
Research Software focus area Maturity Model:

Description and Practices

Deekshitha , Rena Bakhshi , Jason Maassen , Carlos Martinez Ortiz
Rob van Nieuwpoort , Slinger Jansen

1 The Maturity Model

Figure 1 shows the focus areas and capabilities of the Research Software focus area Maturity
Model (RSMM) and Figure 2 depicts the complete model. RSMM includes 4 focus areas, 17
capabilities, and 79 practices. The following subsection briefly describes 4 focus areas, capabilities,
and practices of the RSMM.

1.1 Focus Areas

1.1.1 Software project management

Software project management manages the resources and work activities needed to develop
and modify software-intensive systems [29]. The software project is a highly people-intensive ef-
fort that extends over a considerable period, significantly impacting the work and performance of
various stakeholders, including project managers. The primary success criteria for software man-
agers are delivery of systems that satisfy specified needs and requirements, on time and within
budget [29]. Software development involves challenges, including evolving technology, immature
technology, sloppy development practices, and staff changes. Software project management
addresses these complexities by promoting stakeholder involvement, managing risks, and fostering
transparent communication, helping project managers navigate and overcome these obstacles.

Thus, various factors influence the software project management process, and they are almost
the same for research software development. We included 3 capabilities and 19 practices related
to this focus area. The capabilities of this focus area are:

• Requirements

• Code quality and security

• Communication and Collaboration

1.1.2 Research software management

Like software management, Research software management is a process of managing research
software. Increasing usage of research software in the various research domains highlights the
importance of adhering to best practices [12]. This model includes 4 capabilities and 22 practices.
The capabilities of this focus area are:

1

https://orcid.org/0000-0003-1831-8941
https://orcid.org/0000-0002-2932-3028
https://orcid.org/0000-0002-8172-4865
https://orcid.org/0000-0001-5565-7577
https://orcid.org/0000-0002-2947-9444
https://orcid.org/0000-0003-3752-2868

RSMM1. Software
Project

Management

2. Research
Software

Management

3. Com-
munity

Engagement

4. Software
Adoptability

1.1 Requirements
1.2 Code quality &
Security
1.3 Communication
& Collaboration

2.1 Impact measurement
2.2 Sustainability
2.3 Visibility
2.4 Usage costs & Ethics

3.1 Partnerships
3.2.Community
3.3 Developers
3.4 Licensing

4.1 Ease of use
4.2 Documentation
4.3 Technology
4.4 Reproducibility
4.5 Education
4.6 Deployability

Figure 1: Focus areas and capabilities: The 4 focus areas and 17 capabilities of the RSMM v1.0
are shown in the figure.

2

 M
at

ur
ity

 le
ve

ls
1

2
3

4
5

6
7

8
9

10
1

So
ft

w
ar

e
Pr

oj
ec

t M
an

ag
em

en
t

Re
qu

ir
em

en
ts

Fi
le

 is
su

es
 in

 a
n

is
su

e
tr

ac
ke

r
Ac

t o
n

fe
ed

ba
ck

M
an

ag
e

re
qu

ire
m

en
ts

ex

pl
ic

itl
y

Pe
rfo

rm
 re

le
as

e
m

an
ag

em
en

t
Co

m
m

un
ic

at
e

ro
ad

m
ap

Co
de

 q
ua

lit
y

an
d

se
cu

ri
ty

Pr
ov

id
e

a
co

di
ng

st

an
da

rd
Co

nd
uc

t c
od

e
re

vi
ew

s
Im

pl
em

en
t

co
nt

in
uo

us

in
te

gr
at

io
n

Pr
ov

id
e

ex
ec

ut
ab

le
 te

st
s

U
se

 c
ra

sh

re
po

rt
in

g
Co

nd
uc

t s
ec

ur
ity

re

vi
ew

s
M

ea
su

re
 p

ro
je

ct

st
ab

ili
ty

 co
nt

in
uo

us
ly

De
fin

e
co

de

co
ve

ra
ge

 ta
rg

et
s

Ex
ec

ut
e

te
st

s i
n

a
pu

bl
ic

 w
or

kf
lo

w
 F

ol
lo

w
 a

n
in

du
st

ry

st
an

da
rd

 fo
r s

ec
ur

ity

Co
m

m
un

ic
at

io
n

an
d

co
lla

bo
ra

tio
n

St
or

e
pr

oj
ec

t i
n

pu
bl

ic
 re

po
si

to
ry

w

ith
 v

er
si

on
 co

nt
ro

l

U
se

 p
ub

lic

co
m

m
un

ic
at

io
n

pl
at

fo
rm

Pr

ov
id

e
ne

w
s l

et
te

r
Pr

ov
id

e
co

m
m

un
ity

w

eb
si

te

2
Re

se
ar

ch
 S

of
tw

ar
e

M
an

ag
em

en
t

Im
pa

ct

m
ea

su
re

m
en

t
De

fin
e

a
cl

ea
r a

ud
ie

nc
e

fo
r t

he
 p

ro
je

ct

Pe
rfo

rm
 in

fre
qu

en
t

im
pa

ct

m
ea

su
re

m
en

t

Ev
al

ua
te

 w
he

th
er

 th
e

au
di

en
ce

's
go

al
s a

re

m
et

Pe
rfo

rm
 co

nt
in

uo
us

im

pa
ct

 m
ea

su
re

m
en

t
Ex

pl
or

e
ne

w

au
di

en
ce

s r
eg

ul
ar

ly

Su
st

ai
na

bi
lit

y
Ac

qu
ire

 te
m

po
ra

ry

fu
nd

in
g

W
rit

e
so

ftw
ar

e
m

an
ag

em
en

t p
la

n

O
bt

ai
n

su
pp

or
t f

ro
m

 a

na
tio

na
l r

es
ea

rc
h

so
ftw

ar
e

ce
nt

er

Ac
qu

ire
 v

ia
bl

e
pa

th
w

ay
s f

or

pr
oj

ec
t

su
st

ai
na

bi
lit

y

Se
cu

re
 co

nt
in

uo
us

fu

nd
in

g
De

fin
e

en
d-

of
-li

fe

po
lic

y

Vi
si

bi
lit

y
M

ak
e

co
de

ci

ta
bl

e
En

ab
le

 in
de

xi
ng

 o
f

pr
oj

ec
t m

et
a-

da
ta

Pr
om

ot
e

th
e

pr
oj

ec
t

co
nt

in
uo

us
ly

Pu
bl

is
h

in
 a

re

se
ar

ch
 so

ftw
ar

e
di

re
ct

or
y

Ac
qu

ire
 re

se
ar

ch

so
ftw

ar
e

ce
nt

er

ac
kn

ow
le

dg
em

en
t

En
ab

le
 in

de
xi

ng
 o

f t
he

pr

oj
ec

t's
 so

ur
ce

 co
de

Ga
rn

er
 in

du
st

ria
l

pa
rt

ne
r a

do
pt

io
n

U
sa

ge
 co

st
s &

Et

hi
cs

An
al

yz
e

pr
iv

ac
y

us
ag

e
im

pa
ct

An
al

yz
e

et
hi

ca
l

co
ns

eq
ue

nc
es

 o
f

pr
oj

ec
t u

se

Do
cu

m
en

t t
he

 co
st

 o
f

ru
nn

in
g

th
e

ap
pl

ic
at

io
n

Co
ns

id
er

 to
ta

l e
ne

rg
y

co
ns

um
pt

io
n

3
Co

m
m

un
ity

 E
ng

ag
em

en
t

Pa
rt

ne
rs

hi
ps

Ac
kn

ow
le

dg
e

pa
rt

ne
rs

an

d
fu

nd
in

g
ag

en
ci

es
 o

n
w

eb
si

te

De
ve

lo
p

ad
va

nc
ed

pa

rt
ne

rs
hi

p
m

od
el

Co
m

m
un

ity
Im

po
se

 co
m

m
un

ity

no
rm

s
O

nb
oa

rd
 re

se
ar

ch
er

s a
s

pa
rt

 o
f t

he
 co

m
m

un
ity

De
ve

lo
p

co
de

 o
f

co
nd

uc
t

Ap
po

in
t s

up
po

rt
 te

am
O

rg
an

iz
e

co
m

m
un

ity

ev
en

ts
Pr

ov
id

e
fro

nt
 p

ag
e

ch
at

su

pp
or

t
Fo

cu
s o

n
di

ve
rs

ity

an
d

in
cl

us
io

n

De
ve

lo
pe

rs
M

ak
e

de
ve

lo
pe

r n
am

es

an
d

ro
le

s p
ub

lic
ly

av

ai
la

bl
e

Do
cu

m
en

t h
ow

 to
 jo

in

th
e

te
am

Se
t m

ax
im

um

re
sp

on
se

 ti
m

e
fo

r
pu

ll
re

qu
es

ts

 P
ro

vi
de

 a
cc

es
s t

o
de

ve
lo

pe
r t

ra
in

in
g

an
d

sk
ill

 d
ev

el
op

m
en

t

Li
ce

ns
in

g
Se

le
ct

 a

lic
en

se

Ge
t i

ns
tit

ut
io

na
l

su
pp

or
t f

or
 li

ce
ns

e
ch

oi
ce

Ev
al

ua
te

 li
ce

ns
e

po
lic

y
re

gu
la

rly

4
So

ft
w

ar
e

Ad
op

ta
bi

lit
y

Ea
se

 o
f u

se
Pr

ov
id

e
a

st
at

em
en

t o
f

pu
rp

os
e

Pr
ov

id
e

a
si

m
pl

e
ho

w
 to

 u
se

Pr
ov

id
e

on
lin

e
tu

to
ria

ls

Do
cu

m
en

ta
tio

n
Pr

ov
id

e
a

re
ad

 m
e

fil
e

w
ith

 p
ro

je
ct

 e
xp

la
na

tio
n

Pr
ov

id
e

a
ho

w
-to

gu

id
e

Pr
ov

id
e

a
co

m
m

on

ex
am

pl
e

us
ag

e

Pr
ov

id
e

a
do

cu
m

en
ta

tio
n

as

re
po

si
to

ry
/

do
cu

m
en

ta
tio

n
w

ik
i

Pr
ov

id
e

AP
I

do
cu

m
en

ta
tio

n

Te
ch

no
lo

gy
U

se
 co

m
m

on
 n

on
-e

xo
tic

or

 e
st

ab
lis

he
d

te
ch

no
lo

gy

Fa
ci

lit
at

e
in

te
gr

at
io

n
in

to

sc
ie

nt
ifi

c
w

or
kf

lo
w

Ev
al

ua
te

 te
ch

no
lo

gy

re
le

va
nc

e
re

gu
la

rly

Re
pr

od
uc

ib
ili

ty
Pr

ov
id

e
in

st
ru

ct
io

ns
 o

n
ho

w
 to

 p
ut

 in
to

 re
se

ar
ch

w

or
kf

lo
w

Pr
ov

id
e

in
st

ru
ct

io
ns

 o
n

ho
w

 to
 m

ak
e

pa
rt

 o
f a

re

pl
ic

at
io

n
pa

ck
ag

e

M
ak

e
pa

rt
 o

f
st

an
da

rd
iz

ed

w
or

kf
lo

w
s

M
ak

e
pa

rt
 o

f a

re
pl

ic
at

io
n

pa
ck

ag
e

Ed
uc

at
io

n
De

ve
lo

p
ge

ne
ric

ed

uc
at

io
na

l
m

at
er

ia
ls

O
rg

an
iz

e
tr

ai
ni

ng

ev
en

ts
 in

 p
er

so
n

M
ak

e
pr

oj
ec

t p
ar

t o
f

an
 e

du
ca

tio
na

l
pr

og
ra

m

De
pl

oy
ab

ili
ty

Pr
ov

id
e

w
ith

 st
an

da
rd

de

pl
oy

m
en

t t
oo

ls

En
ab

le

de
pl

oy
m

en
t o

n
a

w
id

e
ra

ng
e

of

te
ch

no
lo

gy

Pr
ov

id
e

co
or

di
na

tio
n

m
ec

ha
ni

sm
s f

or

w
or

kf
lo

w
 d

is
tr

ib
ut

io
n

ov
er

 d
iff

er
en

t
m

ac
hi

ne
s

Ge
ne

ra
te

 S
BO

M

Figure 2: RSMM v1.0: The updated version of RSMM. It includes 4 focus areas, 17 capabilities,
and 79 practices. These practices are placed between maturity levels 1-10.3

• Impact measurement

• Sustainability

• Visibility,

• Usage cost and Ethics

1.1.3 Community Engagement

A community generally evolves and maintains research software, creating an ecosystem of compet-
ing and collaborative products. It is influenced by the open-source movement’s culture of sharing
and collaboration [44]. This includes 4 capabilities and 16 practices associated with this focus
area to foster community development around research software. Capabilities of this focus area
are:

• Partnerships

• Community

• Developers

• Licensing

1.1.4 Software Adoptability

The focus area Software Adoptability concerns with how easily and effectively research software
can be adopted and utilized by users. This focus area is aimed at understanding and enhancing the
user-friendliness, accessibility, and overall adoption strategies of research software by the research
community. It includes 6 capabilities and 22 practices. Capabilities are:

• Ease of use

• Documentation

• Technology

• Reproducibility

• Education

• Deployability

1.2 Practices Description

In the following list all 79 practices from the RSMM are described. For each practice, we provide

• its Practice Code;

• Name;

• Description;

4

• When Implemented. For each description, we apply the MoSCoW method [47] to categorize
it as Must Have (M), Should Have (S), or Could Have (C). Note that the Won’t Have (W)
category is not used in these descriptions;

• Resources required ;

• Dependencies; and

• References.

Acknowledgement

We want to acknowledge the experts who contributed to redefining RSMM (not in any particular
order): Bernadette Fritzsch, Jayesh Badwaik, Michael Schlottke-Lakemper, Pablo Lopez-Tarifa,
Raoul Schram, Nicolas Renaud, Arend Rensink, Jan Philipp Dietrich, Axel Loewe, Aljen Uitbei-
jerse, Tomas Turner-Zwinkels, and Martine de Vos.

Practice Code: 1.1.2
Practice Name: File issues in an issue tracker
Description: This practice involves documenting and reporting bugs, tasks, or feature requests
in an issue tracking system ensuring they are properly documented and addressed.
When implemented:

• (M) Users are encouraged to file issues in the project’s issue tracker whenever they encounter
bugs, have feature requests, or need assistance.

• (S) Regular updates are provided to users on the status and progress of their filed issues,
including when they are being addressed or resolved.

• (C) Issues filed by users are promptly reviewed, categorized, and prioritized based on their
severity and impact on the project.

Resources required:

• Time: It depends on the volume and complexity of reported issues, requiring regular moni-
toring and management.

• Issue tracking software or platform for efficiently managing and tracking reported issues.

• Communication channels for facilitating interaction between users and the researchers /
research software engineers regarding filed issues.

• Development resources for fixing bugs, implementing requested features, or providing sup-
port in response to reported issues.

Dependencies: 1.1.1 < 1.1.7
References: [65, 38, 7]

5

Practice Code: 1.1.3
Practice Name: Act on feedback
Description: This practice involves actively engaging with feedback received from various stake-
holders, including users, clients, or internal team members.
When implemented:

• (M) Research Software Engineers actively solicit feedback from users, collaborators, and
stakeholders through various channels such as user surveys, bug reports, feature requests,
and direct communication.

• (M) Feedback received is thoroughly reviewed and considered by the researchers / research
software engineers, acknowledging its importance in improving the research software.

• (S) researchers / research software engineers communicate transparently with the feedback
providers, providing updates on the status of their suggestions and the actions taken in
response.

• (C) Research Software Engineers prioritize feedback based on its impact on the research
software’s objectives and roadmap, focusing on addressing critical issues and implementing
valuable suggestions.

Resources required:

• Time: It depends on the frequency and volume of feedback received, but typically involves
regular intervals for feedback review and response.

• Collaboration tools for facilitating communication and collaboration between researchers /
research software engineers and feedback providers.

• Development resources to implement necessary changes or improvements based on feedback
(e.g., coding, testing, documentation updates).

• Training or guidelines for researchers / research software engineers on how to effectively
engage with and act on feedback in a constructive manner.

Dependencies:
References: [2, 25]

6

Practice Code: 1.1.7
Practice Name: Manage requirements explicitly
Description: Clearly define, document, and manage the requirements of the research software
project throughout the development lifecycle to ensure alignment with stakeholders’ needs and
project goals.
When implemented:

• (M) All functional and non-functional requirements of the research software project are
explicitly defined and documented, including features, functionalities, performance criteria,
and constraints.

• (M) Requirements are validated and approved by relevant stakeholders, including re-
searchers, end-users, project sponsors, and domain experts, to ensure that they accurately
reflect their needs and expectations.

• (S) Requirements are traced and prioritized throughout the development lifecycle, with clear
links established between requirements, design decisions, implementation tasks, and testing
activities to track progress and manage changes effectively.

• (C) The requirements management process is adaptable and responsive to evolving project
needs, with mechanisms in place to capture, evaluate, and incorporate new requirements or
changes requested by stakeholders.

Resources required:

• Time: Required to implement a system in which requirements are made explicit, in terms of
time and effort, as to facilitate planning. Furthermore, a requirements prioritization method
must be selected.

• Use of requirement elicitation techniques (e.g., interviews, surveys, workshops), documenta-
tion tools (e.g., requirements management software, wikis, spreadsheets), and collaboration
platforms (e.g., project management software, version control systems) to capture, organize,
and track requirements.

• Engagement and collaboration with stakeholders throughout the requirements management
process, including regular meetings, reviews, and feedback sessions to ensure alignment,
transparency, and accountability in requirement decisions and changes.

Dependencies:
References: [77, 8]

7

Practice Code: 1.1.8
Practice Name: Perform release management
Description: Implement a systematic approach to plan, coordinate, and execute the release of
software versions, ensuring that new features, enhancements, and bug fixes are delivered to users
in a timely and organized manner.
When implemented:

• (M) The project follows a defined release cycle, with clear milestones, timelines, and objec-
tives for each release, allowing for systematic planning and coordination of release activities.

• (M) Software versions are managed using version control systems (e.g., Git) and tagged with
unique identifiers, enabling precise tracking and documentation of changes included in each
release.

