. 2009. “Open Source Bioimage Informatics for Cell Biology.”

Trends in Cell Biology 19 (11): 656–60. https://doi.org/10.1016/j.tcb.2009.08.007.
Swedlow, Jason R., Ilya G. Goldberg, and Kevin W. Eliceiri. 2009. “Bioimage Informatics for Experimental

Biology.” Annual Review of Biophysics 38 (1): 327–46. https://doi.org/10.1146/annurev.biophys.050708.
133641.

Sydor, Andrew M., Kirk J. Czymmek, Elias M. Puchner, and Vito Mennella. 2015. “Super-Resolution
Microscopy: From Single Molecules to Supramolecular Assemblies.” Trends in Cell Biology 25 (12):
730–48. https://doi.org/10.1016/j.tcb.2015.10.004.

Takashimizu, Yasuhiro, and Maiko Iiyoshi. 2016. “New Parameter of Roundness R: Circularity Corrected
by Aspect Ratio.” Progress in Earth and Planetary Science 3 (1). https://doi.org/10.1186/s40645-015-
0078-x.

V, Bino Sebastian. 2012. “Grey Level Co-Occurrence Matrices: Generalisation and Some New Features.”
International Journal of Computer Science, Engineering and Information Technology 2 (2): 151–57.
https://doi.org/10.5121/ijcseit.2012.2213.

Vassilev, Boris, Riku Louhimo, Elina Ikonen, and Sampsa Hautaniemi. 2016. “Language-Agnostic Repro-
ducible Data Analysis Using Literate Programming.” Edited by Frederique Lisacek. PLOS ONE 11 (10):
e0164023. https://doi.org/10.1371/journal.pone.0164023.

Vidoni, Melina. 2021. “Evaluating Unit Testing Practices in R Packages.” In 2021 IEEE/ACM 43rd Interna-
tional Conference on Software Engineering (ICSE). IEEE. https://doi.org/10.1109/icse43902.2021.00136.

Vuorre, Matti, and James P. Curley. 2018. “Curating Research Assets: A Tutorial on the Git Version
Control System.” Advances in Methods and Practices in Psychological Science 1 (2): 219–36. https:
//doi.org/10.1177/2515245918754826.

Wehrens, Ron, and Johannes Kruisselbrink. 2006. “Kohonen: Supervised and Unsupervised Self-Organising
Maps.” CRAN: Contributed Packages. The R Foundation. https://doi.org/10.32614/cran.package.
kohonen.

———. 2018. “Flexible Self-Organizing Maps in Kohonen 3.0.” Journal of Statistical Software 87 (7).
https://doi.org/10.18637/jss.v087.i07.

Weston, Steve. 2009. “Foreach: Provides Foreach Looping Construct.” CRAN: Contributed Packages. The
R Foundation. https://doi.org/10.32614/cran.package.foreach.

Wickham, Hadley. 2009. “Testthat: Unit Testing for R.” CRAN: Contributed Packages. The R Foundation.
https://doi.org/10.32614/cran.package.testthat.

———. 2011. “Testthat: Get Started with Testing.” The R Journal 3 (1): 5. https://doi.org/10.32614/rj-
2011-002.

———. 2023. R Packages: Organize, Test, Document, and Share Your Code. Edited by Jenny Bryan.
Second edition. Beijing: O’Reilly.

Zhang, Jing, Swati Shikha, Qingsong Mei, Jinliang Liu, and Yong Zhang. 2019. “Fluorescent Microbeads
for Point-of-Care Testing: A Review.” Microchimica Acta 186 (6). https://doi.org/10.1007/s00604-019-
3449-y.

87

https://doi.org/10.3390/photonics11050455
https://doi.org/10.1109/ms.2012.61
https://doi.org/10.1016/j.tcb.2009.08.007
https://doi.org/10.1146/annurev.biophys.050708.133641
https://doi.org/10.1146/annurev.biophys.050708.133641
https://doi.org/10.1016/j.tcb.2015.10.004
https://doi.org/10.1186/s40645-015-0078-x
https://doi.org/10.1186/s40645-015-0078-x
https://doi.org/10.5121/ijcseit.2012.2213
https://doi.org/10.1371/journal.pone.0164023
https://doi.org/10.1109/icse43902.2021.00136
https://doi.org/10.1177/2515245918754826
https://doi.org/10.1177/2515245918754826
https://doi.org/10.32614/cran.package.kohonen
https://doi.org/10.32614/cran.package.kohonen
https://doi.org/10.18637/jss.v087.i07
https://doi.org/10.32614/cran.package.foreach
https://doi.org/10.32614/cran.package.testthat
https://doi.org/10.32614/rj-2011-002
https://doi.org/10.32614/rj-2011-002
https://doi.org/10.1007/s00604-019-3449-y
https://doi.org/10.1007/s00604-019-3449-y

Zhu, Hong, Patrick A. V. Hall, and John H. R. May. 1997. “Software Unit Test Coverage and Adequacy.”
ACM Computing Surveys 29 (4): 366–427. https://doi.org/10.1145/267580.267590.

ZJ, Dai, and Jacky Poon. 2019. “Disk.frame: Larger-Than-RAM Disk-Based Data Manipulation Frame-
work.” CRAN: Contributed Packages. The R Foundation. https://doi.org/10.32614/cran.package.disk.
frame.

88

https://doi.org/10.1145/267580.267590
https://doi.org/10.32614/cran.package.disk.frame
https://doi.org/10.32614/cran.package.disk.frame

	Introduction to Techniques in Bioimage Informatics for Feature Extraction
	History, Philosophy, and Aims of the biopixR Package
	Concepts and Methods
	License and Broader Open Source Context
	Version Control and Continuous Integration
	Naming Convention and Literate Programming
	Unit Testing of the biopixR Package
	Installation of the biopixR Package

	Functions for Quantitative Data Analysis in biopixR
	importImage() - Importing Images into the R Environment
	edgeDetection() - A modified Canny Edge Detector
	objectDetection() - A Function for Feature Extraction
	Edge Detection Method in objectDetection()
	Thresholding Method in objectDetection()
	Interactive Approach in objectDetection()

	Dealing with Fluorescence Reflection and Aggregation with sizeFilter() and proximityFilter()
	Interpretation with resultAnalytics()
	Batch Proccesing Functions within the biopixR Package
	imgPipe() - One Image, One Function
	scanDir() - Whole Directory Analysis

	Functions for Droplet Analysis
	fillLineGaps() - Restoring Edge-Connectivity in Compartmented Images

	Shape, Texture and unsupervised Machine Learning
	shapeFeatures() - Object Clustering Based on Shape Features
	haralickCluster() - Image Classification Based on Texture Features

	Helper Functions of the biopixR Package

	Discussion
	Batch Processing and Big Data in R
	Cyclomatic Complexity of biopixR
	Capabilities and Limitations - A Comparative Analysis of Human and Software Performance
	Preprocessing the Manual Analysis and Performing Analysis with biopixR
	Visualization of Comparison between Human and Software Analysis

	Exploring New Areas of Applicability

	Summary and Conclusion
	Acknowledgement
	References