• (S) Release content is determined through collaborative planning and prioritization, consid-
ering factors such as user feedback, project roadmap, stakeholder requirements, and devel-
opment effort.

• (S) Releases undergo rigorous testing and QA processes, including functional testing, re-
gression testing, performance testing, and user acceptance testing, to ensure that they meet
quality standards and are fit for deployment.

Resources required:

• Time: It depends on the complexity and frequency of releases, required to release planning
and coordination for each release cycle.

• Use of release management tools and automation scripts to streamline release processes,
including version control systems, continuous integration/delivery (CI/CD) pipelines, de-
ployment orchestration tools, and issue tracking systems.

• Provisioning of testing environments, tools, and resources to support thorough testing and
validation of releases across different configurations and environments.

• Preparation of release notes, documentation, and communication materials to inform users,
stakeholders, and the researchers / research software engineers about the contents, changes,
and improvements introduced in each release.

Dependencies: 1.2.4 < 1.1.8
References: [81, 28]

8

Practice Code: 1.1.10
Practice Name: Communicate roadmap
Description: Communicating the project’s goals and planned milestones to stakeholders using
a roadmap.
When implemented:

• (M) A clear and comprehensive roadmap for the research software project is documented,
detailing key milestones, deliverables, and timelines.

• (S) The roadmap is regularly updated to reflect changes in project priorities, resource avail-
ability, and stakeholder feedback.

• (C) The roadmap is accessible to all relevant stakeholders, including team members, funders,
collaborators, and users, through centralized platforms or communication channels.

• (C) Stakeholders are informed proactively about updates to the roadmap, highlighting any
significant changes or adjustments to project plans.

Resources required:

• Time: Regular intervals for updating and communicating the roadmap, depending on the
pace of project development and changes in project priorities.

• Communication platforms or tools for sharing the roadmap with stakeholders (e.g., project
management software, shared documents, email newsletters).

• Coordination efforts among project team members to ensure alignment between the roadmap
and ongoing project activities.

• Training or guidelines for stakeholders on how to interpret and engage with the project
roadmap effectively.

Dependencies:
References: [77, 10]

9

Practice Code: 1.2.1
Practice Name: Provide a coding standard
Description: Establish and communicate a coding standard or style guide for the research
software project to promote consistency, readability, and maintainability of the codebase.
When implemented:

• (M) A comprehensive coding standard or style guide is documented and made available to
all project contributors, outlining conventions and best practices for writing code.

• (M) The coding standard covers various aspects of coding, including naming conventions,
formatting, commenting, error handling, and documentation requirements.

• (M) All code contributed to the project adheres to the established coding standard, with
deviations documented and justified as necessary.

• (S) Regular reviews and updates are conducted to ensure that the coding standard remains
relevant and reflective of evolving best practices and project requirements.

Resources required:

• Time: It is needed initially to develop and document the coding standard, and ongoing time
is required to enforce compliance and update the standard as needed.

• Collaboration tools or platforms for sharing and managing the coding standard document,
ensuring accessibility to all project contributors.

• Training or guidelines for team members on how to interpret and apply the coding standard
effectively in their coding practices.

• QA processes or automated tools to check code against the coding standard and provide
feedback to researchers / research software engineers on adherence and potential violations.

Dependencies: 1.2.1 < * (all other practices)
References: [15, 24]

10

Practice Code: 1.2.2
Practice Name: Conduct code reviews
Description: Implement a systematic process of reviewing code changes made by team members
to ensure code quality, consistency, and adherence to coding standards within the research software
project.
When implemented:

• (M) All code changes, including new features, bug fixes, and enhancements, undergo thor-
ough peer review by team members before being merged into the main codebase.

• (S) Reviewers provide constructive feedback on code changes, focusing on identifying poten-
tial issues, suggesting improvements, and ensuring alignment with project requirements.

• (C) Code reviews are conducted using established guidelines and criteria, covering aspects
such as functionality, performance, readability, and maintainability.

• (C) Reviews are documented, and feedback is addressed promptly, with necessary revisions
made to the code before finalizing the changes.

Resources required:

• Time: It depends on the size and complexity of code changes, but typically involves allocat-
ing time for researchers / research software engineers to conduct thorough reviews.

• Code review tools or platforms (e.g., GitHub pull requests, GitLab merge requests, code
review plugins) to facilitate the review process and track feedback.

• Training for team members on best practices for conducting and participating in code reviews
effectively.

• Coordination efforts to ensure timely completion of code reviews and resolution of any
identified issues or concerns.

Dependencies:
References: [41, 46, 7]

11

Practice Code: 1.2.3
Practice Name: Implement continuous integration
Description: Establish a process of integrating and testing code changes automatically and
frequently within the research software project’s development environment to detect and address
issues early in the development lifecycle.
When implemented:

• (M) A continuous integration (CI) system is set up to automatically build, test, and validate
code changes whenever new code is committed to the version control repository.

• (M) Automated tests, including unit tests, integration tests, and other relevant tests, are
integrated into the CI pipeline to ensure code quality and functionality.

• (M) researchers / research software engineers receive immediate notifications of build or test
failures, enabling them to address issues promptly and prevent integration conflicts.

• (S) The CI pipeline is configured to provide rapid feedback on the status of code changes,
including build success/failure, test results, and code coverage metrics.

Resources required:

• Time: Initial setup time is required to configure the CI system and integrate automated
tests into the pipeline. Ongoing time is needed to maintain and update the CI configuration
as the project evolves.

• CI/CD tools or platforms (e.g., Jenkins, Travis CI, GitLab CI/CD) to automate the build,
test, and deployment processes.

• Access to suitable testing environments and resources for running automated tests as part
of the CI pipeline.

• Training or guidance for team members on using CI tools effectively and interpreting CI
results to drive development efforts.

Dependencies:
References: [65, 77]

12

Practice Code: 1.2.4
Practice Name: Provide executable tests
Description: Ensure that the research software project includes executable tests to validate its
functionality, behavior, and performance automatically.
When implemented:

• (M) Regular security reviews are scheduled and conducted at predefined intervals or in
response to significant code changes or updates.

• (S) A suite of automated tests is developed alongside the research software project, covering
critical functionality, edge cases, and performance benchmarks.

• (C) Tests are written using appropriate testing frameworks and methodologies, such as unit
tests, integration tests, and end-to-end tests, depending on the nature of the software.

• (C) Automated tests are regularly executed as part of the CI/CD pipeline, providing rapid
feedback on code changes and ensuring software quality and stability.

• (C) Test results are monitored and reviewed systematically, with failed tests investigated
promptly and necessary actions taken to address underlying issues.

Resources required:

• Time: Time is required to develop automated test suites, and ongoing time is needed to
maintain and update tests as the software evolves.

• Testing frameworks and tools suitable for the project’s programming language and technol-
ogy stack (e.g., JUnit, PyTest, Selenium).

• Integration with CI/CD platforms to automate test execution and result reporting.

• Training or expertise in test automation and best practices for team members involved in
test development and execution.

Dependencies: 1.2.4 < 1.2.9
References: [65, 41]

13

Practice Code: 1.2.5
Practice Name: Use crash reporting
Description: Employ crash reporting tools or mechanisms to monitor and collect information
about software crashes and exceptions occurring in the research software project, enabling rapid
identification and resolution of issues.
When implemented:

• (M) Crash reporting functionality is integrated into the software application, capturing
critical information such as error messages, stack traces, and environmental data when a
crash occurs.

• (M) Crash reports are automatically generated and transmitted to a centralized platform
or service upon occurrence, allowing researchers / research software engineers to track and
analyze software stability in real time.

• (M) researchers / research software engineers receive timely alerts or notifications for critical
crashes, enabling them to prioritize and address issues promptly to minimize the impact on
users and maintain software reliability.

• (S) Crash reports include metadata such as the version of the software, operating system
details, and user actions leading up to the crash, facilitating root cause analysis and trou-
bleshooting.

Resources required:

• Time: Initial setup time is required to integrate crash reporting functionality into the soft-
ware application. Ongoing time is needed to monitor and analyze crash reports, investigate
issues, and implement fixes.

• Crash reporting tools or services (e.g., Sentry, Bugsnag, Crashlytics) capable of capturing
and reporting software crashes effectively.

• Access to error tracking and logging libraries or frameworks to instrument the application
code for crash reporting.

• Training or guidelines for team members on interpreting crash reports, identifying patterns,
and prioritizing issues for resolution based on severity and impact.

Dependencies:
References: [5, 59]

14

Practice Code: 1.2.6
Practice Name: Conduct security reviews
Description: Implement a systematic process for evaluating the security aspects of the research
software project to identify and mitigate potential vulnerabilities and risks.
When implemented:

• (M) Regular security reviews are scheduled and conducted at predefined intervals or in
response to significant code changes or updates.

• (S) Security assessments cover various aspects of the software, including authentication,
authorization, data encryption, input validation, and protection against common security
threats.

• (S) Security reviews involve collaboration with security experts or specialists to ensure thor-
ough analysis and adherence to industry best practices and standards.

• (C) Identified security vulnerabilities and risks are documented, prioritized based on their
severity and potential impact, and addressed promptly through appropriate remediation
measures.

Resources required:

• Time: It depends on the size and complexity of the software, but typically involves dedicating
time to conducting comprehensive security assessments and addressing identified issues.

• Security assessment tools or services (e.g., static code analysis tools, penetration testing
tools, security scanners) to identify vulnerabilities and assess the overall security posture of
the software.

• Training or expertise in security principles and practices for team members involved in
conducting security reviews.

• Collaboration with external security experts or consultants, if necessary, to augment internal
expertise and ensure comprehensive security assessments.

Dependencies: 1.2.6 < 1.2.10
References: [68, 63]

15

Practice Code: 1.2.7
Practice Name: Measure project stability continuously
Description: Implement a system to monitor and assess the stability of the research software
project continuously, enabling proactive identification of potential issues and trends affecting
software reliability.
When implemented:

• (M) Key metrics and indicators of project stability, such as error rates, crash frequency,
uptime/downtime, and performance metrics, are defined and monitored systematically.

• (M) Monitoring tools or systems are configured to collect and analyze stability-related data
in real time or at regular intervals, providing insights into the overall health and reliability
of the research software.

• (S) Thresholds or benchmarks are established for stability metrics, allowing deviations from
expected norms to trigger alerts or notifications for further investigation and action.

• (S) Trends and patterns in stability metrics are tracked over time, enabling stakeholders to
identify areas of improvement, assess the impact of changes, and make informed decisions
to enhance project stability.

Resources required:

• Time: It is required to define relevant stability metrics, set up monitoring systems, and
establish baseline performance indicators. Ongoing time is needed to maintain monitoring
systems and analyze stability data.

• Monitoring and analytics tools or platforms capable of collecting, processing, and visualizing
stability-related metrics effectively (e.g., Grafana, Datadog, Prometheus).

• Integration with logging, error tracking, and performance monitoring tools to aggregate
relevant data for stability assessment.

• Training or expertise in data analysis and interpretation for team members involved in
monitoring project stability and responding to identified issues or trends.

Dependencies:
References: [3, 69]

16

Practice Code: 1.2.8
Practice Name: Define code coverage targets
Description: Establish specific goals or targets for code coverage, which measures the percentage
of code lines or branches covered by automated tests, to ensure adequate test coverage and QA.
When implemented:

• (M) Code coverage targets are clearly defined and documented, specifying the desired min-
imum level of code coverage for different components, modules, or layers of the software
project.

• (M) Code coverage targets are aligned with project quality goals, objectives, and stakehold-
ers’ expectations, ensuring that they contribute to overall software reliability, maintainabil-
ity, and testability.

• (S) Code coverage metrics are regularly monitored and assessed throughout the development
lifecycle, with progress tracked against established targets and deviations addressed on time.

• (S) The project implements strategies and initiatives to continuously improve code coverage
over time, including adding new tests, optimizing existing tests, and addressing coverage
gaps identified through analysis.

Resources required:

• Time: Required to define, monitor, and manage code coverage targets based on project size,
complexity, and existing test coverage.

• Use code coverage analysis tools and metrics reporting frameworks to measure, track, and
visualize code coverage, identifying areas that need attention.

• Employ automation frameworks for unit, integration, and end-to-end tests to achieve com-
prehensive coverage efficiently.

• Provide researchers / research software engineers and testers with education on code coverage
importance, best testing practices, and strategies for improving coverage.

Dependencies:
References: [18, 84]

17

Practice Code: 1.2.9
Practice Name: Execute tests in a public workflow
Description: Ensure that the tests for the research software project are executed within a public
workflow, enabling transparency, reproducibility, and collaboration among stakeholders.
When implemented:

• (M) Test execution is triggered automatically upon code changes or updates, providing real
time feedback on the research software’s integrity and functionality to all stakeholders.

• (M) Test results, including successes, failures, and performance metrics, are published
openly, allowing stakeholders to review and validate the research software’s behavior and
quality.

• (S) The project’s test suite is integrated into a publicly accessible workflow or pipeline,
hosted in a version control system or a dedicated testing platform.

• (C) Collaboration features, such as commenting and issue tracking, are enabled within the
public testing workflow, facilitating communication and coordination among contributors
and users.

Resources required:

• Time: Initial setup time is required to integrate the test suite into a public workflow, and
ongoing time is needed to maintain and update the workflow as the project evolves.

• Integration with version control systems (e.g., GitLab CI/CD, GitHub Actions, Bitbucket
Pipelines) or dedicated testing platforms (e.g., Travis CI, CircleCI) to automate test execu-
tion within a public environment.

• Access to collaboration and communication tools to enable interaction and feedback ex-
change among stakeholders within the public testing workflow.

• Training or guidance for team members on setting up and managing public testing workflows
effectively while ensuring security and privacy considerations are addressed.

Dependencies:
References: [65, 41]

18

Practice Code: 1.2.10
Practice Name: Follow an industry standard for security (e.g., OWASP SAMM, BSIMM,
OpenSSF)
Description: Adhere to recognized industry standards and best practices for cybersecurity, such
as OWASP, SAMM, BSIMM, and OpenSSF, to ensure the security of the research software project.
When implemented:

• (M) The research software project aligns its security practices with a specific industry stan-
dard or framework, selecting one that is appropriate for its technology stack, domain, and
organizational context.

• (M) Security requirements and guidelines outlined in the chosen standard are integrated
into the project’s development lifecycle, including design, implementation, testing, and de-
ployment phases.

• (M) Regular assessments and audits are conducted to evaluate the project’s adherence to
the selected standard and identify areas for improvement or remediation.

• (M) Documentation is maintained to demonstrate compliance with the industry standard,
including security policies, procedures, risk assessments, and mitigation plans.

Resources required:

• Time: Significant time may be required initially to research, select, and adopt an appropriate
industry standard for security. Ongoing time is needed to integrate security practices into
the development process and conduct regular assessments.

• Tools and resources specific to the chosen industry standard, such as reference guides, tem-
plates, and assessment tools, to support compliance efforts.

• Collaboration with security experts or consultants, if necessary, to ensure alignment with
industry best practices and address complex security challenges effectively.

• Training or expertise in cybersecurity and industry standards for team members involved in
implementing and maintaining security measures.

Dependencies:
References: [66, 80]

19

Practice Code: 1.3.3
Practice Name: Store project in public repository with version control
Description: Host the research software project in a public repository using version control
systems (e.g., Git, Subversion) to enable collaborative development, transparency, and version
tracking.
When implemented:

• (M) The project codebase is stored in a public repository accessible to all project stakehold-
ers, typically hosted on platforms like GitHub, GitLab, or Bitbucket.

• (M) Version control systems such as Git are utilized to manage changes to the project code-
base systematically, providing a history of modifications, branches for feature development,
and mechanisms for collaboration.

• (M) Contributions to the project are made via pull requests or merge requests, allowing
for peer review, discussion, and validation of code changes before integration into the main
codebase.

• (S) The repository is organized logically, with clear directory structures, documentation,
and guidelines for contributors to navigate and understand the project’s architecture and
components.

Resources required:

• Time: Required to set up the public repository, establish version control workflows, and
define contribution guidelines. Ongoing time is required for managing repository adminis-
tration, reviewing contributions, and maintaining project documentation.

• Access to version control platforms and tools for hosting and managing the public repository
(e.g., GitHub, GitLab, Bitbucket).

• Communication channels and collaboration tools to facilitate interaction and coordination
among project contributors, such as issue trackers, discussion forums, and chat platforms.

• Training or guidance for team members on version control best practices, branching strate-
gies, and collaboration workflows using the chosen version control system.

Dependencies:
References: [12, 40, 27]

20

Practice Code: 1.3.7
Practice Name: Use public communication platform (e.g., email list, Slack)
Description: Employ a public communication platform such as an email list, Slack workspace,
or similar tool to facilitate open and transparent communication among project stakeholders,
fostering collaboration, knowledge sharing, and community engagement.
When implemented:

• (M) A public communication platform is established and accessible to all project stakehold-
ers, providing a central hub for discussions, announcements, and information sharing related
to the research software project.

• (M) Project updates, announcements, and important discussions are regularly shared on
the public communication platform, keeping stakeholders informed about project progress,
milestones, and decisions.

• (M) Participation in the communication platform is encouraged and inclusive, welcoming
contributions and feedback from all stakeholders, regardless of their role or affiliation.

• (S) The platform is configured with appropriate channels or threads to organize discussions
by topic, allowing participants to focus on relevant subjects and minimize noise.

Resources required:

• Time: Required to figure out the public communication platform, establish communication
norms and guidelines, and promote adoption among stakeholders. Ongoing time is required
for moderation, facilitation, and engagement on the platform.

• Access to public communication platforms or tools suitable for the project’s needs and
preferences (e.g., email list services, Slack, Discord, Microsoft Teams).

• Coordination efforts to ensure alignment between communication on the platform and other
project management and collaboration tools, such as issue trackers and version control
systems.

• Training or guidance for team members on how to use the communication platform effec-
tively, and best practices for engaging with other participants.

Dependencies:
References: [34, 7]

21

Practice Code: 1.3.8
Practice Name: Provide newsletter
Description: Distribute a regular newsletter to project stakeholders containing updates, an-
nouncements, highlights, and relevant information about the research software project, enhancing
communication and engagement.
When implemented:

• (M) A newsletter schedule is established, specifying the frequency (e.g., weekly, bi-weekly,
monthly) and distribution channels for sending out project updates and announcements.

• (M) The newsletter content includes a variety of topics such as project milestones, recent
developments, upcoming events, relevant resources, community contributions, and opportu-
nities for involvement.

• (S) The newsletter content is carefully selected and presented in a clear, concise, and en-
gaging manner, tailored to the diverse interests and requirements of stakeholders such as
researchers / research Software Engineers, users, funders, and collaborators.

• (C) Feedback mechanisms are provided to allow recipients to provide input, suggest topics,
or express preferences for newsletter content, ensuring ongoing relevance and alignment with
stakeholder expectations.

Resources required:

• Time: Required to plan, and create newsletter content, as well as to distribute and manage
subscriber lists.

• Newsletter distribution platforms or tools (e.g., Mailchimp, Constant Contact, Substack)
for creating and sending newsletters, managing subscriber lists, and tracking engagement
metrics.

• Collaboration with subject matter experts, project contributors, and community members
to gather content and insights for inclusion in the newsletter.

• Graphic design resources or templates for creating visually appealing newsletter layouts and
branding elements, if applicable.

• Evaluation and analysis tools to measure newsletter performance, including open rates,
click-through rates, and subscriber feedback, to inform future iterations and improvements.

Dependencies:
References: [52, 17]

22

Practice Code: 1.3.10
Practice Name: Provide community website
Description: Establish a dedicated website for the research software project to serve as a central
hub for project information, resources, documentation, community engagement, and collaboration.
When implemented:

• (M) A community website is developed and deployed, featuring comprehensive information
about the research software project, including its objectives, features, documentation, FAQs,
and contact information.

• (S) The website provides interactive features such as forums, discussion boards, or chat
rooms, facilitating communication and collaboration among project contributors, users, and
stakeholders.

• (S) Resources and tools relevant to the project, such as tutorials, guides, code repositories,
issue trackers, and development documentation, are accessible and well-organized on the
website.

• (C) The website design is user-friendly, responsive, and accessible, and reflects the project’s
branding and identity.

Resources required:

• Time: Significant time is required initially to plan, design, develop, and launch the com-
munity website. Ongoing time is needed for website maintenance, content updates, and
community engagement efforts.

• Web development expertise or resources for building and maintaining the website, includ-
ing front-end and back-end development, UI/UX design, and content management system
(CMS) implementation.

• Collaboration with stakeholders, including project contributors, users, and community mem-
bers, to gather input, requirements, and feedback for website features and content.

• Content creation and documentation, tutorials, and community resources.

• Promotion and outreach resources to attract visitors and encourage participation on the
community website, such as social media marketing, email newsletters, and search engine
optimization (SEO) strategies.

Dependencies:
References: [13, 55]

23

Practice Code: 2.1.2
Practice Name: Define a clear audience for the project
Description: Identify and specify the primary target audience or user base for the research
software project to tailor development efforts, communication strategies, and features to meet
their needs and expectations effectively.
When implemented:

• (M) The project team conducts thorough research and analysis to identify potential user
groups, stakeholders, or beneficiaries of the research software project.

• (M) The primary target audience for the project is defined based on factors such as domain
expertise, use case scenarios, user needs, and project objectives.

• (S) Audience personas or profiles are developed, detailing demographic information, roles,
goals, challenges, and preferences of the identified user groups, to inform project decision-
making and planning.

• (S) Strategies and initiatives are implemented to engage and involve the target audience
actively throughout the project lifecycle, including feedback collection, user testing, and
co-creation opportunities.

Resources required:

• Time: Required for conducting audience research, analyzing data, and developing audi-
ence personas. Ongoing time is needed for monitoring audience feedback, preferences, and
behavior to adapt project strategies accordingly.

• Research tools and methodologies for collecting and analyzing user data, such as surveys,
interviews, user testing sessions, and analytics platforms.

• Collaboration with stakeholders, domain experts, and end-users to gather insights and vali-
date audience personas, ensuring alignment with project goals and objectives.

• Training or expertise in user research, persona development, and audience segmentation for
team members involved in defining the project’s target audience and designing user-centered
solutions.

Dependencies:
References: [77, 71]

24

Practice Code: 2.1.3
Practice Name: Perform infrequent impact measurement
Description: Conduct periodic assessments to measure the impact and effectiveness of the re-
search software project in achieving its intended goals, outcomes, and broader impacts on stake-
holders and the research community.
When implemented:

• (M) Impact measurement frameworks and methodologies are established to define key per-
formance indicators (KPIs), metrics, and evaluation criteria aligned with the project’s ob-
jectives and expected outcomes.

• (M) Impact assessments are conducted at predefined intervals or project milestones using
a combination of qualitative and quantitative methods, such as surveys, interviews, case
studies, and data analysis.

• (S) Stakeholder engagement is emphasized throughout the impact measurement process,
involving end-users, collaborators, funders, and other relevant parties to provide input,
feedback, and perspectives on project impacts.

• (S) Findings from impact assessments are documented and communicated transparently to
project stakeholders, informing decision-making, strategic planning, and resource allocation
for future project activities.

Resources required:

• Time: Required for planning, conducting, and analyzing impact assessments, as well as
for reporting findings and recommendations to stakeholders. Infrequent assessments may
require dedicated time and resources for comprehensive data collection and analysis.

• Impact measurement tools and software for collecting, managing, and analyzing data, such
as survey platforms, data visualization tools, and impact assessment frameworks.

• Expertise or training in impact evaluation methodologies, data analysis techniques, and
reporting practices for team members responsible for conducting impact assessments.

• Collaboration with external evaluators, consultants, or research partners with expertise
in impact measurement and evaluation, if necessary, to enhance rigor and objectivity in
assessments and interpretation of results.

Dependencies:
References: [58, 22]

25

Practice Code: 2.1.7
Practice Name: Evaluate whether the audience’s goals are met
Description: Assess the extent to which the research software project meets the goals, needs,
and expectations of its primary audience or user base, informing iterative improvements and
adjustments to enhance user satisfaction and project impact.
When implemented:

• (M) Audience goals and requirements are clearly defined and documented through user
research, surveys, interviews, or other methods to establish a baseline for evaluation.

• (M) Evaluation criteria and performance indicators are established to measure the alignment
between the project’s features, functionality, and outcomes with the audience’s goals and
expectations.

• (S) Regular assessments are conducted to gather feedback from the audience, using methods
such as user surveys, usability testing, user interviews, or user analytics, to check satisfaction
and identify areas for improvement.

• (S) Feedback and insights from the audience evaluation are analyzed systematically, and
actionable recommendations are generated to address gaps, optimize user experiences, and
enhance project relevance and impact.

Resources required:

• Time: Required for planning and conducting audience evaluations, analyzing feedback, and
implementing improvements based on findings. Regular evaluations may require ongoing
time and resources to maintain and adapt evaluation processes.

• Evaluation tools and methods for collecting and analyzing user feedback and satisfaction
data, such as surveys, usability testing kits, user analytics platforms, and qualitative research
software.

• Collaboration with stakeholders, including end-users, domain experts, project sponsors, and
funders, to gather input, validate findings, and prioritize improvement initiatives aligned
with audience goals.

• Training or expertise in user research methodologies, survey design, usability testing, and
data analysis for team members involved in evaluating audience satisfaction and project
impact.

Dependencies:
References: [73, 9]

26

Practice Code: 2.1.9
Practice Name: Perform continuous impact measurement
Description: Implement a systematic and ongoing process to measure and assess the impact
and effectiveness of the research software project throughout its life cycle, allowing for real-time
feedback and continuous improvement.
When implemented:

• (M) Continuous impact measurement frameworks and methodologies are established to de-
fine key performance indicators (KPIs), metrics, and evaluation criteria aligned with the
project’s objectives and expected outcomes.

• (M) Automated data collection mechanisms are integrated into project workflows and sys-
tems to capture relevant impact data in real-time or at regular intervals, leveraging tools such
as analytics platforms, user feedback mechanisms, usage tracking, citations, and mentions.

• (S) Data analysis and reporting processes are automated or streamlined to enable timely and
actionable insights from impact data, facilitating decision-making and strategic adjustments
to project activities and priorities.

• (S) Stakeholder engagement is embedded in the impact measurement process, with oppor-
tunities for ongoing feedback, input, and collaboration to ensure relevance, transparency,
and accountability in impact assessment efforts.

Resources required:

• Time: Required for initial setup and configuration of impact measurement frameworks, as
well as ongoing monitoring, analysis, and reporting of impact data.

• Impact measurement tools and software for collecting, managing, and analyzing data in
real-time, such as analytics platforms, data visualization tools, and dash boarding solutions.

• Training or expertise in data analytics, statistical analysis, and impact measurement
methodologies for team members responsible for managing and interpreting impact data.

• Collaboration with stakeholders, including end-users, project sponsors, funders, and domain
experts, to define impact metrics, validate findings, and identify opportunities for improve-
ment and innovation based on impact insights.

Dependencies:
References: [12, 65, 22]

27

Practice Code: 2.1.10
Practice Name: Explore new audiences regularly
Description: Proactively identify and explore potential new audiences or user groups for the
research software project, expanding its reach, relevance, and impact within the broader research
community and beyond.
When implemented:

• (M) Regular market research, user surveys, and analysis of user demographics and behavior
are conducted to identify emerging trends, user needs, and untapped audience segments
relevant to the project.

• (M) Collaboration with domain experts, industry partners, and community stakeholders is
fostered to gain insights into evolving research priorities, technological advancements, and
emerging areas of interest that may represent new audience opportunities.

• (S) Experimentation with targeted outreach to engage with potential new audiences, includ-
ing participation in relevant conferences, workshops, webinars, and community events.

• (S) Feedback mechanisms are established to gather input and insights from new audience
segments, enabling iterative refinement of project strategies, features, and communication
approaches to better serve their needs and preferences.

Resources required:

• Time: Required for ongoing audience research, outreach activities, and engagement efforts
with new audience segments. Regular monitoring and evaluation of audience feedback and
response may necessitate dedicated time and resources for analysis and adaptation.

• Audience research tools and methods, such as surveys, focus groups, market analysis reports,
and social listening tools, to gather insights into new audience demographics, behaviors, and
preferences.

• Collaboration with marketing and communications teams to develop targeted messaging,
content, and outreach strategies tailored to new audience segments, leveraging channels
such as social media, email marketing, and content marketing.

• Training or expertise in audience research methodologies, marketing strategies, and com-
munity engagement techniques for team members involved in exploring new audiences and
expanding project reach.

Dependencies:
References: [73, 9, 85]

28

Practice Code: 2.2.2
Practice Name: Acquire temporary funding
Description: Secures short-term financial support or grants to sustain and advance the research
software project, enabling the execution of specific activities, initiatives, or development milestones
within a defined timeframe.
When implemented:

• (M) Opportunities for temporary funding, such as grants, fellowships, awards, or short-
term contracts, are actively sought and pursued through targeted research, networking, and
engagement with funding agencies, research organizations, and industry partners.

• (M) Transparent and accountable financial management practices are maintained to ensure
responsible stewardship of temporary funding resources, including budget planning, expen-
diture tracking, and reporting requirements as per funding agreements.

• (S) Grant proposals or funding applications are prepared and submitted in alignment with
the project’s goals, objectives, and funding criteria, highlighting the potential impact, inno-
vation, and value proposition of the proposed activities or initiatives.

• (C) Collaboration and partnerships with external stakeholders, such as academic institu-
tions, government agencies, philanthropic organizations, and industry sponsors, are lever-
aged to access funding opportunities, enhance credibility, and strengthen project proposals.

Resources required:

• Time: Required for identifying funding opportunities, preparing grant proposals, and man-
aging funding applications and agreements. Additional time may be needed for reporting
and compliance activities associated with temporary funding.

• Funding databases, grant directories, and funding alert services to identify and track relevant
funding opportunities aligned with the project’s objectives and focus areas.

• Grant writing resources and support, including templates, guidelines, and training work-
shops, to assist project team members in preparing competitive grant proposals and appli-
cations.

• Collaboration with institutional research offices, grant offices, or research support units to
access expertise, resources, and administrative support for grant seeking and management
processes.

Dependencies:
References: [77, 13]

29

Practice Code: 2.2.4
Practice Name: Write software management plan
Description: Develop and maintain a comprehensive Software Management Plan (SMP) outlin-
ing the policies, procedures, and guidelines for the development, deployment, maintenance, and
sustainability of the research software project.
When implemented:

• (M) The SMP defines the project’s software development lifecycle (SDLC), including phases
such as requirements analysis, design, implementation, testing, deployment, maintenance,
and retirement, with clear roles, responsibilities, and workflows for each phase.

• (M) Policies and procedures for software documentation, version control, QA, licensing,
security, data management, and intellectual property rights are documented in the SMP,
ensuring consistency, transparency, and accountability in software management practices.

• (S) The SMP is developed in collaboration with relevant stakeholders, including project team
members, research administrators, funding agencies, and institutional partners, to ensure
alignment with project goals and compliance requirements.

• (S) The SMP includes strategies and mechanisms for sustainability planning, resource allo-
cation, and risk management to ensure the long-term viability and impact of the research
software project beyond the initial funding period.

Resources required:

• Time: Required for developing, reviewing, and updating the SMP throughout the project
lifecycle. Collaboration with stakeholders and coordination of input may necessitate dedi-
cated time and resources for SMP development and maintenance.

• SMP templates, guidelines, and best practices from funding agencies, research organiza-
tions, and community initiatives such as the Software Sustainability Institute (SSI) or the
researchers / research software engineers community, to inform SMP development and im-
plementation.

• Training or workshops on software management planning, software engineering best prac-
tices, and compliance requirements for project team members involved in SMP development
and implementation.

Dependencies:
References: [41, 77, 57]

30

Practice Code: 2.2.7
Practice Name: Obtain support from a national research software center
Description: Establish partnerships or collaborations with national research software centers or
organizations focused on research software development, providing access to resources, expertise,
and support to advance the research software project.
When implemented:

• (M) Identifies relevant national research software centers or organizations with a mission
aligned with its goals, objectives, or domain expertise.

• (S) Outreach and engagement efforts are initiated to establish connections and build relation-
ships with key stakeholders, decision-makers, and technical experts at the national research
software center, highlighting the value proposition and potential synergies of collaboration.

• (S) Discussions and negotiations are conducted to explore potential forms of support or col-
laboration, such as funding opportunities, technical assistance, infrastructure access, training
and capacity building, or dissemination and outreach activities.

• (S) Formal agreements or partnerships are established with the national research software
center, outlining roles, responsibilities, expectations, and mutual benefits for both parties,
with clear mechanisms for communication, collaboration, and governance.

Resources required:

• Time: Required for identifying suitable national research software centers, initiating and
nurturing relationships, and negotiating partnership agreements. Ongoing time and effort
are needed for collaboration coordination, communication, and relationship management.

• Research and networking resources to identify and research potential national research soft-
ware centers, including online directories, professional networks, and conference events.

• Collaboration platforms and communication tools for facilitating discussions, sharing in-
formation, and coordinating activities between the research software project team and the
national research software center.

• Training or guidance on partnership development, negotiation skills, and effective communi-
cation strategies for team members involved in engaging with national software centers and
establishing collaborative relationships.

Dependencies:
References: [35, 82]

31

Practice Code: 2.2.8
Practice Name: Acquire viable pathways for project sustainability
Description: Identify and secure sustainable pathways to ensure the long-term viability, fund-
ing, and impact of the research software project beyond the initial development phase, enabling
continued support, maintenance, and evolution.
When implemented:

• (M) Comprehensive sustainability planning is conducted early in the project lifecycle, con-
sidering various factors such as funding sources, community engagement, partnerships, and
institutional support.

• (M) Opportunities for diversifying funding streams are explored, including grant funding,
industry partnerships, fee-based services, licensing revenue, crowdfunding, or membership
models, to mitigate dependency on a single funding source.

• (S) Collaboration with stakeholders, including research institutions, funding agencies, in-
dustry partners, and user communities, is fostered to co-create sustainable business models,
governance structures, and revenue-sharing arrangements aligned with project goals and
values.

• (S) Mechanisms for community engagement, user support, and contributions are established
to foster a sense of ownership, participation, and investment among stakeholders, ensuring
ongoing user adoption, feedback, and contributions to sustain the project ecosystem.

Resources required:

• Time: Required for conducting sustainability assessments, planning activities, and engaging
with stakeholders to develop and implement sustainable pathways.

• Expertise or consultation from financial analysts, legal advisors, and fundraising profession-
als to assess sustainability options, and navigate legal and regulatory considerations.

• Collaboration with institutional research centers, technology centers, or innovation hubs
to access resources, expertise, and support services for commercialization, licensing, and
intellectual property management.

• Training or capacity building for project team members on sustainability planning, and
community engagement strategies to build internal capacity and resilience for sustaining the
project’s impact and value proposition.

Dependencies:
References: [41, 50]

32

Practice Code: 2.2.9
Practice Name: Secure continuous funding
Description: Establish mechanisms to secure ongoing financial support and resources to sustain
the RS project over the long term, ensuring its continued development, maintenance, and impact.
When implemented:

• (M) The project team conducts strategic planning and forecasting to assess the funding
needs and sustainability requirements of the research software project, considering factors
such as personnel costs, infrastructure expenses, and operational overheads.

• (M) Diverse funding sources and opportunities are explored and pursued, including govern-
ment grants, private donations, corporate sponsorships, institutional support, philanthropic
funding, and revenue-generating activities, to diversify and stabilize the project’s financial
base.

• (S) Grant proposals, funding applications, or sponsorship pitches are prepared and submitted
regularly, leveraging project achievements, milestones, and impact metrics to demonstrate
the value proposition and attract funding partners.

• (S) Relationships with funding agencies, donors, sponsors, and partners are nurtured and
maintained through regular communication, reporting, and engagement activities, fostering
trust, transparency, and alignment of interests.

Resources required:

• Time: Required for researching funding opportunities, preparing funding applications, and
engaging with potential funders or sponsors. Ongoing time and effort are needed for relation-
ship management, reporting, and compliance activities associated with continuous funding.

• Expertise or consultation from grant writers, fundraising professionals, financial analysts,
and legal advisors to develop funding strategies, craft compelling proposals, and negotiate
funding agreements effectively.

• Collaboration with institutional research offices, development offices, or grant support units
to access resources, training, and support services for grant seeking, proposal development,
and compliance management.

Dependencies:
References: [77, 13, 4]

33

Practice Code: 2.2.10
Practice Name: Define end-of-life policy
Description: Establish clear guidelines and procedures for managing the end-of-life phase of
the research software project, including discontinuation, and archival of project assets to ensure
responsible stewardship of resources and continuity for users.
When implemented:

• (M) An end-of-life policy is developed in consultation with project stakeholders, including
researchers / research software engineers, users, funders, and institutional partners, to define
criteria, timelines, and responsibilities for discontinuing the research software project.

• (M) Criteria for determining end-of-life triggers, such as obsolescence, lack of funding, loss
of support, or achievement of project goals, are specified in the policy, providing clarity and
transparency for stakeholders.

• (C) Responsibilities for managing end-of-life activities, such as communication, documen-
tation, resource reallocation, and stakeholder engagement, are assigned to designated indi-
viduals or teams within the project organization, ensuring accountability and continuity in
execution.

Funder
Resources required:

• Time: Required for developing and documenting the end-of-life policy. Ongoing time and
effort may be required for monitoring and updating the policy periodically to reflect changing
project circumstances.

• Collaboration with legal counsel, institutional policy experts, and regulatory compliance
officers to ensure alignment with legal and regulatory requirements governing data retention,
privacy, intellectual property rights, and contractual obligations.

• Training or guidance for project team members involved in end-of-life planning and execu-
tion, including communication strategies, stakeholder engagement techniques, and archival
best practices for preserving project assets and knowledge.

Dependencies: * (all other practices) < 2.2.10
References: [30, 36]

34

Practice Code: 2.3.1
Practice Name: Make code citable
Description: Implement mechanisms to assign Digital Object Identifiers (DOIs) or other persis-
tent identifiers to the research software project’s code repositories, enabling proper citation and
recognition of the software as a scholarly contribution.
When implemented:

• (M) The research software project establishes a policy or procedure for assigning DOIs
or other persistent identifiers to specific releases, versions, or milestones of the project’s
codebase stored in public repositories.

• (S) Integration with code hosting platforms or repository services, such as GitHub, GitLab,
or Zenodo, is configured to enable automatic assignment and registration of DOIs for tagged
releases or stable versions of the software.

• (C) Metadata associated with the DOI registration includes essential information about the
software, such as title, description, version history, licensing information, relevant publica-
tions or documentation, and researchers / research software engineers name, to facilitate
accurate citation and attribution.

• (C) Guidelines and recommendations for citing the software code are provided to users and
contributors, outlining citation formats, preferred attribution practices, and acknowledg-
ment requirements to promote proper citation in scholarly works and publications.

Resources required:

• Time: Required for configuring DOI registration workflows, updating metadata, and dis-
seminating citation guidelines to users and contributors.

• Integration with DOI registration services or repository platforms that support automatic
DOI assignment for code repositories, such as Zenodo’s GitHub integration or DataCite’s
repository services, to streamline the process of making code citable.

• Collaboration with institutional librarians, repository managers, or scholarly communica-
tion specialists to ensure compliance with best practices and standards for data citation,
metadata quality, and citation metrics for software publications.

Dependencies:
References: [12, 65]

35

Practice Code: 2.3.3
Practice Name: Enable indexing of project meta-data
Description: Implement mechanisms to ensure that project meta-data, including descriptive
information about the RS project, is indexed and discoverable by relevant search engines, reposi-
tories, and discovery platforms, enhancing visibility and accessibility.
When implemented:

• (M) Comprehensive meta-data for the research software project is structured according to
relevant standards and best practices, including information about the project’s purpose,
scope, contributors, funding sources, version history, documentation, and related publica-
tions.

• (M) Meta-data is encoded using machine-readable formats, such as JSON-LD, RDF/XML,
or schema.org markup, to facilitate automated indexing and interpretation by search engine
crawlers, repository harvesters, and metadata aggregators.

• (S) Integration with indexing services, discovery platforms, or repository networks, such as
Google Scholar, BASE, or Research Gate, is established to enable automatic indexing and
updating of project meta-data, ensuring visibility and accessibility to a wider audience.

• (C) Regular monitoring and maintenance of meta-data quality and consistency are con-
ducted to address errors, gaps, or outdated information, ensuring accurate representation
and discovery of the research software project across indexing platforms.

Resources required:

• Time: Required for encoding, and updating project meta-data according to relevant stan-
dards and guidelines.

• Knowledge or expertise in meta-data standards, such as Dublin Core, schema.org, or Dat-
aCite meta-data schema, for structuring and encoding project meta-data effectively to sup-
port indexing and discovery.

• Collaboration with repository managers, technical experts, or metadata librarians to ensure
compatibility and compliance with indexing protocols, metadata schemas, and indexing
service requirements for research software projects.

Dependencies:
References: [12, 40]

36

Practice Code: 2.3.4
Practice Name: Promote the project continuously
Description: Implement ongoing promotional activities to raise awareness, generate interest,
and engage stakeholders with the research software project, enhancing visibility, adoption, and
impact.
When implemented:

• (M) A comprehensive promotional strategy is developed, outlining goals, target audiences,
key messages, channels, and tactics for promoting the research software project effectively
across various platforms and communities.

• (M) Regular communication channels and engagement touch points, such as project websites,
blogs, social media profiles, mailing lists, newsletters, and community forums, are established
to share updates, announcements, achievements, and resources related to the project.

• (S) Outreach efforts are conducted proactively to engage with relevant communities, user
groups, professional networks, and media outlets, leveraging opportunities such as confer-
ences, workshops, webinars, and publications to showcase the project’s value proposition
and impact.

Resources required:

• Time: Required for planning, executing, and monitoring promotional activities, including
content creation, community engagement, and relationship building efforts.

• Content creation resources, including writing, design, multimedia production, and editing
skills, to develop compelling and engaging promotional materials such as blog posts, videos,
infographics, and social media content.

• Collaboration with graphic designers, researchers / research software engineers, and mar-
keting professionals to enhance the visual appeal, usability, and effectiveness of promotional
materials and communication channels for the research software project.

• Training or guidance for project team members on communication strategies, social media
best practices, and community engagement techniques to effectively promote the project’s
mission, achievements, and impact on diverse audiences.

Dependencies:
References: [56, 77]

37

Practice Code: 2.3.5
Practice Name: Publish in a research software directory
Description: Publishing research software projects in a research software directory facilitates
discovery, citation, and collaboration among researchers, research software engineers, and users
within the research community.
When implemented:

• (M) Identification and selection of suitable research software directories that align with
the project’s focus area, target audience, and visibility goals, considering factors such as
reputation, coverage, and accessibility.

• (M) Preparation and submission of comprehensive meta-data and documentation for the
research software project to the selected directory.

• (S) Compliance with directory-specific submission guidelines, metadata standards, and QA
criteria to ensure accurate representation, indexing, and discoverability of the research soft-
ware project within the directory’s database and search interface.

• (C) Monitoring and updating of project listings and meta-data in the research software
directory as needed to reflect changes, updates, or new releases of the software

Resources required:

• Time: Required for researching and selecting appropriate research software directories,
preparing and submitting project listings, and maintaining directory entries over time. On-
going time and effort may be needed for monitoring directory performance, responding to
inquiries, and updating project information.

• Knowledge or expertise in directory submission processes, metadata standards, and docu-
mentation requirements for research software projects

• Collaboration with research software directory team to publish projects on their website.

Dependencies:
References: [60]

38

Practice Code: 2.3.6
Practice Name: Acquire research software center acknowledgment
Description: Seek acknowledgment or recognition from reputable software centers or repositories
specialized in research software, validating the quality, impact, and scholarly value of the research
software project within the academic community.
When implemented:

• (M) Identification and selection of recognized software centers or repositories known for their
expertise in indexing, and promoting high-quality research software projects, aligning with
the project’s scope, domain, and target audience.

• (M) Submission of the research software project to the selected software center or repository
for evaluation, review, and potential inclusion in their catalog, following their submission
guidelines and quality criteria.

• (S) Collaboration with software center representatives to provide additional information,
documentation, or demonstration of the RS project’s significance, novelty, and utility to
support its evaluation and selection process.

• (C) Receipt of acknowledgment, certification, or endorsement from the software center ac-
knowledging the research software project’s inclusion, accreditation, or recommendation,
signifying its quality, relevance, and scholarly impact within the research community.

Resources required:

• Time: Required for researching and identifying reputable software centers, preparing submis-
sion materials, and engaging with software center representatives throughout the evaluation
and acknowledgment process. Ongoing time and effort may be needed for communication,
follow-up, and compliance with software center requirements.

• Expertise or consultation on software center submission processes, evaluation criteria, and
QA standards to ensure alignment and compliance with submission guidelines and expecta-
tions.

• Collaboration with institutional partners, domain experts, or collaborators with existing
relationships or affiliations with software centers to leverage networking opportunities, ad-
vocacy, and support for acquiring acknowledgment or recognition.

Dependencies:
References: [75]

39

Practice Code: 2.3.7
Practice Name: Enable indexing of the project’s source code
Description: Facilitate the indexing and preservation of the research software project’s source
code in platforms like Software Heritage Graph, enhancing its visibility, traceability, and long-
term accessibility for future research and collaboration.
When implemented:

• (M) Identification and selection of suitable platforms or repositories for indexing and archiv-
ing the project’s source code, with a focus on reputable, trustworthy platforms known for
their commitment to software preservation and provenance tracking.

• (M) Integration of the project’s source code repository with the selected indexing platform,
leveraging features such as repository synchronization, metadata extraction, and version
tracking to ensure comprehensive coverage and accuracy of code indexing.

• (S) Compliance with platform-specific requirements, standards, and APIs for submitting and
indexing source code repositories, including metadata enrichment, licensing information, and
versioning metadata, to facilitate discovery and attribution of the project’s source code.

• (S) Regular monitoring and maintenance of indexed code repositories on the platform, in-
cluding updates, revisions, and new releases of the project’s source code, to ensure currency,
completeness, and integrity of the indexed data over time.

Resources required:

• Time: Required for researching and selecting suitable indexing platforms, configuring in-
tegration settings, and monitoring indexing performance. Ongoing time and effort may be
needed for maintenance, updates, and troubleshooting of indexed repositories.

• Technical expertise in version control systems (e.g., Git, SVN), repository management
platforms (e.g., GitHub, GitLab), and indexing APIs or protocols (e.g., Software Heritage
API) for integrating and synchronizing source code repositories with indexing platforms.

• Collaboration with platform administrators, technical support teams, or community con-
tributors to resolve integration issues, optimize indexing settings, and ensure compliance
with platform policies and guidelines for source code submission and preservation.

Dependencies:
References: [77, 39]

40

Practice Code: 2.3.10
Practice Name: Garner industrial partner adoption
Description: Cultivate relationships and collaborations with industrial partners to promote
the adoption and utilization of the research software project within industry settings, fostering
technology transfer, innovation, and commercialization opportunities.
When implemented:

• (M) Identification and outreach to potential industrial partners, including companies, star-
tups, and industry consortia, that can benefit from leveraging the research software project’s
capabilities, expertise, or technologies to address industry challenges or enhance product de-
velopment.

• (M) Collaboration agreements or partnership arrangements are established with industrial
partners, defining roles, responsibilities, expectations, and mutual benefits of collaboration,
such as joint development projects, technology licensing, and knowledge exchange.

• (S) Engagement with industrial partners through networking events, industry conferences,
workshops, or targeted outreach campaigns to raise awareness about the research software
project, showcase its value proposition, and explore collaboration opportunities aligned with
industry needs and priorities.

• (C) Ongoing communication, support, and collaboration with industrial partners to facili-
tate technology transfer, integration, and adoption of the research software project within
industrial workflows, providing training, technical assistance, and customization services as
needed to address industry-specific requirements and use cases.

Resources required:

• Time: Required for identifying, engaging, and nurturing relationships with industrial part-
ners, as well as for negotiating and managing collaboration agreements and supporting part-
ner onboarding and adoption efforts. Ongoing time and effort may be needed for relationship
management, collaboration support, and follow-up activities with industrial partners.

• Networking and outreach resources, such as industry databases, trade associations, and
business networks, to identify and connect with potential industrial partners and decision-
makers interested in collaborating with research software projects.

Dependencies:
References: [56, 77, 4]

41

Practice Code: 2.4.4
Practice Name: Analyze privacy usage impact
Description: Conduct a comprehensive analysis to assess the privacy implications and usage
impact of the research software project, evaluating data collection, processing, storage, and sharing
practices to ensure compliance with privacy regulations and ethical principles.
When implemented:

• (M) Identification and documentation of all data collection points, including user interac-
tions, system logs, telemetry, or third-party integrations, within the research software project
to understand the scope and scale of data processing activities.

• (M) Implementation of privacy-enhancing measures and safeguards, such as data anonymiza-
tion, encryption, access controls, audit trails, and user consent mechanisms, to mitigate
identified privacy risks and protect individuals’ privacy rights and interests.

• (S) Conducting a privacy impact assessment (PIA) or data protection impact assessment
(DPIA) to systematically evaluate the potential risks and consequences associated with
data processing activities, considering factors such as data sensitivity, user consent, data
retention, and data sharing practices.

• (C) Transparency and accountability in communicating privacy practices and policies to
users, stakeholders, and regulatory authorities through privacy notices, terms of service,
data protection agreements, or privacy impact statements, ensuring informed consent and
trust in the project’s data handling practices.

Resources required:

• Time: Required for conducting privacy impact assessments, reviewing privacy policies, and
implementing privacy-enhancing measures within the research software project. Ongoing
time and effort may be needed for monitoring, auditing, and updating privacy practices in
response to evolving regulatory requirements and user expectations.

• Collaboration with stakeholders, including users, data subjects, project sponsors, and regu-
latory authorities, to gather input, address concerns, and build trust in the project’s privacy
practices and compliance efforts through transparent and accountable data handling prac-
tices.

Dependencies:
References: [19]

42

Practice Code: 2.4.5
Practice Name: Analyze ethical consequences of project use
Description: Conduct a systematic analysis to evaluate the ethical implications and consequences
of using the research software project, considering potential risks, benefits, and societal impacts
on individuals, communities, and society as a whole.
When implemented:

• (M) Identification and documentation of potential ethical issues and dilemmas associated
with the research software project, including concerns related to privacy, security, fairness,
bias, discrimination, accountability, transparency, and societal impact.

• (M) Integration of ethical principles, guidelines, and safeguards into the design, development,
deployment, and usage of the research software project, such as ethical design practices,
responsible data handling, user empowerment, and stakeholder engagement mechanisms.

• (S) Engagement with relevant stakeholders, including users, domain experts, ethicists, com-
munity representatives, and affected parties, to gather diverse perspectives, insights, and
concerns about the ethical implications of project use across different contexts and user
groups.

• (C) Conducting an ethical impact assessment or ethical review process to systematically
evaluate and prioritize ethical considerations, weighing potential risks against benefits, and
identifying strategies to mitigate or address ethical challenges effectively.

Resources required:

• Time: Required for conducting ethical impact assessments, engaging stakeholders, and inte-
grating ethical considerations into project planning and execution. Ongoing time and effort
may be needed for monitoring, evaluating, and adapting ethical practices in response to
evolving ethical standards and community feedback.

• Expertise or consultation from ethicists, social scientists, policy experts, and community
representatives to guide ethical analysis, decision-making, and stakeholder engagement pro-
cesses, ensuring alignment with ethical principles and values relevant to the project’s context
and domain.

• Collaboration with institutional review boards, ethics committees, or regulatory authorities
to ensure compliance with ethical standards, regulations, and guidelines governing research
involving human subjects or sensitive data, as applicable to the RS project.

Dependencies:
References: [13, 33]

43

Practice Code: 2.4.6
Practice Name: Document the cost of running the application
Description: Record and document the various costs associated with running the application,
including infrastructure expenses, licensing fees, personnel costs, maintenance, and other opera-
tional expenditures, to facilitate budgeting, financial planning, and resource allocation.
When implemented:

• (M) Identification and documentation of all direct and indirect costs related to running the
application, including hardware costs, cloud computing services, software licenses, subscrip-
tion fees, and personnel expenses such as salaries, benefits, and training.

• (M) Implementation of cost tracking mechanisms, such as expense tracking software, finan-
cial spreadsheets, or budgeting tools, to record and categorize costs accurately, ensuring
transparency, accountability, and traceability of expenditures.

• (S) Integration of cost documentation and reporting into project management and decision-
making processes, providing stakeholders with timely and accurate cost information to sup-
port strategic planning, investment decisions, and project prioritization.

• (C) Regular review and analysis of cost data to assess cost trends, identify cost-saving
opportunities, and optimize resource utilization, such as optimizing cloud resource usage,
renegotiating vendor contracts, or streamlining operational workflows.

Resources required:

• Time: Required for documenting, tracking, and analyzing costs associated with running the
application, including data collection, analysis, and reporting activities. Ongoing time and
effort may be needed for regular updates, reviews, and adjustments to cost documentation
and budget forecasts.

• Tools or software for expense tracking, budgeting, and financial reporting, such as account-
ing software, spreadsheet applications, or cloud-based financial management platforms, to
streamline cost documentation and analysis processes.

• Expertise or consultation from financial analysts, accountants, or budget managers to de-
velop cost documentation processes, establish cost tracking metrics and interpret financial
data to support informed decision-making and resource optimization.

Dependencies:
References: [21, 16]

44

Practice Code: 2.4.7
Practice Name: Consider total energy consumption
Description: Evaluate and document the energy consumption associated with running the ap-
plication, including electricity usage by servers, data centers, networking equipment, server cost,
and other infrastructure components, to understand the environmental impact and promote sus-
tainability.
When implemented:

• (M) Measurement and monitoring of energy consumption metrics, such as power usage
effectiveness (PUE), energy usage effectiveness (EUE), or carbon emissions, associated with
the operation of the application infrastructure, including both direct and indirect energy
usage.

• (M) Integration of energy consumption considerations into decision-making processes, such
as infrastructure design, capacity planning, and technology selection, to prioritize energy-
efficient solutions and minimize the carbon footprint of running the application.

• (S) Analysis of energy consumption data to identify energy-intensive components, processes,
or configurations within the application infrastructure, such as inefficient hardware, cooling
systems, or workload distribution patterns, that contribute to excessive energy usage.

• (C) Implementation of energy efficiency measures and optimization strategies to reduce en-
ergy consumption and minimize environmental impact, such as server virtualization, work-
load consolidation, hardware upgrades, or utilization of renewable energy sources.

Resources required:

• Time: Required for collecting, analyzing, and interpreting energy consumption data, as well
as for implementing and monitoring energy efficiency measures within the application infras-
tructure. Ongoing time and effort may be needed for continuous monitoring, optimization,
and reporting of energy consumption.

• Tools or software for energy monitoring and management, such as energy management
systems, power monitoring tools, or environmental monitoring sensors, to track and analyze
energy usage metrics across the application infrastructure.

• Expertise or consultation from environmental engineers, energy consultants, or sustainabil-
ity specialists to develop energy consumption monitoring strategies, identify energy-saving
opportunities, and implement sustainable practices within the application environment.

Dependencies:
References: [26]

45

Practice Code: 3.1.4
Practice Name: Acknowledge partners and funding agencies on website
Description: Recognize and publicly acknowledge the contributions and support provided by
partners and funding agencies to the research software project by prominently featuring their logos,
names, or testimonials on the project website, demonstrating gratitude and fostering transparency
and accountability in project operations.
When implemented:

• (M) Compilation of a list of all partners, collaborators, and funding agencies that have
contributed resources, expertise, or financial support to the research software project, in-
cluding details such as organization names, logos, funding amounts, project duration, and
collaboration activities.

• (S) Creation of a dedicated ”Partners” or ”Acknowledgments” section on the project website,
showcasing logos, names, and brief descriptions of partners and funding agencies, along with
links to their websites or contact information for further inquiries or collaborations.

• (C) Regular updates and maintenance of the partners and funding agencies section on the
website to reflect new partnerships, collaborations, or funding awards, ensuring accuracy,
completeness, and currency of acknowledgment information over time.

• (C) Engagement with partners and funding agencies to obtain consent for acknowledgment
and approval of logo usage on the project website, respecting branding guidelines, copy-
right policies, and privacy preferences, and providing opportunities for partners to provide
testimonials or endorsements if desired.

Resources required:

• Time: Required for compiling acknowledgment information, updating the website content,
and obtaining approvals from partners and funding agencies for acknowledgment and logo
usage. Ongoing time and effort may be needed to maintain and update the acknowledgment
section as new partnerships and funding are secured.

• Collaboration and communication tools for coordinating with partners, funding agencies,
and internal stakeholders to gather acknowledgment information, obtain approvals, and
ensure compliance with branding guidelines and legal requirements for logo usage and ac-
knowledgment practices.

Dependencies:
References: [77, 4]

46

Practice Code: 3.1.7
Practice Name: Develop advanced partnership model
Description: Develop and implement an advanced partnership model that goes beyond standard
collaborations, fostering strategic, long-term relationships with partners that involve shared goals,
joint decision-making, resource pooling, and mutual benefits, to drive innovation, sustainability,
and impact in the research software project.
When implemented:

• (M) Alignment of partner goals and objectives with the mission, vision, and strategic prior-
ities of the research software project, identifying synergies, complementarities, and shared
interests for collaboration.

• (M) Collaboration with partners in co-creating, co-developing, and co-innovating research
software solutions, products, or services, leveraging partner expertise, resources, and net-
works to address common challenges and opportunities.

• (M) Establishment of governance structures, such as joint steering committees, advisory
boards, or collaborative forums, to facilitate communication, coordination, and decision-
making among partners.

• (S) Sharing of resources, including funding, infrastructure, expertise, and intellectual prop-
erty, among partners to maximize efficiency, leverage economies of scale, and accelerate
progress towards shared goals and outcomes.

• (S) Focus on creating mutual value and benefits for all partners involved.

Resources required:

• Time: Required for developing, negotiating, and managing advanced partnerships, including
conducting partner assessments, strategic planning, partnership agreement negotiations, and
ongoing partnership management activities.

• Adequate resources and infrastructure are needed to support partnership activities, such
as dedicated staff, collaboration tools, communication platforms, and meeting spaces, as
well as financial resources for funding joint initiatives, projects, or activities agreed upon by
partners.

Dependencies:
References: [56, 13, 4]

47

Practice Code: 3.2.3
Practice Name: Impose community norms
Description: Establish and enforce community norms, guidelines, and codes of conduct to define
acceptable behavior, foster inclusivity, respect, and professionalism, and maintain a positive and
supportive environment within the research software project community.
When implemented:

• (M) Collaborative development of community norms, guidelines, or codes of conduct through
consultation with community members, stakeholders, and relevant experts, incorporating
principles of inclusivity, diversity, respect, and professionalism.

• (M) Clear communication and dissemination of community norms to all community mem-
bers through multiple channels, such as project websites, documentation, forums, mailing
lists, and social media platforms, ensuring accessibility, visibility, and awareness of expected
behaviors and standards.

• (S) Establishment of clear procedures and mechanisms for enforcing community norms, in-
cluding reporting mechanisms, and disciplinary actions for addressing violations or breaches
of conduct, ensuring accountability and fairness in addressing community concerns.

• (S) Regular engagement with community members to promote awareness, understanding,
and adherence to community norms through training, workshops, discussions, and educa-
tional materials, fostering a culture of mutual respect, empathy, and responsibility.

Resources required:

• Time: Required for developing, communicating, and enforcing community norms, as well
as for engaging with community members, addressing concerns, and resolving conflicts.
Ongoing time and effort may be needed to monitor community dynamics, update norms,
and provide support to community moderators.

• Expertise and skills: Expertise in community management, conflict resolution, and diver-
sity and inclusion practices, as well as strong communication, interpersonal, and leadership
skills, are essential for effectively imposing community norms and fostering a healthy and
supportive community environment.

Dependencies:
References: [41, 77, 64]

48

Practice Code: 3.2.4
Practice Name: Onboard researchers as part of the community
Description: Facilitate the seamless integration and active participation of researchers into the
research software project community by providing structured onboarding processes, resources, and
support to foster engagement, collaboration, and contribution.
When implemented:

• (M) Developing comprehensive onboarding materials, including welcome guides, orienta-
tion videos, documentation, and tutorials, to introduce researchers to the research software
project, its objectives, governance structure, community norms, and available resources.

• (M) Conducting onboarding sessions, workshops, webinars, or meet-and-greet events to wel-
come new researchers, provide an overview of the project’s mission, vision, and activities,
and facilitate introductions to key community members, contributors, and stakeholders.

• (M) Assigning mentors or onboarding buddies to new researchers to provide guidance, and
support, answering questions, and facilitating connections with relevant working groups or
initiatives.

• (S) Offering various opportunities for researchers to engage with the community and con-
tribute to the project’s goals.

Resources required:

• Time: Required for planning, organizing, and delivering onboarding activities, as well as for
providing ongoing support and mentorship to new researchers.

• Expertise in community management, communication, and mentorship, as well as strong
interpersonal, organizational, and facilitation skills, are essential for effectively onboarding
researchers and fostering their integration into the community.

• Development of onboarding materials, resources, and tools, such as welcome packs, orien-
tation guides, online tutorials, and mentorship frameworks, to support new researchers in
understanding the project’s goals, processes, and expectations.

Dependencies:
References: [11]

49

Practice Code: 3.2.5
Practice Name: Develop code of conduct
Description: Establish and enforce a code of conduct that outlines expected behavior, standards,
and guidelines for all community members participating in the research software project, promot-
ing inclusivity, respect, professionalism, and a safe and welcoming environment for collaboration
and interaction.
When implemented:

• (M) Collaborative development of a code of conduct through consultation with community
members, stakeholders, and relevant experts, incorporating principles of inclusivity, diver-
sity, respect, integrity, and professionalism.

• (M) Clear communication and dissemination of the code of conduct to all community mem-
bers through multiple channels, such as project websites, documentation, forums, mailing
lists, and social media platforms, ensuring visibility, accessibility, and awareness of expected
behaviors and standards.

• (S) Establishment of clear procedures and mechanisms for enforcing the code of conduct

• (S) Regular education and awareness efforts to promote understanding and adherence to the
code of conduct among community members.

Resources required:

• Time: Required for developing, communicating, and enforcing the code of conduct, as well
as for educating community members and addressing concerns or violations. Ongoing time
and effort may be needed to monitor community dynamics, update the code of conduct, and
provide support to community moderators.

• Expertise in community management, conflict resolution, and diversity and inclusion prac-
tices, as well as strong communication, interpersonal, and leadership skills, are essential for
effectively implementing and enforcing the code of conduct.

Dependencies:
References: [77, 13]

50

Practice Code: 3.2.6
Practice Name: Appoint support team
Description: Appoint a dedicated support team responsible for providing assistance, guidance,
and technical support to community members, users, and contributors of the research software
project, ensuring timely resolution of issues, effective communication, and a positive user experi-
ence.
When implemented:

• (M) Identification and selection of individuals with appropriate expertise, knowledge, and
communication skills to serve as support team members, including technical support spe-
cialists, community moderators, and subject matter experts.

• (M) Clearly define the roles, responsibilities, and expectations of support team members,
including response times, communication channels, and issue resolution workflows, ensuring
alignment with project goals and community needs.

• (S) Provide training, resources, and onboarding for support team members to familiarize
them with the research software project, its features, functionality, and common issues, as
well as best practices for providing effective support and engaging with community members.

• (C) Establish communication channels, collaboration platforms, and workflows for coordi-
nating support activities, sharing knowledge and insights, and escalating complex or unre-
solved issues to appropriate stakeholders or researchers / research software engineers, for
resolution.

Resources required:

• Time: Required for recruiting, training, and coordinating support team members, as well
as for responding to support requests, addressing issues, and monitoring support activities.

• Support team members should possess expertise in relevant technologies, software tools, and
domain knowledge.

• Provision of training materials, knowledge bases, FAQs, tutorials, and documentation re-
sources to support team members and community members, providing guidance on common
issues, troubleshooting steps, and best practices for using the research software project ef-
fectively.

Dependencies: 3.2.6 < 3.2.9
References: [56, 70]

51

Practice Code: 3.2.7
Practice Name: Organize community events
Description: Plan, coordinate, and host community events, such as workshops, hackathons,
webinars, conferences, or meetups, to foster engagement, collaboration, knowledge sharing, and
networking among community members involved in the research software project.
When implemented:

• (M) Develop event plans, agendas, and timelines outlining event objectives, themes, formats,
speakers, and logistics, considering community preferences, interests, and feedback gathered
through surveys, polls, or previous events.

• (M) Promote community events through various channels, such as project websites, social
media platforms, mailing lists, and partner networks, using targeted marketing strategies,
event invitations, and promotional materials to attract participants and generate interest.

• (S) Facilitate interactive and participatory sessions during community events, such as pre-
sentations, panel discussions, workshops, hands-on tutorials, or networking sessions, to en-
courage active engagement, collaboration, and knowledge exchange among participants.

• (C) Feedback evaluations from event participants to assess event satisfaction, relevance,
and impact, gathering insights, suggestions, and lessons learned for improving future event
planning and execution.

Resources required:

• Time: Required for planning, organizing, and executing community events, as well as for
promoting events, coordinating logistics, and facilitating event activities.

• Budget for venue rentals, catering, equipment rentals, marketing materials, and other event-
related expenses.

• Dedicated staff or volunteers to assist with event planning, and coordination, as well as to
serve as speakers, facilitators, or moderators during event sessions.

• Collaboration with event sponsors, partners, or collaborators to leverage their resources,
expertise, and networks in organizing and hosting community events.

Dependencies:
References: [77, 72]

52

Practice Code: 3.2.9
Practice Name: Provide front page chat support
Description: Offer real-time chat support directly on the front page or landing page of the
research software project website to assist visitors, answer inquiries, address issues, and provide
guidance or assistance in navigating the website, accessing resources, or learning more about the
project.
When implemented:

• (M) Embedding a chat support widget or plugin directly on the front page of the project
website, allows visitors to initiate chat conversations with support agents or community
moderators without navigating to separate support pages or channels.

• (M) Assigning dedicated support agents or community moderators to monitor and respond
to chat inquiries during specified hours of operation, ensuring prompt and helpful assistance
to visitors in real time.

• (S) Integrating chat support with a knowledge base or FAQ section on the website to provide
quick access to commonly asked questions, troubleshooting tips, and self-help resources,
enabling support agents to efficiently address inquiries and provide relevant information.

• (C) Establishing escalation procedures and protocols for handling complex or unresolved
inquiries via chat support, including routing inquiries to appropriate specialists, scheduling
follow-up communications, or transitioning to alternative support channels as needed.

Resources required:

• Time: Required for setting up and configuring the chat support system.

• Subscription or licensing for chat support software or platforms that offer features such as
real-time messaging, chat routing, canned responses, chat history tracking, and integration
with website analytics and CRM systems.

• Provision of training materials, guidelines, and documentation for chat support agents on
best practices, communication techniques, project knowledge, and issue resolution strategies
to deliver effective and consistent support experiences.

Dependencies:
References: [23]

53

Practice Code: 3.2.10
Practice Name: Focus on diversity and inclusion
Description: Prioritize diversity and inclusion in all aspects of research software development
to ensure that the software meets the needs of diverse users, respects diverse perspectives, and
promotes equity and inclusion in research and innovation.
When implemented:

• (M) Integrate inclusive design principles into the software development process, considering
diverse user needs, preferences, abilities, and contexts throughout the design, development,
and testing phases to create software that is accessible, usable, and equitable for all users.

• (S) Incorporate cultural sensitivity, inclusivity, and diversity considerations into the soft-
ware interface, content, language, imagery, and user experience design, avoiding stereotypes,
biases, or exclusionary language, and promoting respect, representation, and inclusion of di-
verse cultures, identities, and perspectives.

• (C) Ensure diverse representation and participation of stakeholders, end users, and subject
matter experts from underrepresented groups in the researchers / research software engi-
neers, user research activities, usability testing, and feedback sessions to incorporate diverse
perspectives and insights into the software design and development process.

Resources required:

• Time: Required for implementing accessibility features and inclusive training sessions.

• Provide training and resources on diversity, inclusion, cultural competence, and accessibility
for researchers / research software engineers, designers, and other team members involved
in the development process, fostering awareness, empathy, and skills to address diversity-
related challenges and opportunities.

• Conduct user research, usability testing, and user feedback sessions with diverse groups
of users, including individuals from underrepresented communities, minority groups, or
marginalized populations, to identify barriers, preferences, and needs and to validate de-
sign decisions and software improvements.

Dependencies:
References: [77, 67]

54

Practice Code: 3.3.2
Practice Name: Make developer names and roles publicly available
Description: Provide transparency and visibility into the researchers / research software engi-
neers by making the names and roles of researchers / research software engineers publicly available
on the research software project’s website or documentation, fostering accountability, recognition,
and trust among community members and stakeholders.
When implemented:

• (M) Acknowledge and attribute contributions made by researchers / research software engi-
neers to the research software project, including code contributions, documentation updates,
bug fixes, feature enhancements, or community engagement activities, providing recognition
and visibility for their efforts and contributions.

• (S) Publish researchers / research software engineers profiles on the project website, team
page, or contributors section, making them easily accessible to community members, users,
collaborators, and potential contributors who are interested in learning more about the
individuals behind the project and their respective roles and responsibilities.

• (C) Create individual profiles or bios for each researchers / research software engineers
involved in the RS project, including their name, role, expertise, background, and contri-
butions to the project, showcasing the diverse skills and experiences of the researchers /
research software engineers.

• (C) Maintain researchers / research software engineers profiles and team information up to
date with changes in team composition, roles, or contributions, ensuring accuracy, relevance,
and completeness of researchers / research software engineers information over time, and
reflecting the dynamic nature of the researchers / research software engineers.

Resources required:

• Time: Required for creating and maintaining the researchers / research software engineers
list on the project website or documentation.

• Utilize website content management systems (CMS), documentation platforms, or version
control repositories to create and publish researchers / research software engineers profiles,
team pages, or contributors sections on the project website, enabling easy access and navi-
gation for users.

• Design visually appealing and user-friendly researchers / research software engineers pro-
file templates or layouts, incorporating features such as photos, bios, social media links,
and contribution metrics to enhance engagement and recognition of researchers / research
software engineers within the community.

Dependencies:
References: [41, 76]

55

Practice Code: 3.3.6
Practice Name: Document how to join the team
Description: Provide clear and accessible guidelines, instructions, and procedures for individ-
uals interested in joining the research software project team, outlining the steps, requirements,
expectations, and opportunities for becoming a contributor, collaborator, or team member.
When implemented:

• (M) Create a ”Join Us” section on the project website with details on contributing.

• (S) Highlight contribution opportunities like coding, documentation, or outreach.

• (C) Specify prerequisites like skills or experience needed to join.

• (C) Outline the onboarding process, including accessing resources and finding mentorship.

Resources required:

• Time: Required for drafting and maintaining the documentation on joining the team.

• Utilize a website content management system (CMS), version control repository, or docu-
mentation platform to create and maintain the ”Join the Team” or ”Contribute” section,
enabling collaborative editing, version control, and accessibility of joining instructions.

• Develop clear, concise, and engaging joining instructions, using plain language, bullet points,
and visual aids to improve readability and comprehension, and incorporating feedback from
team members and community stakeholders to enhance clarity and completeness of infor-
mation.

• Provide links or instructions for joining project communication channels, such as mailing
lists, forums, chat groups, or social media platforms, where individuals can connect with
existing team members, ask questions, and express interest in joining the team.

Dependencies:
References: [77, 72]

56

Practice Code: 3.3.8
Practice Name: Set maximum response time for pull requests
Description: Establish a clear and reasonable maximum response time for reviewing and ad-
dressing pull requests submitted by contributors to the research software project, ensuring timely
feedback, transparency, and efficiency in the contribution review process.
When implemented:

• (M) Set a maximum response time for pull request reviews, communicating the timeframe
for feedback.

• (M) Document the response time policy in project guidelines, explaining expectations and
consequences.

• (S) Assign reviewers responsible for timely reviews, rotating roles to distribute the workload.

• (C) Establish procedures for handling overdue reviews, like escalating to project leads or
seeking community assistance to avoid delays.

Resources required:

• Time: Required for establishing and communicating the response time policy to project
contributors and team members.

• Update project guidelines to include a maximum response time for pull requests, with clear
instructions and consequences.

• Ensure reviewers have time and expertise to meet response time targets, adjusting schedules
if needed.

• Use project tools to track pull request status, identify delays, and address bottlenecks.

• Encourage open communication between contributors and reviewers, providing updates and
feedback for transparency and motivation.

Dependencies:
References: [54]

57

Practice Code: 3.3.9
Practice Name: Provide access to developer training and skill development
Description: Offer opportunities, resources, and support for researchers / research software en-
gineers to enhance their skills, expand their knowledge, and further their professional development
through training programs, courses, workshops, and learning resources relevant to research soft-
ware development.
When implemented:

• (M) Provide access to a variety of training programs, courses, and workshops relevant to RS
development, covering topics such as programming languages, version control systems, soft-
ware engineering best practices, data management, cybersecurity, and project management.

• (M) Maintain a repository or library of learning resources, tutorials, guides, documentation,
and online materials on research software development topics, accessible to researchers /
research software engineers within the project community for self-paced learning and skill
enhancement.

• (S) Organize skill development initiatives, such as coding challenges, hackathons, peer learn-
ing groups, or mentorship programs, to encourage collaboration, knowledge sharing, and
hands-on practice among researchers / research software engineers, fostering a culture of
continuous learning and improvement.

• (C) Provide financial support or stipends for researchers / research software engineers to
attend external training courses, conferences, workshops, or certification programs related
to RS development, enabling them to access specialized training opportunities and stay
updated on emerging technologies and trends.

Resources required:

• Time: Required for identifying and planning relevant training resources and opportunities.

• Set aside money for researchers / research software engineers training, covering course fees,
workshops, materials, and travel expenses.

• Invest in online learning platforms for researchers / research software engineers to access
various educational materials.

• Hire external trainers or experts for specialized sessions, complementing internal training.

• Use an LMS to organize and track training activities, making administration more efficient.

Dependencies:
References: [41, 67]

58

Practice Code: 3.4.1
Practice Name: Select a license
Description: Choose an appropriate open-source license for the research software project that
defines the terms and conditions under which the software is made available to users, researchers
/ research software engineers, and other stakeholders, ensuring legal clarity, compatibility, and
openness of the project codebase.
When implemented:

• (M) Document and communicate the selected license in the project repository, README
file, or license file, providing clear and explicit information about the licensing terms, obli-
gations, permissions, and requirements for using, modifying, and distributing the project
code.

• (M) Conduct a legal review of candidate licenses with legal counsel or experts to ensure
compliance with applicable laws, regulations, and best practices, addressing any potential
legal risks, liabilities, or ambiguities associated with the selected license.

• (S) Evaluate various open-source licenses based on their terms, permissions, restrictions,
and obligations, considering factors such as license compatibility, project goals, community
preferences, commercial use, distribution requirements, and intellectual property considera-
tions.

• (C) Seek input and feedback from project stakeholders, contributors, and community mem-
bers on the choice of license, soliciting their opinions, concerns, and preferences regarding
licensing options and their potential impact on project governance, collaboration, and sus-
tainability.

Resources required:

• Time: Required for research on different license options and their implications.

• Use online tools like OSI, SPDX, or Choose a License to find suitable licenses based on
project needs.

• Seek advice from legal experts in open-source licensing to ensure chosen licenses comply
with laws and project goals.

• Gather feedback from the project community through channels like mailing lists or forums
to involve stakeholders in the decision-making process and gain support for the selected
license.

Dependencies: 3.4.1 < 3.4.3
References: [12, 13]

59

Practice Code: 3.4.3
Practice Name: Get institutional support for license choice
Description: Engaging with institutional stakeholders to explain and justify the selected license
choosing a license for the research software project, considering various factors such as project
goals, community dynamics, collaboration models, and legal implications, to ensure that the
selected license aligns with the project’s values, objectives, and long-term sustainability.
When implemented:

• (M) Conduct a thorough assessment of available open-source licenses, examining their terms,
conditions, restrictions, and implications about the project’s needs, priorities, and con-
straints, and considering factors such as license compatibility, commercial use, attribution
requirements, and patent grants.

• (M) Seek guidance and advice from legal counsel or experts specializing in open-source
licensing and intellectual property law to analyze and interpret the legal implications and
consequences of different license options, ensuring compliance with relevant regulations,
mitigating legal risks, and protecting the project’s interests.

• (S) Document the considerations, and decision-making process behind the choice of license
in the project repository, README file, or license file, providing clear and accessible infor-
mation about the selected license, its terms, permissions, and requirements, and communi-
cating it effectively to users, contributors, and downstream researchers / research software
engineers.

• (C) Engage with project stakeholders, contributors, and community members to gather
input, feedback, and insights on license considerations, fostering open dialogue, transparency,
and collaboration in the decision-making process, and addressing any concerns, preferences,
or conflicts related to licensing choices.

Resources required:

• Time: Required for researching and evaluating different license options.

• Use OSI and FSF resources or legal guides to understand open-source licenses.

• Get advice from legal experts on open-source licensing for selecting licenses that align with
project goals.

• Engage stakeholders through project channels for discussions and feedback on license choices,
ensuring diverse input in decision-making.

Dependencies:
References: [78]

60

Practice Code: 3.4.8
Practice Name: Evaluate license policy regularly
Description: Establish a recurring review process to assess the effectiveness, relevance, and
compliance of the project’s chosen license(s), ensuring that they align with evolving project goals,
community dynamics, legal requirements, and industry standards, and addressing any emerging
issues, concerns, or opportunities related to licensing.
When implemented:

• (M) Set a schedule (like yearly or biennially) to review the project’s license choices and
document outcomes.

• (M) Periodically audit the project’s licenses to ensure compliance with laws and address any
issues promptly.

• (S) Establish benchmarks for evaluating licenses based on factors like compatibility, com-
munity adoption, legal compliance, and project dynamics.

• (S) Involve stakeholders, including contributors and legal advisors, for feedback on license
evaluations, aiming for consensus.

Resources required:

• Time: Time for conducting regular reviews and assessments of the license policy.

• Create a checklist to assess the project’s license policy, covering legal, technical, social, and
strategic aspects for a thorough review.

• Keep records of license policy evaluations, documenting findings, recommendations, and
decisions transparently for stakeholders.

• Seek advice from legal experts on open-source licensing to address licensing issues effectively.

• Engage stakeholders through project communication channels for inclusive discussions and
informed decision-making on license policy evaluations.

Dependencies: * (all other practices) < 3.4.8
References: [58, 13, 78]

61

Practice Code: 4.1.2
Practice Name: Provide a statement of purpose
Description: Crafting and presenting a clear, concise statement that outlines the fundamental
goals and objectives of a research software project.
When implemented:

• (M) The statement of purpose communicates the project’s objectives, goals, target audience,
and intended impact, ensuring alignment and understanding among stakeholders.

• (M) The statement of purpose serves as a guiding document for project planning, execution,
and decision-making, ensuring that project activities and outcomes are consistent with the
stated objectives and goals.

• (S) The statement of purpose reflects input and feedback from key stakeholders, including
researchers, researchers / research software engineers, funders, and end-users, ensuring that
diverse perspectives and priorities are considered.

• (S) The statement of purpose is made readily available and accessible to all project stake-
holders, including through project documentation, websites, and communication channels,
facilitating transparency and engagement.

Resources required:

• Time: Required for drafting, reviewing, and finalizing the statement of purpose, including
time for stakeholder consultations and revisions.

• Document editing and collaboration tools (e.g., Microsoft Word, Google Docs) for drafting
and reviewing the statement of purpose, and communication platforms (e.g., email, video
conferencing) for coordinating stakeholder input and feedback.

• Knowledge of project objectives, goals, and target audience, as well as effective communica-
tion and stakeholder engagement skills, are essential resources for developing a compelling
and impactful statement of purpose.

Dependencies:
References: [72]

62

Practice Code: 4.1.3
Practice Name: Provide a simple how to use
Description: Offer a straightforward guide outlining the steps required to effectively use the
research software project, aimed at users with varying levels of expertise.
When implemented:

• (M) The how-to-use guide is easy to understand and follows a logical sequence of steps,
making it accessible to users with diverse backgrounds and skill levels.

• (M) The guide covers all essential functionalities and features of the software, providing
sufficient detail and examples to assist users in performing common tasks and workflows.

• (S) The guide is refined based on feedback from actual users and usability testing sessions,
ensuring that it addresses common user questions, concerns, and challenges effectively.

• (C) The guide is made available in multiple formats and channels, including online docu-
mentation, user manuals, video tutorials, and interactive demos, to accommodate different
learning preferences and accessibility needs.

Resources required:

• Time: Required for initial drafting and development of the how-to-use guide, with additional
time allocated for revisions, updates, and maintenance as the software evolves.

• Use of documentation authoring tools (e.g., Markdown, LaTeX, Adobe InDesign), screen
capture software (e.g., Snagit, Camtasia), and collaboration platforms (e.g., Google Drive,
Confluence) to create, edit, and publish the guide.

• Establishment of feedback channels (e.g., surveys, feedback forms, user forums) to gather
input and suggestions from users regarding the clarity, usefulness, and effectiveness of the
how-to-use guide.

• Knowledge of instructional design principles, technical writing techniques, and user-centered
design methodologies are valuable resources for creating an effective and user-friendly how-
to-use guide.

Dependencies: 4.1.3 < 4.1.6
References: [62]

63

Practice Code: 4.1.6
Practice Name: Provide online tutorials
Description: Develop and offer online tutorials or instructional materials that guide users
through the usage and functionalities of the research software project, enhancing their under-
standing and proficiency.
When implemented:

• (M) The online tutorials cover a range of topics relevant to users, including basic function-
ality, advanced features, troubleshooting tips, and best practices, different user needs and
skill levels.

• (M) The tutorials are accessible online through a user-friendly platform or website, featuring
clear navigation, search functionality, and multimedia content (e.g., videos, screenshots,
interactive demos) to facilitate learning and engagement.

• (S) The tutorials are regularly updated and maintained to reflect changes in the software,
address user feedback, and incorporate new features or improvements, ensuring that they
remain relevant and effective over time.

• (C) The tutorials incorporate interactive elements, quizzes, exercises, or hands-on demon-
strations to actively engage users and reinforce learning objectives, encouraging participation
and knowledge retention.

Resources required:

• Time: Plan, create, record/edit, and publish tutorials, with ongoing updates and mainte-
nance.

• Use video editing software (like Adobe Premiere Pro, Camtasia), screen recording tools
(e.g., OBS Studio, ScreenFlow), learning management systems (e.g., Moodle, Canvas), and
content management systems (e.g., WordPress, Drupal) for hosting tutorials.

• Collaborate with researchers / research software engineers, researchers, and experts to ensure
tutorial accuracy, relevance, and completeness, and to address user questions and feedback.

• Promote tutorials through social media, email newsletters, and community outreach to boost
user participation.

Dependencies:
References: [65, 77, 27]

64

Practice Code: 4.2.2
Practice Name: Provide a read me file with project explanation
Description: Create a README file containing essential information about the research software
project, including its purpose, features, installation instructions, usage guidelines, contribution
guidelines, and licensing details, to help users and contributors understand and engage with the
project effectively.
When implemented:

• (M) The README file should cover all necessary information about the project, including
its objectives, key features, and how to use it.

• (M) The content should be presented in a clear and organized manner, with headings, bullet
points, and code snippets used to improve readability and navigation.

• (S) The README file should be kept up-to-date with any changes or additions to the
project, ensuring that users have access to the latest information.

• (C) The README file should invite feedback from users and contributors, providing contact
information or links to relevant communication channels for reporting issues or making
suggestions.

Resources required:

• Time: Time required to create the README file, plus additional time for updates as the
project evolves.

• Text editor or markdown editor for writing the README file (e.g., Visual Studio Code,
Atom, Typora).

Dependencies: 4.2.2 < 4.2.8 and 4.2.2 < * (all other practices)
References: [65, 79]

65

Practice Code: 4.2.3
Practice Name: Provide a how-to guide
Description: Develop a comprehensive step-by-step guide that walks users through specific tasks
or processes related to the research software project, providing detailed instructions, tips, and
examples to help users achieve their objectives effectively.
When implemented:

• (M) The how-to guide should be clear, concise, and comprehensive, covering all necessary
steps and details required to complete the task successfully.

• (M) Organize the guide into logical sections or steps, with each step numbered or labeled,
and use headings, subheadings, and bullet points to improve readability and comprehension.

• (S) Ensure that the content of the guide is relevant to the target audience and reflects
current best practices and procedures, verifying the accuracy of information and instructions
provided.

• (S) Collect feedback from users or stakeholders on the usability and effectiveness of the
how-to guide, making revisions or updates based on user suggestions or identified areas for
improvement.

Resources required:

• Time: Depending on the complexity of the task or process being documented, creating a
how-to guide may require several hours to days of effort to research, write, review, and
finalize the content.

• Text editor or documentation tool for drafting and formatting the guide (e.g., Microsoft
Word, Google Docs, Markdown editors). Additionally, collaboration and version control
tools may be used for team collaboration and document management (e.g., Git, GitHub,
GitLab).

Dependencies:
References: [62]

66

Practice Code: 4.2.4
Practice Name: Provide a common example usage
Description: Present a typical scenario or use case demonstrating how users can effectively
utilize the research software project to accomplish a specific task or achieve a common objective
relevant to their needs or domain.
When implemented:

• (M) The example usage is easy to understand, with each step or action explained straight-
forwardly to facilitate user comprehension and replication.

• (S) The example usage provided should be relevant and representative of common tasks or
workflows encountered by users within the target domain or context.

• (S) The example usage should reflect realistic scenarios and practical applications of the
research software project, demonstrating its utility and effectiveness in addressing real-world
challenges or requirements.

• (C) Provide multiple example usages showcasing different aspects, features, or functionalities
of the research software project.

Resources required:

• Time: Developing common example usage scenarios may require several hours to days of
effort to research, define, and document representative scenarios accurately.

• Knowledge of the target domain or context is essential for identifying relevant and practical
example usage scenarios that resonate with users and reflect real-world application scenarios.

• Input and feedback from users or stakeholders can help validate the relevance and effec-
tiveness of example usage scenarios, ensuring that they address common user needs and
requirements effectively.

Dependencies:
References: [65, 62]

67

Practice Code: 4.2.6
Practice Name: Provide a documentation as repository/ documentation wiki
Description: Establish a central repository or wiki system to host comprehensive documentation
for the research software project, serving as a centralized source of information, guidance, and
resources for users, researchers / research software engineers, and contributors.
When implemented:

• (M) The documentation repository or wiki should cover all relevant aspects of the research
software project, including its purpose, features, architecture, installation instructions, usage
guidelines, API references, troubleshooting tips, and contribution guidelines.

• (M) The documentation should be organized into logical sections or categories, with clear
navigation paths, headings, and subheadings to facilitate easy access and retrieval of infor-
mation by users.

• (S) Ensure that the documentation content is consistent in style, tone, and formatting and
that it accurately reflects the current state of the project, with regular updates and revisions
made as needed to keep the information up-to-date and relevant.

• (S) The documentation should be easily accessible to all stakeholders, with user-friendly
interfaces, search functionality, and navigation aids provided to help users quickly locate
and retrieve the information they need.

Resources required:

• Time: Allocate hours to days for researching, selecting, and implementing documentation
technologies, depending on project complexity.

• Use popular documentation tools like Markdown, HTML/CSS, Git, GitHub Pages, or static
site generators (e.g., Jekyll, Hugo) for creating and managing project documentation, as
they are simple, versatile, and compatible with existing workflows.

• Offer training and support to team members and stakeholders on using chosen documenta-
tion tools effectively, enabling efficient contribution and maintenance.

Dependencies:
References: [32, 61]

68

Practice Code: 4.2.8
Practice Name: Provide API documentation
Description: Create comprehensive documentation for the application programming interface
(API) of the research software project, detailing its endpoints, methods, parameters, responses,
and usage guidelines to facilitate integration, development, and interaction with the API by
researchers / research software engineers and third-party applications.
When implemented:

• (M) The documentation should cover all available API endpoints, methods, and function-
alities supported by the research software project, providing detailed descriptions, usage
examples, and response schemas for each.

• (M) Each API endpoint and method should be accompanied by clear and concise descrip-
tions explaining its purpose, expected inputs, possible outputs, error conditions, and any
additional context or considerations relevant to API usage.

• (S) Include usage examples and code snippets demonstrating how to interact with each
API endpoint or method using popular programming languages or frameworks, helping
researchers / research software engineers understand and implement API integrations effec-
tively.

• (S) Specify the format and structure of API responses, including data schemas, status codes,
and error messages, to guide researchers / research software engineers in handling and pro-
cessing API responses correctly and handling errors gracefully.

Resources required:

• Time: Developing API documentation may require significant time and effort, ranging from
several hours to days or weeks, depending on the complexity and scope of the API, to
research, document, review, and finalize the API documentation content.

• Use documentation tools or platforms such as Swagger/OpenAPI, Postman, Slate, or ReDoc
to create and manage API documentation, providing features for generating interactive API
documentation, code samples, and documentation versioning.

• researchers / research software engineers and documentation team members may require
expertise in API design principles, RESTful architecture, HTTP protocols, and JSON/XML
data formats to effectively document API endpoints, methods, and responses.

Dependencies:
References: [14]

69

Practice Code: 4.3.2
Practice Name: Use common non-exotic or established technology
Description: Employ widely adopted, non-exotic, or established technologies and tools for de-
veloping, managing, and deploying the research software project, ensuring compatibility, stability,
and accessibility for users across diverse environments and systems.
When implemented:

• (M) Ensure that the documentation is compatible with common web browsers, operating
systems, and devices, and accessible to users with diverse needs and preferences, including
those using assistive technologies or older hardware/software configurations.

• (M) Use documentation tools or platforms that offer robust features for content creation,
editing, versioning, and collaboration, enabling efficient and effective maintenance and up-
dates to the documentation over time.

• (S) The chosen documentation technologies should be widely adopted and familiar to users,
researchers / research software engineers, and stakeholders within the project’s target audi-
ence, reducing barriers to entry and facilitating the adoption and usage of the documentation.

• (S) Choose documentation technologies that support scalability and extensibility, allowing
for the addition of new content, features, or functionalities as the project evolves and grows
in complexity.

Resources required:

• Time: Allocate hours to days for researching, selecting, and implementing documentation
technologies, depending on project complexity.

• Use popular documentation tools like Markdown, HTML/CSS, Git, GitHub Pages, or static
site generators (e.g., Jekyll, Hugo) for creating and managing project documentation, as
they are simple, versatile, and compatible with existing workflows.

• Offer training and support to team members and stakeholders on using chosen documenta-
tion tools effectively, enabling efficient contribution and maintenance.

Dependencies: 4.3.2 < * (all other practices)
References: [49, 45]

70

Practice Code: 4.3.4
Practice Name: Facilitate integration into scientific workflow
Description: Streamline the process of integrating the research software project into common
scientific workflows, data processing pipelines, and analysis frameworks used within the target
domain, enhancing interoperability, usability, and adoption by scientific researchers and data
analysts.
When implemented:

• (M) Evaluate the compatibility of the research software project with existing scientific work-
flow tools, platforms, and environments commonly used by researchers and data analysts.

• (M) Provide comprehensive documentation and support resources to assist users in integrat-
ing the research software project into their scientific workflows, including tutorials, guides,
and troubleshooting tips.

• (S) Customize integration solutions to align with the specific requirements and workflows
of scientific researchers, ensuring seamless interoperability and data exchange between the
research software project and other tools or systems.

• (S) Gather feedback from scientific researchers and data analysts on the effectiveness and us-
ability of the integrated solution, making refinements and adjustments as needed to optimize
integration and address user needs.

Resources required:

• Time: Allocate time for compatibility assessment, customization of integration solutions,
gathering user feedback, and documentation development, with the duration depending on
the complexity and scope of integration requirements.

• Utilize integration frameworks, libraries, APIs, and middleware commonly used in scientific
workflow environments to facilitate integration efforts and enhance interoperability.

• Provide training and support to integration specialists and researchers / research software
engineers on scientific workflow tools, data exchange standards, and integration best prac-
tices to ensure successful integration outcomes.

Dependencies:
References: [79, 43, 20]

71

Practice Code: 4.3.9
Practice Name: Evaluate technology relevance regularly
Description: Continuously assess the relevance and suitability of the technologies and tools
used in the research software project, considering factors such as emerging trends, evolving user
requirements, technological advancements, and changes in the project’s scope or objectives.
When implemented:

• (M) Collect feedback from users, stakeholders, and contributors regarding their technology
preferences, challenges, and requirements, and incorporate this input into the evaluation
and selection of technologies for the project.

• (M) Ensure that selected technologies align with the current and future goals, objectives,
and requirements of the research software project, supporting scalability, maintainability,
performance, and user satisfaction.

• (S) Conduct periodic reviews and assessments of the technologies and tools employed in
the research software project to identify outdated, deprecated, or obsolete components and
evaluate their impact on project goals and objectives.

• (S) Stay informed about emerging technologies, best practices, and industry trends relevant
to the project’s domain or target audience, leveraging resources such as industry reports,
conferences, forums, and professional networks.

Resources required:

• Time: Allocate dedicated time for technology assessment activities, including research, anal-
ysis, and documentation of findings, as well as coordination with stakeholders and team
members.

• Utilize the expertise of team members or external consultants with knowledge of emerging
technologies, industry trends, and best practices relevant to the project’s domain or target
audience.

• Leverage tools, resources, and frameworks for technology assessment and evaluation, such
as technology radar charts, maturity models, decision matrices, and risk assessment frame-
works, to support informed decision-making and planning.

Dependencies: * (all other practices) < 4.3.9
References: [37, 51]

72

Practice Code: 4.4.2
Practice Name: Provide instructions on how to put into research workflow
Description: Create clear and detailed instructions for integrating reproducibility practices into
the research workflow, ensuring that team members can effectively implement reproducible re-
search practices.
When implemented:

• (M) Detailed instructions are provided that outline step-by-step procedures for integrating
reproducibility practices into the research workflow.

• (M) Team members successfully integrate reproducibility practices into the research work-
flow following the provided instructions, leading to consistent and reproducible research
outcomes.

• (S) Instructions are easily accessible to all team members involved in the research project,
ensuring that they can reference and follow the instructions as needed.

• (C) Feedback is collected from team members regarding the clarity and effectiveness of the
instructions, and adjustments are made as necessary to improve usability and understanding.

Resources required:

• Time: Time is required for researching, drafting, and refining the instructions, depending
on the complexity of the research workflow and the level of detail required.

• Word processing software (e.g., Microsoft Word, Google Docs) for creating documentation,
collaboration platforms (e.g., Google Drive, SharePoint) for sharing and accessing instruc-
tions, and communication tools (e.g., email, Slack) for collecting feedback from team mem-
bers.

Dependencies: 4.4.2 < 4.4.5
References: [43, 79]

73

Practice Code: 4.4.4
Practice Name: Provide instructions on how to make part of a replication package
Description: Offer detailed guidelines and procedures for researchers to include the research
software project as part of a replication package, ensuring reproducibility and transparency of
research findings.
When implemented:

• (M) The provided instructions cover all necessary steps and procedures for packaging the RS
along with relevant data, scripts, dependencies, and documentation, following best practices
for reproducible research.

• (S) The instructions are presented in a clear and accessible format, such as a README file,
user manual, or online documentation, with step-by-step guidance, examples, and explana-
tions to assist researchers of varying skill levels.

• (C) The instructions accommodate different research contexts, software environments, and
replication requirements, allowing researchers to adapt and customize the replication package
according to their specific needs and constraints.

• (C) The instructions include guidance on verifying the correctness and completeness of the
replication package, as well as validation procedures to ensure that it can be successfully
reproduced and used by others to replicate research findings.

Resources required:

• Time: Time required for researching, writing, reviewing, and finalizing the instructions,
with additional time allocated for updates and revisions as needed.

• Use of documentation tools (e.g., Markdown, LaTeX, Microsoft Word), version control sys-
tems (e.g., Git), and collaboration platforms (e.g., GitHub, Google Docs) for drafting, re-
viewing, and publishing the instructions.

• Collaboration with domain experts, researchers, and stakeholders to ensure that the instruc-
tions accurately reflect the requirements and practices of the research field and adhere to
reproducibility standards and guidelines.

• Collecting feedback from researchers and users to validate the effectiveness, usability, and
completeness of the instructions, and to identify areas for improvement or clarification.

Dependencies: 4.4.4 < 4.4.7
References: [79, 43]

74

Practice Code: 4.4.5
Practice Name: Make part of standardized workflows
Description: Ensure that reproducibility practices are incorporated into standardized workflows,
ensuring consistency and adherence to best practices across the research project.
When implemented:

• (M) Reproducibility practices are seamlessly integrated into standardized workflows used
across the research project, ensuring that they are followed consistently by all team members.

• (M) Reproducibility practices align with existing standardized protocols and procedures
used within the research project, minimizing disruptions and ensuring smooth integration.

• (S) Team members receive training and support to understand and implement reproducibil-
ity practices as part of standardized workflows, promoting adoption and compliance.

• (S) Regular monitoring is in place to ensure that reproducibility practices are being followed
as part of standardized workflows, with mechanisms in place to address any deviations or
issues.

Resources required:

• Time: Time is required for assessing existing workflows, identifying opportunities for inte-
gration, and developing training materials for team members.

• Collaboration platforms (e.g., project management software, version control systems) for
documenting standardized workflows and tracking compliance with reproducibility practices,
communication tools (e.g., email, Slack) for disseminating training materials and providing
support.

Dependencies:
References: [43, 79]

75

Practice Code: 4.4.7
Practice Name: Make part of a replication package
Description: Ensure that reproducibility practices are incorporated into a comprehensive repli-
cation package accompanying the research project, facilitating the replication and verification of
research findings by others.
When implemented:

• The replication package includes all necessary materials, such as data, code, scripts, docu-
mentation, and instructions, to reproduce the research findings.

• (M) The replication package adheres to established standards and guidelines for reproducible
research, ensuring transparency, completeness, and reliability.

• (S) The replication package is well-organized and easily accessible, allowing other researchers
to locate and utilize the materials effectively.

• (S) The reproducibility of research findings is successfully validated by others using the
materials provided in the replication package.

Resources required:

• Time: Time is required for preparing and organizing materials, documenting procedures,
and validating reproducibility, depending on the complexity of the research project.

• Version control systems (e.g., Git), data repositories (e.g., Zenodo, Figshare), and collab-
oration platforms (e.g., Google Drive, GitHub) for storing and sharing replication package
materials, documentation tools (e.g., Markdown, LaTeX) for creating documentation, com-
munication tools (e.g., email, Slack) for coordinating efforts and disseminating the replication
package.

Dependencies:
References: [74, 1]

76

Practice Code: 4.5.5
Practice Name: Develop generic educational materials
Description:Create educational materials designed to support users and contributors of the re-
search software project.
When implemented:

• (M) During the early stages, to provide foundational resources for early adopters and internal
team members.

• (M) Continuously, as part of routine updates, to keep educational content current with
software developments and user feedback.

• (S) Before major releases, ensure comprehensive support materials are available for new
features and changes.

• (S) When aiming to grow the user base and contributor community, offering clear and helpful
educational materials lowers the barrier to entry.

Resources required:

• Time: Time is required for researching, writing, designing, and reviewing educational ma-
terials, depending on the depth and breadth of coverage.

• Word processing software (e.g., Microsoft Word, Google Docs) for creating written content,
presentation software (e.g., PowerPoint, Google Slides) for designing slides, graphics software
(e.g., Adobe Illustrator, Canva) for creating visual elements, collaboration platforms (e.g.,
Google Drive, SharePoint) for sharing and reviewing materials.

Dependencies: 4.5.5 < 4.5.10
References: [56, 83]

77

Practice Code: 4.5.9
Practice Name: Organize training events in person
Description: Conduct in-person training events, workshops, or seminars providing hands-on
learning about the research software project and fostering collaboration among researchers.
When implemented:

• (M) Training events attract active participation and attendance from researchers, demon-
strating interest and commitment to learning about the research software project.

• (S) Training sessions incorporate interactive activities, case studies, and hands-on exercises
to facilitate learning and application of the research software.

• (C) Training events facilitate networking and collaboration among participants, fostering
knowledge sharing, peer support, and community building around research software.

Resources required:

• Time: Varied depending on the scale and duration of training events, ranging from several
hours for short workshops to multiple days for intensive seminars or conferences.

• Securing suitable venues with appropriate facilities such as meeting rooms, audiovisual equip-
ment, and internet connectivity for hosting training events.

• Recruiting qualified trainers and speakers with expertise in the particular research domain
to deliver engaging and informative sessions.

• Developing promotional materials (e.g., flyers, posters, online advertisements) to market
training events and attract participants.

• Providing necessary materials, handouts, and supplies for training sessions, including lap-
tops, notebooks, pens, and refreshments.

Dependencies:
References: [41, 31]

78

Practice Code: 4.5.10
Practice Name: Make project part of an educational program
Description: Incorporate the research software project into an educational program or curricu-
lum, providing opportunities for students to engage with and contribute to the project while
gaining valuable skills and knowledge.
When implemented:

• (M) The research software project is seamlessly integrated into an educational program or
course curriculum, aligning with learning objectives and academic standards.

• (S) Students achieve learning outcomes related to research software project skills, critical
thinking, problem-solving, collaboration, and communication through their involvement in
the project.

• (C) Students actively engage with the research software project through coursework,
projects, internships, or research assistantships, contributing to project activities and out-
comes.

Resources required:

• Time: Required for coordination and planning with educational institutions or programs.

• Development of educational materials, resources, and assignments related to the research
software project to support student learning and engagement.

• Assessment tools and processes to evaluate student performance, track learning outcomes,
and measure the impact of the project on student learning and development.

Dependencies:
References: [31, 56]

79

Practice Code: 4.6.6
Practice Name: Provide with standard deployment tools (docker images, etc.)
Description: Equip the research project with standardized deployment tools, such as Docker
images, to streamline the deployment process and ensure consistency across different computing
environments.
When implemented:

• (M) The deployment tools are compatible with common computing environments and plat-
forms, ensuring that the research software project can be deployed consistently and reliably
across different systems.

• (S) Researchers and users can deploy the research software project using the provided tools
without encountering significant issues or dependencies, resulting in a functional and oper-
ational system.

• (C) Deployment tools are user-friendly and well-documented, allowing researchers and prac-
titioners to quickly deploy the research software project without requiring extensive technical
expertise or troubleshooting.

• (C) Standard deployment tools, such as Docker images or containerization scripts, are pro-
vided alongside the research software project’s codebase, enabling easy setup and deploy-
ment.

Resources required:

• Time: Time is required for developing, testing, and documenting deployment tools, depend-
ing on the complexity of the project and the deployment requirements.

• Docker or other containerization platforms for creating standardized deployment images,
scripting languages (e.g., Bash, Python) for automation and configuration management,
and version control systems (e.g., Git) for managing deployment scripts and configurations.

• Creation of clear and comprehensive documentation for using the deployment tools, including
installation instructions, configuration options, and troubleshooting guides.

• Provision of training sessions or workshops to familiarize users with deployment tools and
best practices for deploying the project, as well as ongoing support and assistance to address
any deployment-related issues or questions.

Dependencies: 4.6.6 < 4.6.8 and 4.6.6 < * (all other practices)
References: [79, 79]

80

Practice Code: 4.6.8
Practice Name: Enable deployment on a wide range of technology
Description: Ensure that the research software project can be deployed on various technology
stacks, platforms, and environments to maximize accessibility and adoption by different user
groups.
When implemented:

• (M) Users can deploy the project on various technology environments, including different
operating systems, cloud providers, and hardware architectures, with minimal effort and
without encountering major compatibility issues.

• (S) The research software project is designed and configured to be compatible with a wide
range of technology stacks, including different operating systems, programming languages,
and infrastructure setups.

• (C) Deployment configurations and dependencies are modular and configurable, allowing
users to customize deployment settings based on their specific requirements and preferences.

• (C) The research software project can be deployed seamlessly on different computing plat-
forms, including desktops, servers, cloud infrastructure, and edge devices, without requiring
significant modifications or adaptations.

Resources required:

• Time: Time is required for researching, testing, and optimizing deployment setups for dif-
ferent tech environments, depending on complexity.

• Utilize cross-platform development tools, containerization (like Docker), infrastructure-as-
code frameworks (e.g., Terraform), and cloud services (AWS, Azure) for diverse tech stack
deployments.

• Set up testing infrastructure and automation to validate configurations for compatibility
with various environments, OS, and hardware.

• Provide detailed guides and support resources for users deploying the research software
project on different platforms, offering ongoing assistance for deployment challenges.

Dependencies:
References: [56, 6]

81

Practice Code: 4.6.9
Practice Name: Provide coordination mechanisms for workflow distribution over different ma-
chines
Description: Implement mechanisms to distribute and coordinate the execution of workflow
tasks across multiple machines or computing nodes, optimizing performance and resource utiliza-
tion in distributed computing environments.
When implemented:

• (M) The system is resilient to failures and interruptions, with mechanisms for task recovery,
fault detection, and automatic rerouting to alternative resources in case of machine failures
or network disruptions.

• (S) Mechanisms are in place to coordinate and synchronize the execution of distributed
tasks, ensuring correct sequencing, data consistency, and dependency management across
the workflow.

• (C) The system effectively distributes workflow tasks across different machines or computing
nodes based on workload, availability, and resource constraints, maximizing parallelism and
minimizing execution time.

• (C) The coordination mechanisms can scale dynamically to accommodate increasing work-
load and resource demands, maintaining high performance and efficiency in distributed
computing environments of varying sizes and configurations.

Resources required:

• Time: Time is required for designing, implementing, and testing coordination mechanisms
for workflow distribution, adjusted based on the complexity and size of the computing setup.

• Utilize distributed computing frameworks like Apache Hadoop, message-passing libraries
such as MPI, or workflow management systems like Apache Airflow to manage task distri-
bution across machines.

• Set up and configure computing resources like servers, clusters, or cloud instances to support
distributed workflow execution.

• Employ monitoring tools to track workflow progress, resource usage, and system perfor-
mance, aiding in issue detection and resolution related to task coordination.

Dependencies:
References: [79, 42, 48]

82

Practice Code: 4.6.10
Practice Name: Generate Software Bill of Materials (SBOM)
Description: Create and maintain a Software Bill of Materials (SBOM) that documents all the
components and dependencies used in the research software project, providing transparency and
visibility into its composition.
When implemented:

• (M) The SBOM includes a comprehensive list of all software components and dependencies
utilized in the research project, including libraries, frameworks, modules, and third-party
tools.

• (M) Each research software component listed in the SBOM is accompanied by informa-
tion about its version number, release date, and any relevant metadata, facilitating version
tracking and management.

• (S) The SBOM documents the dependency relationships between different research software
components, indicating dependencies, sub-dependencies, and potential security vulnerabili-
ties or licensing issues.

• (C) The SBOM is regularly updated and maintained to reflect changes in the research
software ecosystem, including additions, removals, updates, and patches to research software
components and dependencies.

Resources required:

• Time: Time is required to compile and document the SBOM, with ongoing updates depend-
ing on project size and complexity.

• Use SBOM generation or SCA tools to automate SBOM creation, and version control sys-
tems like Git to track changes.

• Provide materials to educate contributors and stakeholders on SBOM importance and usage.

• Integrate SBOM processes into development workflows for seamless incorporation into re-
search software development and release processes.

Dependencies:
References: [86, 53]

2 Disclaimer

The descriptions of the practices in this dataset have been partially generated using ChatGPT
and subsequently rechecked for accuracy and completeness.

References

[1] C. Titus Brown. Replication, reproduction, and remixing in research software.
http://ivory.idyll.org/blog/research-software-reuse.html. Published: Jan. 18, 2013, Accessed:
April 24, 2024.

83

[2] actiTime. The importance of feedback in project management.
https://medium.com/actiresults/the-importance-of-feedback-in-project-management-
a1b06978e18b. Published: March 29, 2018, Accessed: January 22, 2024.

[3] M. Alenezi. Software architecture quality measurement stability and understandability. In-
ternational Journal of Advanced Computer Science and Applications, 7(7), 2016.

[4] B. Álvarez-Bornstein and M. Montesi. Funding acknowledgements in scientific publications:
A literature review. Research evaluation, 29(4):469–488, 2020.

[5] L. An, F. Khomh, S. Mcintosh, and M. Castelluccio. Why did this reviewed code crash? an
empirical study of mozilla firefox. In 2018 25th Asia-Pacific Software Engineering Conference
(APSEC), pages 396–405, 2018.

[6] J.-P. Arcangeli, R. Boujbel, and S. Leriche. Automatic deployment of distributed software
systems: Definitions and state of the art. Journal of Systems and Software, 103:198–218,
2015.

[7] H. Artaza, N. C. Hong, M. Corpas, A. Corpuz, R. Hooft, R. C. Jiménez, B. Leskošek, B. G.
Olivier, J. Stourac, R. S. Vařeková, et al. Top 10 metrics for life science software good
practices. F1000Research, 5, 2016.

[8] B. Aston. 10 best requirements management tools reviewed for 2024. Published: November
23, 2023, Accessed: January 22, 2024.

[9] C. K. Atkin and V. Freimuth. Guidelines for formative evaluation research in campaign
design. Public communication campaigns, 4:53–68, 2013.

[10] F. B. Aydemir and F. Dalpiaz. A roadmap for ethics-aware software engineering. In Proceed-
ings of the International Workshop on Software Fairness, pages 15–21, 2018.

[11] S. Balali, I. Steinmacher, U. Annamalai, A. Sarma, and M. A. Gerosa. Newcomers’ barriers...
is that all? an analysis of mentors’ and newcomers’ barriers in oss projects. Computer
Supported Cooperative Work (CSCW), 27:679–714, 2018.

[12] M. Barker, C. H. NP, D. Katz, A. Lamprecht, C. Martinez-Ortiz, F. Psomopoulos, J. Harrow,
L. Castro, M. Gruenpeter, P. Martinez, et al. Introducing the fair principles for research
software. Scientific Data, 9(1):622–622, 2022.

[13] F. Belliard, A. M. Maineri, E. Plomp, A. F. Ramos Padilla, J. Sun, and M. Zare Jeddi. Ten
simple rules for starting fair discussions in your community. PLOS Computational Biology,
19(12):e1011668, 2023.

[14] C. Bird, T. Menzies, and T. Zimmermann. The art and science of analyzing software data.
Elsevier, 2015.

[15] C. Boogerd and L. Moonen. Assessing the value of coding standards: An empirical study. In
2008 IEEE International conference on software maintenance, pages 277–286. IEEE, 2008.

[16] G. BOULEZ. Technical documentation: Cost or investment?
https://www.fluidtopics.com/blog/best-practices/technical-documentation-cost-or-
investment/. Published: Sep 20, 2021, Accessed:April 24, 2024.

84

[17] Cai, and Robert. 12 Benefits of Newsletters: Why they are essential to your email marketing
strategy! Published: Oct. 2, 2023, Accessed: March 28, 2024.

[18] M.-H. Chen, M. R. Lyu, and W. E. Wong. Effect of code coverage on software reliability
measurement. IEEE Transactions on reliability, 50(2):165–170, 2001.

[19] R. Clarke. Privacy impact assessment: Its origins and development. Computer law & security
review, 25(2):123–135, 2009.

[20] S. B. Davidson and J. Freire. Provenance and scientific workflows: challenges and opportu-
nities. In Proceedings of the 2008 ACM SIGMOD international conference on Management
of data, pages 1345–1350, 2008.

[21] M. Dayarathna, Y. Wen, and R. Fan. Data center energy consumption modeling: A survey.
IEEE Communications surveys & tutorials, 18(1):732–794, 2015.

[22] Deekshitha, S. Farshidi, J. Maassen, R. Bakhshi, R. Van Nieuwpoort, and S. Jansen. Fairseco:
An extensible framework for impact measurement of research software. In 2023 IEEE 19th
International Conference on e-Science (e-Science), pages 1–10, 2023.

[23] P. Dhoolia, P. Chugh, P. Costa, N. Gantayat, M. Gupta, N. Kambhatla, R. Kumar, S. Mani,
P. Mitra, C. Rogerson, and M. Saxena. A cognitive system for business and technical support:
A case study. IBM Journal of Research and Development, 61(1):7:74–7:85, 2017.

[24] R. M. dos Santos and M. A. Gerosa. Impacts of coding practices on readability. In Proceedings
of the 26th Conference on Program Comprehension, pages 277–285, 2018.

[25] A. Dziuba. How to Run a Successful Software Engineer Performance Review [Template
Included]. https://relevant.software/blog/run-successful-software-engineer-performance-
review/. Published: August 30, 2023, Accessed: March 28, 2024.

[26] D. D’Agostino, I. Merelli, M. Aldinucci, and D. Cesini. Hardware and software solutions
for energy-efficient computing in scientific programming. Scientific Programming, 2021:1–9,
2021.

[27] S. Epskamp. Reproducibility and replicability in a fast-paced methodological world. Advances
in Methods and Practices in Psychological Science, 2(2):145–155, 2019.

[28] J. R. Erenkrantz. Release management within open source projects. In Proc. 3rd. workshop
on open source software engineering, volume 10, 2003.

[29] R. E. Fairley. Software Project Management, page 1634–1636. John Wiley and Sons Ltd.,
GBR, 2003.

[30] D. Garijo, H. Ménager, L. Hwang, A. Trisovic, M. Hucka, T. Morrell, and A. Allen. Nine best
practices for research software registries and repositories. PeerJ Computer Science, 8:e1023,
2022.

[31] GGIR. Ggir training. https://www.accelting.com/ggir-training/. Accessed: April 24, 2024.

[32] GitHub. Documenting your project with wikis. https://docs.github.com/en/communities/documenting-
your-project-with-wikis. Accessed: Feb 19, 2024.

85

[33] J. Gogoll, N. Zuber, S. Kacianka, et al. Ethics in the software development process: from
codes of conduct to ethical deliberation. Philos. Technol., 34:1085–1108, 2021.

[34] A. Guzzi, A. Bacchelli, M. Lanza, M. Pinzger, and A. van Deursen. Communication in
open source software development mailing lists. In 2013 10th Working Conference on Mining
Software Repositories (MSR), pages 277–286, 2013.

[35] W. Hazeleger, T. Bakker, and R. van Nieuwpoort. escience development and experiences in
the netherlands. Informatik-Spektrum, 41:405–413, 2018.

[36] IBM. End-of-life Software Guidance. https://www.ibm.com/docs/en/randori?topic=guidance-
end-life-eol. Updated: Jan. 18, 2024, Accessed: April 24, 2024.

[37] M. Ivarsson and T. Gorschek. A method for evaluating rigor and industrial relevance of
technology evaluations. Empirical Software Engineering, 16:365–395, 2011.

[38] S. Jansen. Measuring the health of open source software ecosystems: Beyond the scope of
project health. Information and Software Technology, 56(11):1508–1519, 2014.

[39] S. Jansen, S. Farshidi, G. Gousios, J. Visser, T. van der Storm, and M. Bruntink. Searchseco:
A worldwide index of the open source software ecosystem. In Proceedings of the 19th Belgium-
Netherlands Software Evolution Workshop (BENEVOL 2020), volume 2912 of CEUR Work-
shop Proceedings. CEUR-WS.org, 2020.

[40] R. C. Jiménez, M. Kuzak, M. Alhamdoosh, M. Barker, B. Batut, M. Borg, S. Capella-
Gutierrez, N. C. Hong, M. Cook, M. Corpas, et al. Four simple recommendations to encourage
best practices in research software. F1000Research, 6, 2017.

[41] E. C. Johnson, T. T. Nguyen, B. K. Dichter, F. Zappulla, M. Kosma, K. Gunalan, Y. O.
Halchenko, S. Q. Neufeld, M. Schirner, P. Ritter, et al. A maturity model for operations in
neuroscience research. arXiv preprint arXiv:2401.00077, 2023.

[42] G. Kappel, S. Rausch-Schott, and W. Retschitzegger. Coordination in workflow management
systems—a rule-based approach. In Coordination Technology for Collaborative Applications:
Organizations, Processes, and Agents 2, pages 99–119. Springer, 1998.

[43] E. Karoune and E. Plomp. Removing barriers to reproducible research in archaeology. Zenodo,
ver. 5, peer reviewed and recommended by Peer Community in Archaeology, 2022.

[44] D. S. Katz, L. C. McInnes, D. E. Bernholdt, A. C. Mayes, N. P. C. Hong, J. Duckles, S. Gesing,
M. A. Heroux, S. Hettrick, R. C. Jimenez, M. Pierce, B. Weaver, and N. Wilkins-Diehr.
Community organizations: Changing the culture in which research software is developed and
sustained. Computing in Science & Engineering, 21(2):8–24, 2019.

[45] B. Kleinke. Challenges and lessons learned introducing an evolving open source technology
into an established legacy ada and c++ program. ACM SIGAda Ada Letters, 40(2):70–72,
2021.

[46] O. Kononenko, O. Baysal, L. Guerrouj, Y. Cao, and M. W. Godfrey. Investigating code
review quality: Do people and participation matter? In 2015 IEEE International Conference
on Software Maintenance and Evolution (ICSME), pages 111–120, 2015.

86

[47] T. Kravchenko, T. Bogdanova, and T. Shevgunov. Ranking requirements using moscow
methodology in practice. In Computer Science On-line Conference, pages 188–199. Springer,
2022.

[48] A. Kumar, W. M. Van Der Aalst, and E. M. Verbeek. Dynamic work distribution in workflow
management systems: How to balance quality and performance. Journal of Management
Information Systems, 18(3):157–193, 2002.

[49] Kwixand. The costs and challenges of maintaining your legacy erp software.
https://www.kwixand.com/post/the-costs-of-maintaining-legacy-erp-software. Published
November 28, 2022, Accessed: Feb 19, 2024.

[50] M. Leach, L. Mehta, and P. Prabhakaran. Sustainable development: A gendered pathways
approach. In Gender equality and sustainable development, pages 1–33. Routledge, 2015.

[51] A. M. León, Ó. F. C. Domı́nguez, and F. A. Vargas. Evaluating, selecting and relevance
software tools in technology monitoring. Ingenieŕıa e Investigación, 26(1):101–110, 2006.

[52] P. Levin. Project controls online: Website, e-newsletter examine growing trend. Cost Engi-
neering, 47(10):9, 2005.

[53] J. Lin̊aker, G. Robles, D. Bryant, and S. Muto. Open source software in the public sector:
25 years and still in its infancy. IEEE Software, 40(4):39–44, 2023.

[54] J. Liu, J. Li, and L. He. A comparative study of the effects of pull request on github projects.
In 2016 IEEE 40th Annual Computer Software and Applications Conference (COMPSAC),
volume 1, pages 313–322. IEEE, 2016.

[55] M. R. Lunn, M. Lubensky, C. Hunt, A. Flentje, M. R. Capriotti, C. Sooksaman, T. Harnett,
D. Currie, C. Neal, and J. Obedin-Maliver. A digital health research platform for community
engagement, recruitment, and retention of sexual and gender minority adults in a national
longitudinal cohort study–—the pride study. Journal of the American Medical Informatics
Association, 26(8-9):737–748, 2019.

[56] C. Martinez-Ortiz, D. S. Katz, A. Lamprecht, M. Barker, A. Loewe, A. Fouilloux, J. Wyn-
gaard, D. Garijo, J. Moldon, L. Castro, et al. Fair4rs: Adoption support. Technical report,
Zenodo, 2022.

[57] C. Martinez-Ortiz, P. Martinez Lavanchy, L. Sesink, B. G. Olivier, J. Meakin, M. de Jong,
and M. Cruz. Practical guide to software management plans, Jan. 2023.

[58] K. E. Maull and M. Mayernik. Expanding impact metrics contexts with software citation.
NCAR Technical Notes NCAR/TN-567+ PROC, page 23.

[59] M. Medeiros, U. Kulesza, R. Bonifacio, E. Adachi, and R. Coelho. Improving bug localization
by mining crash reports: An industrial study. In 2020 IEEE International Conference on
Software Maintenance and Evolution (ICSME), pages 766–775. IEEE, 2020.

[60] C. Meeßen. Increasing the visibility of Research Software: The Helmholtz Research Software
Directory, May 2023.

87

[61] S. Nesbitt. 3 tips for effectively using wikis for documentation. Published:January 2, 2017,
Accessed: Feb 19, 2024.

[62] U. of Bristol. How to publish research software. https://www.bristol.ac.uk/acrc/research-
software-engineering/software-howtos/how-to-publish-software/. Accessed: January 22,
2024.

[63] S. Osafo-Addo. Security in Code Reviews: Ensuring Secure and Robust Software Develop-
ment. Published: August 07, 2023, Accessed: March 28, 2024.

[64] S. O’Mahony. The governance of open source initiatives: what does it mean to be community
managed? Journal of Management & Governance, 11:139–150, 2007.

[65] K. Quach. Mapping research software landscapes through exploratory studies of github data.
Master’s thesis, 2022.

[66] A. Ramirez, A. Aiello, and S. J. Lincke. A survey and comparison of secure software develop-
ment standards. In 2020 13th CMI Conference on Cybersecurity and Privacy (CMI)-Digital
Transformation-Potentials and Challenges (51275), pages 1–6. IEEE, 2020.

[67] M. Régnier and M. Dacos. Report of the G7 Open Science-Research on Research Sub-Working
Group. PhD thesis, Comité pour la science ouverte, 2023.

[68] K. R. Riisom, M. S. Hubel, H. M. Alradhi, N. B. Nielsen, K. Kuusinen, and R. Jabangwe.
Software security in agile software development: A literature review of challenges and solu-
tions. In Proceedings of the 19th International Conference on Agile Software Development:
Companion, pages 1–5, 2018.

[69] Rob Healy, Brian Fitzgerald,Kieran Conboy, Tapajit Dey, Edwin Lewzey, and Ben
Linders . How Agile Teams Can Improve Predictability by Measuring Stability.
https://www.infoq.com/articles/improve-predictability-measure-stability/. Accessed: March
28, 2024.

[70] P. N. Robillard and M. Lavallée. Software team processes: A taxonomy. In 2012 International
Conference on Software and System Process (ICSSP), pages 101–109. IEEE, 2012.

[71] K. Schrum, N. Majury, A. L. Simonelli, and S. Bodgewiecz. Audience matters. Teaching and
Learning Inquiry, 10, 2022.

[72] S.Druskat, and S. Harriet. What are best practices for research software docu-
mentation? https://www.software.ac.uk/blog/what-are-best-practices-research-software-
documentation. Published: June 21, 2019, Accessed: January 22, 2024.

[73] B. C. Seagram, L. H. Patten, and C. W. Lockett. Audience research and exhibit development:
A framework. Museum Management and Curatorship, 12(1):29–41, 1993.

[74] F. Shull, V. Basili, J. Carver, J. C. Maldonado, G. H. Travassos, M. Mendonça, and S. Fabbri.
Replicating software engineering experiments: addressing the tacit knowledge problem. In
Proceedings international symposium on empirical software engineering, pages 7–16. IEEE,
2002.

88

[75] J. H. Spaaks, T. Klaver, S. Verhoeven, F. Diblen, J. Maassen, E. Tjong Kim Sang, P. Pawar,
C. Meijer, L. Ridder, L. Kulik, T. Bakker, V. van Hees, L. Bogaardt, A. Mendrik, B. van Es,
J. Attema, W. van Hage, E. Ranguelova, R. van Nieuwpoort, R. Gey, and H. Zach. Research
Software Directory. 2020. version: 3.0.1.

[76] Stephan Druskat, Daniel S. Katz, David Klein, Mark Santcroos, Tobias Schlauch, Liz Sexton-
Kennedy, and Anthony Truskinger . Credit and recognition for research software: Current
state of practice and outlook. Published: November 26, 2018, Accessed:April 24, 2024.

[77] C. Strasser, K. Hertweck, J. Greenberg, D. Taraborelli, and E. Vu. Ten simple rules for
funding scientific open source software. PLOS Computational Biology, 18(11):e1010627, 2022.

[78] THALES. All about software licensing management. https://cpl.thalesgroup.com/software-
monetization/software-licensing-management. Accessed: January 22, 2024.

[79] A. Trisovic, M. K. Lau, T. Pasquier, and M. Crosas. A large-scale study on research code
quality and execution. Scientific Data, 9(1):60, 2022.

[80] Y. Valdés-Rodŕıguez, J. Hochstetter-Diez, J. Dı́az-Arancibia, and R. Cadena-Mart́ınez. To-
wards the integration of security practices in agile software development: a systematic map-
ping review. Applied Sciences, 13(7):4578, 2023.

[81] A. Van Der Hoek, R. S. Hall, D. Heimbigner, and A. L. Wolf. Software release management.
ACM SIGSOFT Software Engineering Notes, 22(6):159–175, 1997.

[82] J. van Eijnatten, M. Barker, V. Azzarà, T. Bakker, M. Cruz, D. S. Katz, C. Martinez-
Ortiz, V. Pang, et al. Amsterdam declaration on funding research software sustainability. In
International Funders Workshop, pages 1–4, 2022.

[83] V. van Hees, Z. Fang, E. Mirkes, J. Heywood, J. H. Zhao, C. P. Joan, S. Sabia, and J. H.
Migueles. GGIR, Sept. 2022. version 2.7-6.

[84] T. Williams, M. Mercer, J. Mucha, and R. Kapur. Code coverage, what does it mean in
terms of quality? In Annual reliability and maintainability symposium. 2001 Proceedings.
International symposium on product quality and integrity (Cat. No. 01CH37179), pages 420–
424. IEEE, 2001.

[85] Y. Y. J. Woo. Engaging new audiences: Translating research into popular media. Educational
Researcher, 37(6):321–329, 2008.

[86] B. Xia, T. Bi, Z. Xing, Q. Lu, and L. Zhu. An empirical study on software bill of materials:
Where we stand and the road ahead. In 2023 IEEE/ACM 45th International Conference on
Software Engineering (ICSE), pages 2630–2642. IEEE, 2023.

89

	The Maturity Model
	Focus Areas
	Software project management
	Research software management
	Community Engagement
	Software Adoptability

	Practices Description

	Disclaimer

